1
|
Huang Y, Ognjenovic J, Karandur D, Miller K, Merk A, Subramaniam S, Kuriyan J. A molecular mechanism for the generation of ligand-dependent differential outputs by the epidermal growth factor receptor. eLife 2021; 10:73218. [PMID: 34846302 PMCID: PMC8716103 DOI: 10.7554/elife.73218] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/19/2021] [Indexed: 12/26/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that couples the binding of extracellular ligands, such as EGF and transforming growth factor-α (TGF-α), to the initiation of intracellular signaling pathways. EGFR binds to EGF and TGF-α with similar affinity, but generates different signals from these ligands. To address the mechanistic basis of this phenomenon, we have carried out cryo-EM analyses of human EGFR bound to EGF and TGF-α. We show that the extracellular module adopts an ensemble of dimeric conformations when bound to either EGF or TGF-α. The two extreme states of this ensemble represent distinct ligand-bound quaternary structures in which the membrane-proximal tips of the extracellular module are either juxtaposed or separated. EGF and TGF-α differ in their ability to maintain the conformation with the membrane-proximal tips of the extracellular module separated, and this conformation is stabilized preferentially by an oncogenic EGFR mutation. Close proximity of the transmembrane helices at the junction with the extracellular module has been associated previously with increased EGFR activity. Our results show how EGFR can couple the binding of different ligands to differential modulation of this proximity, thereby suggesting a molecular mechanism for the generation of ligand-sensitive differential outputs in this receptor family.
Collapse
Affiliation(s)
- Yongjian Huang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Jana Ognjenovic
- Frederick National Laboratory for Cancer Research, Frederick, United States
| | - Deepti Karandur
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Kate Miller
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Alan Merk
- Frederick National Laboratory for Cancer Research, Frederick, United States
| | | | - John Kuriyan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States.,Department of Chemistry, University of California, Berkeley, Berkeley, United States.,Divisions of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, United States
| |
Collapse
|
2
|
Clénet D, Clavier L, Strobbe B, Le Bon C, Zoonens M, Saulnier A. Full-length G glycoprotein directly extracted from rabies virus with detergent and then stabilized by amphipols in liquid and freeze-dried forms. Biotechnol Bioeng 2021; 118:4317-4330. [PMID: 34297405 PMCID: PMC9291542 DOI: 10.1002/bit.27900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 06/22/2021] [Accepted: 07/09/2021] [Indexed: 11/11/2022]
Abstract
Pathogen surface antigens are at the forefront of the viral strategy when invading host organisms. These antigens, including membrane proteins (MPs), are broadly targeted by the host immune response. Obtaining these MPs in a soluble and stable form constitutes a real challenge, regardless of the application purposes (e.g. quantification/characterization assays, diagnosis, and preventive and curative strategies). A rapid process to obtain a native-like antigen by solubilization of a full-length MP directly from a pathogen is reported herein. Rabies virus (RABV) was used as a model for this demonstration and its full-length G glycoprotein (RABV-G) was stabilized with amphipathic polymers, named amphipols (APols). The stability of RABV-G trapped in APol A8-35 (RABV-G/A8-35) was evaluated under different stress conditions (temperature, agitation, and light exposure). RABV-G/A8-35 in liquid form exhibited higher unfolding temperature (+6°C) than in detergent and was demonstrated to be antigenically stable over 1 month at 5°C and 25°C. Kinetic modeling of antigenicity data predicted antigenic stability of RABV-G/A8-35 in a solution of up to 1 year at 5°C. The RABV-G/A8-35 complex formulated in an optimized buffer composition and subsequently freeze-dried displayed long-term stability for 2-years at 5, 25, and 37°C. This study reports for the first time that a natural full-length MP extracted from a virus, complexed to APols and subsequently freeze-dried, displayed long-term antigenic stability, without requiring storage under refrigerated conditions.
Collapse
Affiliation(s)
- Didier Clénet
- Bioprocess R&D DepartmentSanofi PasteurMarcy l'EtoileFrance
| | - Léna Clavier
- Bioprocess R&D DepartmentSanofi PasteurMarcy l'EtoileFrance
| | - Benoît Strobbe
- Bioprocess R&D DepartmentSanofi PasteurMarcy l'EtoileFrance
| | - Christel Le Bon
- Laboratoire de Biologie Physico‐Chimique des Protéines Membranaires, CNRS, Institut de Biologie Physico‐ChimiqueUniversité de ParisParisFrance
| | - Manuela Zoonens
- Laboratoire de Biologie Physico‐Chimique des Protéines Membranaires, CNRS, Institut de Biologie Physico‐ChimiqueUniversité de ParisParisFrance
| | - Aure Saulnier
- Bioprocess R&D DepartmentSanofi PasteurMarcy l'EtoileFrance
- Department of Analytical SciencesSanofi PasteurMarcy l'EtoileFrance
| |
Collapse
|
3
|
Majeed S, Ahmad AB, Sehar U, Georgieva ER. Lipid Membrane Mimetics in Functional and Structural Studies of Integral Membrane Proteins. MEMBRANES 2021; 11:685. [PMID: 34564502 PMCID: PMC8470526 DOI: 10.3390/membranes11090685] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/18/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
Integral membrane proteins (IMPs) fulfill important physiological functions by providing cell-environment, cell-cell and virus-host communication; nutrients intake; export of toxic compounds out of cells; and more. However, some IMPs have obliterated functions due to polypeptide mutations, modifications in membrane properties and/or other environmental factors-resulting in damaged binding to ligands and the adoption of non-physiological conformations that prevent the protein from returning to its physiological state. Thus, elucidating IMPs' mechanisms of function and malfunction at the molecular level is important for enhancing our understanding of cell and organism physiology. This understanding also helps pharmaceutical developments for restoring or inhibiting protein activity. To this end, in vitro studies provide invaluable information about IMPs' structure and the relation between structural dynamics and function. Typically, these studies are conducted on transferred from native membranes to membrane-mimicking nano-platforms (membrane mimetics) purified IMPs. Here, we review the most widely used membrane mimetics in structural and functional studies of IMPs. These membrane mimetics are detergents, liposomes, bicelles, nanodiscs/Lipodisqs, amphipols, and lipidic cubic phases. We also discuss the protocols for IMPs reconstitution in membrane mimetics as well as the applicability of these membrane mimetic-IMP complexes in studies via a variety of biochemical, biophysical, and structural biology techniques.
Collapse
Affiliation(s)
- Saman Majeed
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Akram Bani Ahmad
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Ujala Sehar
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Elka R Georgieva
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Science Center, Lubbock, TX 79409, USA
| |
Collapse
|
4
|
Methods for the solubilisation of membrane proteins: the micelle-aneous world of membrane protein solubilisation. Biochem Soc Trans 2021; 49:1763-1777. [PMID: 34415288 PMCID: PMC8421053 DOI: 10.1042/bst20210181] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022]
Abstract
The solubilisation of membrane proteins (MPs) necessitates the overlap of two contradictory events; the extraction of MPs from their native lipid membranes and their subsequent stabilisation in aqueous environments. Whilst the current myriad of membrane mimetic systems provide a range of modus operandi, there are no golden rules for selecting the optimal pipeline for solubilisation of a specific MP hence a miscellaneous approach must be employed balancing both solubilisation efficiency and protein stability. In recent years, numerous diverse lipid membrane mimetic systems have been developed, expanding the pool of available solubilisation strategies. This review provides an overview of recent developments in the membrane mimetic field, with particular emphasis placed upon detergents, polymer-based nanodiscs and amphipols, highlighting the latest reagents to enter the toolbox of MP research.
Collapse
|
5
|
Cheng S, Bo Z, Hollenberg P, Osawa Y, Zhang H. Amphipol-facilitated elucidation of the functional tetrameric complex of full-length cytochrome P450 CYP2B4 and NADPH-cytochrome P450 oxidoreductase. J Biol Chem 2021; 296:100645. [PMID: 33839156 PMCID: PMC8113742 DOI: 10.1016/j.jbc.2021.100645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 10/27/2022] Open
Abstract
Interactions of membrane-bound mammalian cytochromes P450 (CYPs) with NADPH-cytochrome P450 oxidoreductase (POR), which are required for metabolism of xenobiotics, are facilitated by membrane lipids. A variety of membrane mimetics, such as phospholipid liposomes and nanodiscs, have been used to simulate the membrane to form catalytically active CYP:POR complexes. However, the exact mechanism(s) of these interactions are unclear because of the absence of structural information of full-length mammalian CYP:POR complexes in membranes. Herein, we report the use of amphipols (APols) to form a fully functional, soluble, homogeneous preparation of full-length CYP:POR complexes amenable to biochemical and structural study. Incorporation of CYP2B4 and POR into APols resulted in a CYP2B4:POR complex with a stoichiometry of 1:1, which was fully functional in demethylating benzphetamine at a turnover rate of 37.7 ± 2.2 min-1, with a coupling efficiency of 40%. Interestingly, the stable complex had a molecular weight (Mw) of 338 ± 22 kDa determined by multiangle light scattering, suggestive of a tetrameric complex of 2CYP2B4:2POR embedded in one APol nanoparticle. Moreover, negative stain electron microscopy (EM) validated the homogeneity of the complex and allowed us to generate a three-dimensional EM map and model consistent with the tetramer observed in solution. This first report of the full-length mammalian CYP:POR complex by transmission EM not only reveals the architecture that facilitates electron transfer but also highlights a potential use of APols in biochemical and structural studies of functional CYP complexes with redox partners.
Collapse
Affiliation(s)
- Shen Cheng
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Zhiyuan Bo
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Paul Hollenberg
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yoichi Osawa
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Haoming Zhang
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
6
|
Styrene maleic-acid lipid particles (SMALPs) into detergent or amphipols: An exchange protocol for membrane protein characterisation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183192. [PMID: 31945320 PMCID: PMC7086155 DOI: 10.1016/j.bbamem.2020.183192] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/06/2019] [Accepted: 01/10/2020] [Indexed: 12/24/2022]
Abstract
Membrane proteins are traditionally extracted and purified in detergent for biochemical and structural characterisation. This process is often costly and laborious, and the stripping away of potentially stabilising lipids from the membrane protein of interest can have detrimental effects on protein integrity. Recently, styrene-maleic acid (SMA) co-polymers have offered a solution to this problem by extracting membrane proteins directly from their native membrane, while retaining their naturally associated lipids in the form of stable SMA lipid particles (SMALPs). However, the inherent nature and heterogeneity of the polymer renders their use challenging for some downstream applications – particularly mass spectrometry (MS). While advances in cryo-electron microscopy (cryo-EM) have enhanced our understanding of membrane protein:lipid interactions in both SMALPs and detergent, the resolution obtained with this technique is often insufficient to accurately identify closely associated lipids within the transmembrane annulus. Native-MS has the power to fill this knowledge gap, but the SMA polymer itself remains largely incompatible with this technique. To increase sample homogeneity and allow characterisation of membrane protein:lipid complexes by native-MS, we have developed a novel SMA-exchange method; whereby the membrane protein of interest is first solubilised and purified in SMA, then transferred into amphipols or detergents. This allows the membrane protein and endogenously associated lipids extracted by SMA co-polymer to be identified and examined by MS, thereby complementing results obtained by cryo-EM and creating a better understanding of how the lipid bilayer directly affects membrane protein structure and function. First reported exchange protocol for transferring membrane proteins solubilised in SMALPs, into detergent or amphipols. Purification of protein:lipid complexes without detergent for mass spectrometry and subsequent lipid identification. Cost effective membrane protein purification requiring only minimal amounts of detergents in the exchange process.
Collapse
|
7
|
Schmidpeter PAM, Sukomon N, Nimigean CM. Reconstitution of Membrane Proteins into Platforms Suitable for Biophysical and Structural Analyses. Methods Mol Biol 2020; 2127:191-205. [PMID: 32112324 PMCID: PMC9288841 DOI: 10.1007/978-1-0716-0373-4_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Integral membrane proteins have historically been challenging targets for biophysical research due to their low solubility in aqueous solution. Their importance for chemical and electrical signaling between cells, however, makes them fascinating targets for investigators interested in the regulation of cellular and physiological processes. Since membrane proteins shunt the barrier imposed by the cell membrane, they also serve as entry points for drugs, adding pharmaceutical research and development to the interests. In recent years, detailed understanding of membrane protein function has significantly increased due to high-resolution structural information obtained from single-particle cryo-EM, X-ray crystallography, and NMR. In order to further advance our mechanistic understanding on membrane proteins as well as foster drug development, it is crucial to generate more biophysical and functional data on these proteins under defined conditions. To that end, different techniques have been developed to stabilize integral membrane proteins in native-like environments that allow both structural and biophysical investigations-amphipols, lipid bicelles, and lipid nanodiscs. In this chapter, we provide detailed protocols for the reconstitution of membrane proteins according to these three techniques. We also outline some of the possible applications of each technique and discuss their advantages and possible caveats.
Collapse
Affiliation(s)
| | - Nattakan Sukomon
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - Crina M Nimigean
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
8
|
Hardin NZ, Ravula T, Di Mauro G, Ramamoorthy A. Hydrophobic Functionalization of Polyacrylic Acid as a Versatile Platform for the Development of Polymer Lipid Nanodisks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804813. [PMID: 30667600 PMCID: PMC7433539 DOI: 10.1002/smll.201804813] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/27/2018] [Indexed: 05/22/2023]
Abstract
Polymer nanodisks have shown great potential as membrane mimetics that enable the study of functional membrane protein structural biology and also have a wider application in other fields such as drug delivery. To achieve these research goals, the ability to have a cheap, simple, fully customizable platform for future nanodisks technology applications is paramount. Here, a facile functionalization of polyacrylic acid (PAA) with varying hydrophobic groups that form nanodisks at different sizes is successfully demonstrated. The study shows that the choice of hydrophobic group can have a noticeable effect on the polymer solubilization properties and polymer-induced perturbation to the encased lipid bilayer. Due to this robust, tunable chemical synthesis method, PAA is an exciting platform for the future optimization of the hydrophobic, hydrophilic, or direct purposed functionalizations for polymer nanodisks.
Collapse
Affiliation(s)
- Nathaniel Z. Hardin
- Biophysics Program and Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Thirupathi Ravula
- Biophysics Program and Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Giacomo Di Mauro
- Biophysics Program and Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics Program and Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
9
|
Perry TN, Souabni H, Rapisarda C, Fronzes R, Giusti F, Popot JL, Zoonens M, Gubellini F. BAmSA: Visualising transmembrane regions in protein complexes using biotinylated amphipols and electron microscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:466-477. [DOI: 10.1016/j.bbamem.2018.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 12/30/2022]
|
10
|
Arunmanee W, Heenan RK, Lakey JH. Determining the amphipol distribution within membrane-protein fibre samples using small-angle neutron scattering. Acta Crystallogr D Struct Biol 2018; 74:1192-1199. [PMID: 30605133 PMCID: PMC6317593 DOI: 10.1107/s205979831800476x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/22/2018] [Indexed: 11/10/2022] Open
Abstract
Detergent micelles can solubilize membrane proteins, but there is always a need for a pool of free detergent at the critical micellar concentration to maintain the micelle-monomer equilibrium. Amphipol polymeric surfactants (APols) have been developed to replace conventional detergents in membrane-protein studies, but the role of free amphipol is unclear. It has previously been shown that the removal of free APol causes monodisperse outer membrane protein F (OmpF) to form long filaments. However, any remaining APol could not be resolved using electron microscopy. Here, small-angle neutron scattering with isotope contrast matching was used to separately determine the distributions of membrane protein and amphipol in a mixed sample. The data showed that after existing free amphipol had been removed from monodisperse complexes, a new equilibrium was established between protein-amphipol filaments and a pool of newly liberated free amphipol. The filaments consisted of OmpF proteins surrounded by a belt of Apol, whilst free oblate spheroid micelles of Apol were also present. No indications of long-range order were observed, suggesting a lack of defined structure in the filaments.
Collapse
Affiliation(s)
- Wanatchaporn Arunmanee
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Richard K Heenan
- ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, England
| | - Jeremy H Lakey
- Institute for Cell and Molecular Bioscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, England
| |
Collapse
|
11
|
Tifrea DF, Pal S, Le Bon C, Giusti F, Popot JL, Cocco MJ, Zoonens M, de la Maza LM. Co-delivery of amphipol-conjugated adjuvant with antigen, and adjuvant combinations, enhance immune protection elicited by a membrane protein-based vaccine against a mucosal challenge with Chlamydia. Vaccine 2018; 36:6640-6649. [PMID: 30293763 DOI: 10.1016/j.vaccine.2018.09.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/28/2018] [Accepted: 09/23/2018] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Chlamydial infections are spread worldwide and a vaccine is needed to control this pathogen. The goals of this study were to determine if the delivery of an adjuvant associated to the antigen, via a derivatized amphipol, and adjuvant combinations improve vaccine protection. METHODS A novel approach, trapping the Chlamydia muridarum (Cm) native MOMP (nMOMP) with amphipols (A8-35), bearing a covalently conjugated peptide (EP67), was used. Adjuvants incorporated were: EP67 either conjugated to A8-35, which was used to trap nMOMP (nMOMP/EP67-A8-35), or free as a control, added to nMOMP/A8-35 complexes (nMOMP/A8-35+EP67); Montanide ISA 720 to enhance humoral responses, and CpG-1826 to elicit robust cell-mediated immunity (CMI). BALB/c mice were immunized by mucosal and systemic routes. Intranasal immunization with live Cm was used as positive control and three negative controls were included. Mice were challenged intranasally with Cm and changes in body weight, lungs weight and number of Cm-inclusion forming units (IFU) recovered from the lungs were evaluated to establish protection. To assess local responses levels of IFN- γ and Cm-specific IgA were determined in lungs' supernatants. RESULTS Structural assays demonstrated that nMOMP secondary structure and thermal stability were maintained when A8-35 was covalently modified. Mice vaccinated with nMOMP/EP67-A8-35 were better protected than animals immunized with nMOMP/A8-35+EP67. Addition of Montanide enhanced Th2 responses and improved protection. Including CpG-1826 further broadened, intensified and switched to Th1-biased immune responses. With delivery of nMOMP and the three adjuvants, as determined by changes in body weight, lungs weight and number of IFU recovered from lungs, protection at 10 days post-challenge was equivalent to that induced by immunization with live Cm. CONCLUSIONS Covalent association of EP67 to A8-35, used to keep nMOMP water-soluble, improves protection over that conferred by free EP67. Adjuvant combinations including EP67+Montanide+CpG-1826, by broadening and intensifying cellular and humoral immune responses, further enhanced protection.
Collapse
Affiliation(s)
- Delia F Tifrea
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA
| | - Sukumar Pal
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA
| | - Christel Le Bon
- C.N.R.S./Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Fabrice Giusti
- C.N.R.S./Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Jean-Luc Popot
- C.N.R.S./Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Melanie J Cocco
- Department of Molecular Biology and Biochemistry, Department of Pharmaceutical Sciences, 1218 Natural Sciences, University of California, Irvine, Irvine, CA 92697-3900, USA
| | - Manuela Zoonens
- C.N.R.S./Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France.
| | - Luis M de la Maza
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA.
| |
Collapse
|
12
|
Serra-Batiste M, Tolchard J, Giusti F, Zoonens M, Carulla N. Stabilization of a Membrane-Associated Amyloid-β Oligomer for Its Validation in Alzheimer's Disease. Front Mol Biosci 2018; 5:38. [PMID: 29725595 PMCID: PMC5917194 DOI: 10.3389/fmolb.2018.00038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/28/2018] [Indexed: 11/13/2022] Open
Abstract
We have recently reported on the preparation of a membrane-associated β-barrel Pore-Forming Aβ42 Oligomer (βPFOAβ42). It corresponds to a stable and homogeneous Aβ42 oligomer that inserts into lipid bilayers as a well-defined pore and adopts a specific structure with characteristics of a β-barrel arrangement. As a follow-up of this work, we aim to establish βPFOAβ42's relevance in Alzheimer's disease (AD). However, βPFOAβ42 is formed under dodecyl phosphocholine (DPC) micelle conditions-intended to mimic the hydrophobic environment of membranes-which are dynamic. Consequently, dilution of the βPFOAβ42/DPC complex in a detergent-free buffer leads to dispersion of the DPC molecules from the oligomer surface, leaving the oligomer without the hydrophobic micelle belt that stabilizes it. Since dilution is required for any biological test, transfer of βPFOAβ42 from DPC micelles into another hydrophobic biomimetic membrane environment, that remains associated with βPFOAβ42 even under high dilution conditions, is a requisite for the validation of βPFOAβ42 in AD. Here we describe conditions for exchanging DPC micelles with amphipols (APols), which are amphipathic polymers designed to stabilize membrane proteins in aqueous solutions. APols bind in an irreversible but non-covalent manner to the hydrophobic surface of membrane proteins preserving their structure even under extreme dilution conditions. We tested three types of APols with distinct physical-chemical properties and found that the βPFOAβ42/DPC complex can only be trapped in non-ionic APols (NAPols). The characterization of the resulting βPFOAβ42/NAPol complex by biochemical tools and structural biology techniques allowed us to establish that the oligomer structure is maintained even under high dilution. Based on these findings, this work constitutes a first step towards the in vivo validation of βPFOAβ42 in AD.
Collapse
Affiliation(s)
- Montserrat Serra-Batiste
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute Science and Technology (BIST), Barcelona, Spain
| | - James Tolchard
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute Science and Technology (BIST), Barcelona, Spain.,CBMN (UMR 5248), Centre National de la Recherche Scientifique - IPB, Institut Européen de Chimie et Biologie, University of Bordeaux, Pessac, France
| | - Fabrice Giusti
- Laboratoire de Physico-Chimie Moléculaire des Protéines Membranaires (UMR 7099), Université Paris-7 - Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Paris, France
| | - Manuela Zoonens
- Laboratoire de Physico-Chimie Moléculaire des Protéines Membranaires (UMR 7099), Université Paris-7 - Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Paris, France
| | - Natàlia Carulla
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute Science and Technology (BIST), Barcelona, Spain.,CBMN (UMR 5248), Centre National de la Recherche Scientifique - IPB, Institut Européen de Chimie et Biologie, University of Bordeaux, Pessac, France
| |
Collapse
|
13
|
Le Bon C, Marconnet A, Masscheleyn S, Popot JL, Zoonens M. Folding and stabilizing membrane proteins in amphipol A8-35. Methods 2018; 147:95-105. [PMID: 29678587 DOI: 10.1016/j.ymeth.2018.04.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 04/06/2018] [Accepted: 04/13/2018] [Indexed: 01/07/2023] Open
Abstract
Membrane proteins (MPs) are important pharmacological targets because of their involvement in many essential cellular processes whose dysfunction can lead to a large variety of diseases. A detailed knowledge of the structure of MPs and the molecular mechanisms of their activity is essential to the design of new therapeutic agents. However, studying MPs in vitro is challenging, because it generally implies their overexpression under a functional form, followed by their extraction from membranes and purification. Targeting an overexpressed MP to a membrane is often toxic and expression yields tend to be limited. One alternative is the formation of inclusion bodies (IBs) in the cytosol of the cell, from which MPs need then to be folded to their native conformation before structural and functional analysis can be contemplated. Folding MPs targeted to IBs is a difficult task. Specially designed amphipathic polymers called 'amphipols' (APols), which have been initially developed with the view of improving the stability of MPs in aqueous solutions compared to detergents, can be used to fold both α-helical and β-barrel MPs. APols represent an interesting novel amphipathic medium, in which high folding yields can be achieved. In this review, the properties of APol A8-35 and of the complexes they form with MPs are summarized. An overview of the most important studies reported so far using A8-35 to fold MPs is presented. Finally, from a practical point of view, a detailed description of the folding and trapping methods is given.
Collapse
Affiliation(s)
- Christel Le Bon
- CNRS/Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Anaïs Marconnet
- CNRS/Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Sandrine Masscheleyn
- CNRS/Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Jean-Luc Popot
- CNRS/Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Manuela Zoonens
- CNRS/Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France.
| |
Collapse
|
14
|
Martin N, Costa N, Wien F, Winnik FM, Ortega C, Herbet A, Boquet D, Tribet C. Refolding of Aggregation-Prone ScFv Antibody Fragments Assisted by Hydrophobically Modified Poly(sodium acrylate) Derivatives. Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/19/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Nicolas Martin
- Ecole normale supérieure; PSL Research University; UPMC Univ Paris 06; CNRS, Département de Chimie; PASTEUR, 24, rue Lhomond 75005 Paris France
- Sorbonne Universités; UPMC Univ Paris 06; ENS, CNRS, PASTEUR; 75005 Paris France
| | - Narciso Costa
- CEA, iBiTecS, SPI; Laboratoire d'Ingénierie des Anticorps pour la Santé (LIAS); Bt. 136, CEA Saclay F-91191 Gif sur Yvette France
| | - Frank Wien
- Synchrotron Soleil; Saint-Aubin; F-91192 Gif-sur-Yvette France
| | - Françoise M. Winnik
- Department of Chemistry; Faculty of Pharmacy; Université de Montréal; CP 6128 Succursale Centre Ville Montréal QC H3C 3J7 Canada
- World Premier Initiative (WPI) International Research Center Initiative; International Center for Materials Nanoarchitectonics (MANA) and National Institute for Materials Science (NIMS) 1-1Namiki; Tsukuba 305-0044 Japan
- Department of Chemistry and Faculty of Pharmacy; University of Helsinki; Helsinki FI 00014 Finland
| | - Céline Ortega
- CEA, iBiTecS, SPI; Laboratoire d'Ingénierie des Anticorps pour la Santé (LIAS); Bt. 136, CEA Saclay F-91191 Gif sur Yvette France
| | - Amaury Herbet
- CEA, iBiTecS, SPI; Laboratoire d'Ingénierie des Anticorps pour la Santé (LIAS); Bt. 136, CEA Saclay F-91191 Gif sur Yvette France
| | - Didier Boquet
- CEA, iBiTecS, SPI; Laboratoire d'Ingénierie des Anticorps pour la Santé (LIAS); Bt. 136, CEA Saclay F-91191 Gif sur Yvette France
| | - Christophe Tribet
- Ecole normale supérieure; PSL Research University; UPMC Univ Paris 06; CNRS, Département de Chimie; PASTEUR, 24, rue Lhomond 75005 Paris France
- Sorbonne Universités; UPMC Univ Paris 06; ENS, CNRS, PASTEUR; 75005 Paris France
| |
Collapse
|
15
|
Abstract
Which properties of the membrane environment are essential for the folding and oligomerization of transmembrane proteins? Because the lipids that surround membrane proteins in situ spontaneously organize into bilayers, it may seem intuitive that interactions with the bilayer provide both hydrophobic and topological constraints that help the protein to achieve a stable and functional three-dimensional structure. However, one may wonder whether folding is actually driven by the membrane environment or whether the folded state just reflects an adaptation of integral proteins to the medium in which they function. Also, apart from the overall transmembrane orientation, might the asymmetry inherent in biosynthesis processes cause proteins to fold to out-of-equilibrium, metastable topologies? Which of the features of a bilayer are essential for membrane protein folding, and which are not? To which extent do translocons dictate transmembrane topologies? Recent data show that many membrane proteins fold and oligomerize very efficiently in media that bear little similarity to a membrane, casting doubt on the essentiality of many bilayer constraints. In the following discussion, we argue that some of the features of bilayers may contribute to protein folding, stability and regulation, but they are not required for the basic three-dimensional structure to be achieved. This idea, if correct, would imply that evolution has steered membrane proteins toward an accommodation to biosynthetic pathways and a good fit into their environment, but that their folding is not driven by the latter or dictated by insertion apparatuses. In other words, the three-dimensional structure of membrane proteins is essentially determined by intramolecular interactions and not by bilayer constraints and insertion pathways. Implications are discussed.
Collapse
Affiliation(s)
- Jean-Luc Popot
- Centre National de la Recherche Scientifique/Université Paris-7 UMR 7099 , Institut de Biologie Physico-Chimique (FRC 550), 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Donald M Engelman
- Department of Molecular Biophysics and Biochemistry, Yale University , Box 208114, New Haven, Connecticut 06520-8114, United States
| |
Collapse
|
16
|
Watkinson TG, Calabrese AN, Giusti F, Zoonens M, Radford SE, Ashcroft AE. Systematic analysis of the use of amphipathic polymers for studies of outer membrane proteins using mass spectrometry. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2015; 391:54-61. [PMID: 26869850 PMCID: PMC4708066 DOI: 10.1016/j.ijms.2015.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/19/2015] [Accepted: 06/26/2015] [Indexed: 05/10/2023]
Abstract
Membrane proteins (MPs) are essential for numerous important biological processes. Recently, mass spectrometry (MS), coupled with an array of related techniques, has been used to probe the structural properties of MPs and their complexes. Typically, detergent micelles have been employed for delivering MPs into the gas-phase, but these complexes have intrinsic properties that can limit the utility of structural studies of MPs using MS methods. Amphipols (APols) have advantages over detergent micelles and have been shown to be capable of delivering native MPs into the gas-phase. Comparing six different APols which vary in mass and charge, and the detergent n-dodecyl-β-d-maltopyranoside, we aimed to determine which APols are most efficient for delivery of native outer membrane proteins (OMPs) into the gas-phase. We show that maintaining the solution-phase folding and global structures of three different OMPs (PagP, OmpT and tOmpA) are independent of the APol used, but differences in OMP activity can result from the different APol:OMP complexes. ESI-IMS-MS analysis of OMP:APol complexes shows that the A8-35 APol is most proficient at liberating all three OMPs into the gas-phase, without altering their gas-phase conformations.
Collapse
Affiliation(s)
- Thomas G. Watkinson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Antonio N. Calabrese
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Fabrice Giusti
- Laboratoire de Physico-Chimie Moléculaire des Protéines Membranaires, UMR 7099, Institut de Biologie Physico-Chimique (FRC 550), Centre National de la Recherche Scientifique/Université Paris-7, 13, rue Pierre-et-Marie-Curie, 75005 Paris, France
| | - Manuela Zoonens
- Laboratoire de Physico-Chimie Moléculaire des Protéines Membranaires, UMR 7099, Institut de Biologie Physico-Chimique (FRC 550), Centre National de la Recherche Scientifique/Université Paris-7, 13, rue Pierre-et-Marie-Curie, 75005 Paris, France
| | - Sheena E. Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Alison E. Ashcroft
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
17
|
Giusti F, Kessler P, Hansen RW, Della Pia EA, Le Bon C, Mourier G, Popot JL, Martinez KL, Zoonens M. Synthesis of a Polyhistidine-bearing Amphipol and its Use for Immobilizing Membrane Proteins. Biomacromolecules 2015; 16:3751-61. [DOI: 10.1021/acs.biomac.5b01010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Fabrice Giusti
- Laboratoire de
Biologie Physico-Chimique des Protéines Membranaires, UMR 7099,
CNRS/Université Paris 7, Institut de Biologie Physico-Chimique
(FRC 550), 13 rue Pierre et Marie Curie, F−75005 Paris, France
| | - Pascal Kessler
- CEA, Institut
de Biologie et de Technologies de Saclay, Service d’Ingénierie
Moléculaire des Protéines, 91191 Gif-sur-Yvette, France
| | - Randi Westh Hansen
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Eduardo A. Della Pia
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Christel Le Bon
- Laboratoire de
Biologie Physico-Chimique des Protéines Membranaires, UMR 7099,
CNRS/Université Paris 7, Institut de Biologie Physico-Chimique
(FRC 550), 13 rue Pierre et Marie Curie, F−75005 Paris, France
| | - Gilles Mourier
- CEA, Institut
de Biologie et de Technologies de Saclay, Service d’Ingénierie
Moléculaire des Protéines, 91191 Gif-sur-Yvette, France
| | - Jean-Luc Popot
- Laboratoire de
Biologie Physico-Chimique des Protéines Membranaires, UMR 7099,
CNRS/Université Paris 7, Institut de Biologie Physico-Chimique
(FRC 550), 13 rue Pierre et Marie Curie, F−75005 Paris, France
| | - Karen L. Martinez
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Manuela Zoonens
- Laboratoire de
Biologie Physico-Chimique des Protéines Membranaires, UMR 7099,
CNRS/Université Paris 7, Institut de Biologie Physico-Chimique
(FRC 550), 13 rue Pierre et Marie Curie, F−75005 Paris, France
| |
Collapse
|
18
|
Taresco V, Gontrani L, Crisante F, Francolini I, Martinelli A, D’Ilario L, Bordi F, Piozzi A. Self-Assembly of Catecholic Moiety-Containing Cationic Random Acrylic Copolymers. J Phys Chem B 2015; 119:8369-79. [DOI: 10.1021/acs.jpcb.5b05022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vincenzo Taresco
- Department of Chemistry and ‡Department of Physics, Sapienza University of Rome, P. le Aldo Moro 5, 00185, Rome, Italy
| | - Lorenzo Gontrani
- Department of Chemistry and ‡Department of Physics, Sapienza University of Rome, P. le Aldo Moro 5, 00185, Rome, Italy
| | - Fernanda Crisante
- Department of Chemistry and ‡Department of Physics, Sapienza University of Rome, P. le Aldo Moro 5, 00185, Rome, Italy
| | - Iolanda Francolini
- Department of Chemistry and ‡Department of Physics, Sapienza University of Rome, P. le Aldo Moro 5, 00185, Rome, Italy
| | - Andrea Martinelli
- Department of Chemistry and ‡Department of Physics, Sapienza University of Rome, P. le Aldo Moro 5, 00185, Rome, Italy
| | - Lucio D’Ilario
- Department of Chemistry and ‡Department of Physics, Sapienza University of Rome, P. le Aldo Moro 5, 00185, Rome, Italy
| | - Federico Bordi
- Department of Chemistry and ‡Department of Physics, Sapienza University of Rome, P. le Aldo Moro 5, 00185, Rome, Italy
| | - Antonella Piozzi
- Department of Chemistry and ‡Department of Physics, Sapienza University of Rome, P. le Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
19
|
|
20
|
Folding and stability of integral membrane proteins in amphipols. Arch Biochem Biophys 2014; 564:327-43. [PMID: 25449655 DOI: 10.1016/j.abb.2014.10.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/11/2014] [Accepted: 10/22/2014] [Indexed: 11/23/2022]
Abstract
Amphipols (APols) are a family of amphipathic polymers designed to keep transmembrane proteins (TMPs) soluble in aqueous solutions in the absence of detergent. APols have proven remarkably efficient at (i) stabilizing TMPs, as compared to detergent solutions, and (ii) folding them from a denatured state to a native, functional one. The underlying physical-chemical mechanisms are discussed.
Collapse
|
21
|
Stangl M, Unger S, Keller S, Schneider D. Sequence-specific dimerization of a transmembrane helix in amphipol A8-35. PLoS One 2014; 9:e110970. [PMID: 25347769 PMCID: PMC4210147 DOI: 10.1371/journal.pone.0110970] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/26/2014] [Indexed: 11/19/2022] Open
Abstract
As traditional detergents might destabilize or even denature membrane proteins, amphiphilic polymers have moved into the focus of membrane-protein research in recent years. Thus far, Amphipols are the best studied amphiphilic copolymers, having a hydrophilic backbone with short hydrophobic chains. However, since stabilizing as well as destabilizing effects of the Amphipol belt on the structure of membrane proteins have been described, we systematically analyze the impact of the most commonly used Amphipol A8-35 on the structure and stability of a well-defined transmembrane protein model, the glycophorin A transmembrane helix dimer. Amphipols are not able to directly extract proteins from their native membranes, and detergents are typically replaced by Amphipols only after protein extraction from membranes. As Amphipols form mixed micelles with detergents, a better understanding of Amphipol-detergent interactions is required. Therefore, we analyze the interaction of A8-35 with the anionic detergent sodium dodecyl sulfate and describe the impact of the mixed-micelle-like system on the stability of a transmembrane helix dimer. As A8-35 may highly stabilize and thereby rigidify a transmembrane protein structure, modest destabilization by controlled addition of detergents and formation of mixed micellar systems might be helpful to preserve the function of a membrane protein in Amphipol environments.
Collapse
Affiliation(s)
- Michael Stangl
- Department of Pharmacy and Biochemistry, Johannes-Gutenberg-University, Mainz, Germany
| | - Sebastian Unger
- Molecular Biophysics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Sandro Keller
- Molecular Biophysics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Dirk Schneider
- Department of Pharmacy and Biochemistry, Johannes-Gutenberg-University, Mainz, Germany
- * E-mail:
| |
Collapse
|
22
|
Sverzhinsky A, Qian S, Yang L, Allaire M, Moraes I, Ma D, Chung JW, Zoonens M, Popot JL, Coulton JW. Amphipol-Trapped ExbB–ExbD Membrane Protein Complex from Escherichia coli: A Biochemical and Structural Case Study. J Membr Biol 2014; 247:1005-18. [DOI: 10.1007/s00232-014-9678-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/09/2014] [Indexed: 01/02/2023]
|
23
|
Le Bon C, Popot JL, Giusti F. Labeling and functionalizing amphipols for biological applications. J Membr Biol 2014; 247:797-814. [PMID: 24696186 PMCID: PMC4185061 DOI: 10.1007/s00232-014-9655-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/07/2014] [Indexed: 12/19/2022]
Abstract
Amphipols (APols) are short amphipathic polymers developed as an alternative to detergents for handling membrane proteins (MPs) in aqueous solution. MPs are, as a rule, much more stable following trapping with APols than they are in detergent solutions. The best-characterized APol to date, called A8-35, is a mixture of short-chain sodium polyacrylates randomly derivatized with octylamine and isopropylamine. Its solution properties have been studied in detail, and it has been used extensively for biochemical and biophysical studies of MPs. One of the attractive characteristics of APols is that it is relatively easy to label them, isotopically or otherwise, without affecting their physical-chemical properties. Furthermore, several variously modified APols can be mixed, achieving multiple functionalization of MP/APol complexes in the easiest possible manner. Labeled or tagged APols are being used to study the solution properties of APols, their miscibility, their biodistribution upon injection into living organisms, their association with MPs and the composition, structure and dynamics of MP/APol complexes, examining the exchange of surfactants at the surface of MPs, labeling MPs to follow their distribution in fractionation experiments or to immobilize them, increasing the contrast between APols and solvent or MPs in biophysical experiments, improving NMR spectra, etc. Labeling or functionalization of APols can take various courses, each of which has its specific constraints and advantages regarding both synthesis and purification. The present review offers an overview of the various derivatives of A8-35 and its congeners that have been developed in our laboratory and discusses the pros and cons of various synthetic routes.
Collapse
Affiliation(s)
- Christel Le Bon
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, Institut de Biologie Physico-Chimique (FRC 550), CNRS/Université Paris 7, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | | | | |
Collapse
|
24
|
How Amphipols Embed Membrane Proteins: Global Solvent Accessibility and Interaction with a Flexible Protein Terminus. J Membr Biol 2014; 247:965-70. [DOI: 10.1007/s00232-014-9657-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/07/2014] [Indexed: 10/25/2022]
|
25
|
Abstract
Amphipols (APols) are short amphipathic polymers that can substitute for detergents at the transmembrane surface of membrane proteins (MPs) and, thereby, keep them soluble in detergent free aqueous solutions. APol-trapped MPs are, as a rule, more stable biochemically than their detergent-solubilized counterparts. APols have proven useful to produce MPs, most noticeably by assisting their folding from the denatured state obtained after solubilizing MP inclusion bodies in either SDS or urea. They facilitate the handling in aqueous solution of fragile MPs for the purpose of proteomics, structural and functional studies, and therapeutics. Because APols can be chemically labeled or functionalized, and they form very stable complexes with MPs, they can also be used to functionalize those indirectly, which opens onto many novel applications. Following a brief recall of the properties of APols and MP/APol complexes, an update is provided of recent progress in these various fields.
Collapse
Affiliation(s)
- Manuela Zoonens
- Laboratoire de Physico-Chimie Moléculaire des Protéines Membranaires, UMR 7099, Institut de Biologie Physico-Chimique (FRC 550), Centre National de la Recherche Scientifique/Université Paris-7, 13, rue Pierre-et-Marie-Curie, 75005 Paris, France
| | - Jean-Luc Popot
- Laboratoire de Physico-Chimie Moléculaire des Protéines Membranaires, UMR 7099, Institut de Biologie Physico-Chimique (FRC 550), Centre National de la Recherche Scientifique/Université Paris-7, 13, rue Pierre-et-Marie-Curie, 75005 Paris, France
| |
Collapse
|
26
|
Amphipols and Photosynthetic Light-Harvesting Pigment-Protein Complexes. J Membr Biol 2014; 247:1031-41. [DOI: 10.1007/s00232-014-9712-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 07/23/2014] [Indexed: 10/24/2022]
|
27
|
Polovinkin V, Balandin T, Volkov O, Round E, Borshchevskiy V, Utrobin P, von Stetten D, Royant A, Willbold D, Arzumanyan G, Chupin V, Popot JL, Gordeliy V. Nanoparticle Surface-Enhanced Raman Scattering of Bacteriorhodopsin Stabilized by Amphipol A8-35. J Membr Biol 2014; 247:971-80. [DOI: 10.1007/s00232-014-9701-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 06/16/2014] [Indexed: 11/28/2022]
|
28
|
High-Resolution Structure of a Membrane Protein Transferred from Amphipol to a Lipidic Mesophase. J Membr Biol 2014; 247:997-1004. [DOI: 10.1007/s00232-014-9700-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 06/16/2014] [Indexed: 11/25/2022]
|
29
|
Thermal Fluctuations in Amphipol A8-35 Particles: A Neutron Scattering and Molecular Dynamics Study. J Membr Biol 2014; 247:897-908. [DOI: 10.1007/s00232-014-9725-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 08/26/2014] [Indexed: 01/03/2023]
|
30
|
Perlmutter JD, Popot JL, Sachs JN. Molecular Dynamics Simulations of a Membrane Protein/Amphipol Complex. J Membr Biol 2014; 247:883-95. [DOI: 10.1007/s00232-014-9690-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 05/22/2014] [Indexed: 12/20/2022]
|
31
|
Functionalized Amphipols: A Versatile Toolbox Suitable for Applications of Membrane Proteins in Synthetic Biology. J Membr Biol 2014; 247:815-26. [DOI: 10.1007/s00232-014-9663-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/27/2014] [Indexed: 10/25/2022]
|
32
|
Solution Behavior and Crystallization of Cytochrome bc
1 in the Presence of Amphipols. J Membr Biol 2014; 247:981-96. [DOI: 10.1007/s00232-014-9694-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/26/2014] [Indexed: 12/28/2022]
|
33
|
Ferrandez Y, Dezi M, Bosco M, Urvoas A, Valerio-Lepiniec M, Le Bon C, Giusti F, Broutin I, Durand G, Polidori A, Popot JL, Picard M, Minard P. Amphipol-mediated screening of molecular orthoses specific for membrane protein targets. J Membr Biol 2014; 247:925-40. [PMID: 25086771 DOI: 10.1007/s00232-014-9707-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 07/14/2014] [Indexed: 12/11/2022]
Abstract
Specific, tight-binding protein partners are valuable helpers to facilitate membrane protein (MP) crystallization, because they can i) stabilize the protein, ii) reduce its conformational heterogeneity, and iii) increase the polar surface from which well-ordered crystals can grow. The design and production of a new family of synthetic scaffolds (dubbed αReps, for "artificial alpha repeat protein") have been recently described. The stabilization and immobilization of MPs in a functional state are an absolute prerequisite for the screening of binders that recognize specifically their native conformation. We present here a general procedure for the selection of αReps specific of any MP. It relies on the use of biotinylated amphipols, which act as a universal "Velcro" to stabilize, and immobilize MP targets onto streptavidin-coated solid supports, thus doing away with the need to tag the protein itself.
Collapse
Affiliation(s)
- Yann Ferrandez
- Laboratoire de Modélisation et Ingénierie des Protéines, IBBMC UMR 8619, CNRS/Université Paris Sud, 91405, Orsay, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Martin N, Ma D, Herbet A, Boquet D, Winnik FM, Tribet C. Prevention of thermally induced aggregation of IgG antibodies by noncovalent interaction with poly(acrylate) derivatives. Biomacromolecules 2014; 15:2952-62. [PMID: 25019321 DOI: 10.1021/bm5005756] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prevention of thermal aggregation of antibodies in aqueous solutions was achieved by noncovalent association with hydrophobically modified poly(acrylate) copolymers. Using a polyclonal immunoglobin G (IgG) as a model system for antibodies, we have studied the mechanisms by which this multidomain protein interacts with polyanions when incubated at physiological pH and at temperatures below and above the protein unfolding/denaturation temperature, in salt-free solutions and in 0.1 M NaCl solutions. The polyanions selected were sodium poly(acrylates), random copolymers of sodium acrylate and N-n-octadecylacrylamide (3 mol %), and a random copolymer of sodium acrylate, N-n-octylacrylamide (25 mol %), and N-isopropylacrylamide (40 mol %). They were derived from two poly(acrylic acid) parent chains of Mw 5000 and 150000 g·mol(-1). The IgG/polyanion interactions were monitored by static and dynamic light scattering, fluorescence correlation spectroscopy, capillary zone electrophoresis, and high sensitivity differential scanning calorimetry. In salt-free solutions, the hydrophilic PAA chains form complexes with IgG upon thermal unfolding of the protein (1:1 w/w IgG/PAA), but they do not interact with native IgG. The complexes exhibit a remarkable protective effect against IgG aggregation and maintain low aggregation numbers (average degree of oligomerization <12 at a temperature up to 85 °C). These interactions are screened in 0.1 M NaCl and, consequently, PAAs lose their protective effect. Amphiphilic PAA derivatives (1:1 w/w IgG/polymer) are able to prevent thermal aggregation (preserving IgG monomers) or retard aggregation of IgG (formation of oligomers and slow growth), revealing the importance of both hydrophobic interactions and modulation of the Coulomb interactions with or without NaCl present. This study leads the way toward the design of new formulations of therapeutic proteins using noncovalent 1:1 polymer/protein association that are transient and require a markedly lower additive concentration compared to conventional osmolyte protecting agents. They do not modify IgG permanently, which is an asset for applications in therapeutic protein formulations since the in vivo efficacy of the protein should not be affected.
Collapse
Affiliation(s)
- Nicolas Martin
- Ecole Normale Supérieure-PSL Research University , Département de Chimie, 24, rue Lhomond, 75005 Paris, France
| | | | | | | | | | | |
Collapse
|
35
|
Opačić M, Giusti F, Popot JL, Broos J. Isolation of Escherichia coli mannitol permease, EIImtl, trapped in amphipol A8-35 and fluorescein-labeled A8-35. J Membr Biol 2014; 247:1019-30. [PMID: 24952466 DOI: 10.1007/s00232-014-9691-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/22/2014] [Indexed: 12/15/2022]
Abstract
Amphipols (APols) are short amphipathic polymers that keep integral membrane proteins water-soluble while stabilizing them as compared to detergent solutions. In the present work, we have carried out functional and structural studies of a membrane transporter that had not been characterized in APol-trapped form yet, namely EII(mtl), a dimeric mannitol permease from the inner membrane of Escherichia coli. A tryptophan-less and dozens of single-tryptophan (Trp) mutants of this transporter are available, making it possible to study the environment of specific locations in the protein. With few exceptions, the single-Trp mutants show a high mannitol-phosphorylation activity when in membranes, but, as variance with wild-type EII(mtl), some of them lose most of their activity upon solubilization by neutral (PEG- or maltoside-based) detergents. Here, we present a protocol to isolate these detergent-sensitive mutants in active form using APol A8-35. Trapping with A8-35 keeps EII(mtl) soluble and functional in the absence of detergent. The specific phosphorylation activity of an APol-trapped Trp-less EII(mtl) mutant was found to be ~3× higher than the activity of the same protein in dodecylmaltoside. The preparations are suitable both for functional and for fluorescence spectroscopy studies. A fluorescein-labeled version of A8-35 has been synthesized and characterized. Exploratory studies were conducted to examine the environment of specific Trp locations in the transmembrane domain of EII(mtl) using Trp fluorescence quenching by water-soluble quenchers and by the fluorescein-labeled APol. This approach has the potential to provide information on the transmembrane topology of MPs.
Collapse
Affiliation(s)
- Milena Opačić
- Unité Mixte de Recherche 7099, Centre National de la Recherche Scientifique and Université Paris 7, Institut de Biologie Physico-Chimique, CNRS FRC 550, 13 rue Pierre-et-Marie Curie, 75005, Paris, France
| | | | | | | |
Collapse
|
36
|
Long-term stability of a vaccine formulated with the amphipol-trapped major outer membrane protein from Chlamydia trachomatis. J Membr Biol 2014; 247:1053-65. [PMID: 24942817 DOI: 10.1007/s00232-014-9693-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 05/23/2014] [Indexed: 10/25/2022]
Abstract
Chlamydia trachomatis is a major bacterial pathogen throughout the world. Although antibiotic therapy can be implemented in the case of early detection, a majority of the infections are asymptomatic, requiring the development of preventive measures. Efforts have focused on the production of a vaccine using the C. trachomatis major outer membrane protein (MOMP). MOMP is purified in its native (n) trimeric form using the zwitterionic detergent Z3-14, but its stability in detergent solutions is limited. Amphipols (APols) are synthetic polymers that can stabilize membrane proteins (MPs) in detergent-free aqueous solutions. Preservation of protein structure and optimization of exposure of the most effective antigenic regions can avoid vaccination with misfolded, poorly protective protein. Previously, we showed that APols maintain nMOMP secondary structure and that nMOMP/APol vaccine formulations elicit better protection than formulations using either recombinant or nMOMP solubilized in Z3-14. To achieve a greater understanding of the structural behavior and stability of nMOMP in APols, we have used several spectroscopic techniques to characterize its secondary structure (circular dichroism), tertiary and quaternary structures (immunochemistry and gel electrophoresis) and aggregation state (light scattering) as a function of temperature and time. We have also recorded NMR spectra of (15)N-labeled nMOMP and find that the exposed loops are detectable in APols but not in detergent. Our analyses show that APols protect nMOMP much better than Z3-14 against denaturation due to continuous heating, repeated freeze/thaw cycles, or extended storage at room temperature. These results indicate that APols can help improve MP-based vaccine formulations.
Collapse
|
37
|
In vivo characterization of the biodistribution profile of amphipol A8-35. J Membr Biol 2014; 247:1043-51. [PMID: 24898094 DOI: 10.1007/s00232-014-9682-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/10/2014] [Indexed: 12/21/2022]
Abstract
Amphipols (APols) are polymeric surfactants that keep membrane proteins (MPs) water-soluble in the absence of detergent, while stabilizing them. They can be used to deliver MPs and other hydrophobic molecules in vivo for therapeutic purposes, e.g., vaccination or targeted delivery of drugs. The biodistribution and elimination of the best characterized APol, a polyacrylate derivative called A8-35, have been examined in mice, using two fluorescent APols, grafted with either Alexa Fluor 647 or rhodamine. Three of the most common injection routes have been used, intravenous (IV), intraperitoneal (IP), and subcutaneous (SC). The biodistribution has been studied by in vivo fluorescence imaging and by determining the concentration of fluorophore in the main organs. Free rhodamine was used as a control. Upon IV injection, A8-35 distributes rapidly throughout the organism and is found in most organs but the brain and spleen, before being slowly eliminated (10-20 days). A similar pattern is observed after IP injection, following a brief latency period during which the polymer remains confined to the peritoneal cavity. Upon SC injection, A8-35 remains essentially confined to the point of injection, from which it is only slowly released. An interesting observation is that A8-35 tends to accumulate in fat pads, suggesting that it could be used to deliver anti-obesity drugs.
Collapse
|
38
|
Le Bon C, Della Pia EA, Giusti F, Lloret N, Zoonens M, Martinez KL, Popot JL. Synthesis of an oligonucleotide-derivatized amphipol and its use to trap and immobilize membrane proteins. Nucleic Acids Res 2014; 42:e83. [PMID: 24744236 PMCID: PMC4041424 DOI: 10.1093/nar/gku250] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/25/2014] [Accepted: 03/13/2014] [Indexed: 12/15/2022] Open
Abstract
Amphipols (APols) are specially designed amphipathic polymers that stabilize membrane proteins (MPs) in aqueous solutions in the absence of detergent. A8-35, a polyacrylate-based APol, has been grafted with an oligodeoxynucleotide (ODN). The synthesis, purification and properties of the resulting 'OligAPol' have been investigated. Grafting was performed by reacting an ODN carrying an amine-terminated arm with the carboxylates of A8-35. The use of OligAPol for trapping MPs and immobilizing them onto solid supports was tested using bacteriorhodopsin (BR) and the transmembrane domain of Escherichia coli outer membrane protein A (tOmpA) as model proteins. BR and OligAPol form water-soluble complexes in which BR remains in its native conformation. Hybridization of the ODN arm with a complementary ODN was not hindered by the assembly of OligAPol into particles, nor by its association with BR. BR/OligAPol and tOmpA/OligAPol complexes could be immobilized onto either magnetic beads or gold nanoparticles grafted with the complementary ODN, as shown by spectroscopic measurements, fluorescence microscopy and the binding of anti-BR and anti-tOmpA antibodies. OligAPols provide a novel, highly versatile approach to tagging MPs, without modifying them chemically nor genetically, for specific, reversible and targetable immobilization, e.g. for nanoscale applications.
Collapse
Affiliation(s)
- Christel Le Bon
- UMR 7099, Centre National de la Recherche Scientifique/Université Paris-7, Institut de Biologie Physico-Chimique (FRC 550), 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Eduardo Antonio Della Pia
- Bio-Nanotechnology and Nanomedicine Laboratory, Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Fabrice Giusti
- UMR 7099, Centre National de la Recherche Scientifique/Université Paris-7, Institut de Biologie Physico-Chimique (FRC 550), 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Noémie Lloret
- Bio-Nanotechnology and Nanomedicine Laboratory, Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Manuela Zoonens
- UMR 7099, Centre National de la Recherche Scientifique/Université Paris-7, Institut de Biologie Physico-Chimique (FRC 550), 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Karen L Martinez
- Bio-Nanotechnology and Nanomedicine Laboratory, Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Jean-Luc Popot
- UMR 7099, Centre National de la Recherche Scientifique/Université Paris-7, Institut de Biologie Physico-Chimique (FRC 550), 13 rue Pierre et Marie Curie, F-75005 Paris, France
| |
Collapse
|
39
|
Planchard N, Point É, Dahmane T, Giusti F, Renault M, Le Bon C, Durand G, Milon A, Guittet É, Zoonens M, Popot JL, Catoire LJ. The use of amphipols for solution NMR studies of membrane proteins: advantages and constraints as compared to other solubilizing media. J Membr Biol 2014; 247:827-42. [PMID: 24676477 DOI: 10.1007/s00232-014-9654-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/07/2014] [Indexed: 01/24/2023]
Abstract
Solution-state nuclear magnetic resonance studies of membrane proteins are facilitated by the increased stability that trapping with amphipols confers to most of them as compared to detergent solutions. They have yielded information on the state of folding of the proteins, their areas of contact with the polymer, their dynamics, water accessibility, and the structure of protein-bound ligands. They benefit from the diversification of amphipol chemical structures and the availability of deuterated amphipols. The advantages and constraints of working with amphipols are discussed and compared to those associated with other non-conventional environments, such as bicelles and nanodiscs.
Collapse
Affiliation(s)
- Noelya Planchard
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Institut de Biologie Physico-Chimique (FRC 550), UMR 7099, CNRS, Université Paris 7, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Giusti F, Rieger J, Catoire LJ, Qian S, Calabrese AN, Watkinson TG, Casiraghi M, Radford SE, Ashcroft AE, Popot JL. Synthesis, characterization and applications of a perdeuterated amphipol. J Membr Biol 2014; 247:909-24. [PMID: 24652511 DOI: 10.1007/s00232-014-9656-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/07/2014] [Indexed: 12/13/2022]
Abstract
Amphipols are short amphipathic polymers that can substitute for detergents at the hydrophobic surface of membrane proteins (MPs), keeping them soluble in the absence of detergents while stabilizing them. The most widely used amphipol, known as A8-35, is comprised of a polyacrylic acid (PAA) main chain grafted with octylamine and isopropylamine. Among its many applications, A8-35 has proven particularly useful for solution-state NMR studies of MPs, for which it can be desirable to eliminate signals originating from the protons of the surfactant. In the present work, we describe the synthesis and properties of perdeuterated A8-35 (perDAPol). Perdeuterated PAA was obtained by radical polymerization of deuterated acrylic acid. It was subsequently grafted with deuterated amines, yielding perDAPol. The number-average molar mass of hydrogenated and perDAPol, ~4 and ~5 kDa, respectively, was deduced from that of their PAA precursors, determined by size exclusion chromatography in tetrahydrofuran following permethylation. Electrospray ionization-ion mobility spectrometry-mass spectrometry measurements show the molar mass and distribution of the two APols to be very similar. Upon neutron scattering, the contrast match point of perDAPol is found to be ~120% D2O. In (1)H-(1)H nuclear overhauser effect NMR spectra, its contribution is reduced to ~6% of that of hydrogenated A8-35, making it suitable for extended uses in NMR spectroscopy. PerDAPol ought to also be of use for inelastic neutron scattering studies of the dynamics of APol-trapped MPs, as well as small-angle neutron scattering and analytical ultracentrifugation.
Collapse
Affiliation(s)
- Fabrice Giusti
- Laboratoire de Physico-Chimie Moléculaire des Membranes Biologiques, UMR 7099, Institut de Biologie Physico-Chimique (FRC 550), Centre National de la Recherche Scientifique and Université Paris-7, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Large-scale production and structural and biophysical characterizations of the human hepatitis B virus polymerase. J Virol 2013; 88:2584-99. [PMID: 24352439 DOI: 10.1128/jvi.02575-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
UNLABELLED Hepatitis B virus (HBV) is a major human pathogen that causes serious liver disease and 600,000 deaths annually. Approved therapies for treating chronic HBV infections usually target the multifunctional viral polymerase (hPOL). Unfortunately, these therapies--broad-spectrum antivirals--are not general cures, have side effects, and cause viral resistance. While hPOL remains an attractive therapeutic target, it is notoriously difficult to express and purify in a soluble form at yields appropriate for structural studies. Thus, no empirical structural data exist for hPOL, and this impedes medicinal chemistry and rational lead discovery efforts targeting HBV. Here, we present an efficient strategy to overexpress recombinant hPOL domains in Escherichia coli, purifying them at high yield and solving their known aggregation tendencies. This allowed us to perform the first structural and biophysical characterizations of hPOL domains. Apo-hPOL domains adopt mainly α-helical structures with small amounts of β-sheet structures. Our recombinant material exhibited metal-dependent, reverse transcriptase activity in vitro, with metal binding modulating the hPOL structure. Calcomine orange 2RS, a small molecule that inhibits duck HBV POL activity, also inhibited the in vitro priming activity of recombinant hPOL. Our work paves the way for structural and biophysical characterizations of hPOL and should facilitate high-throughput lead discovery for HBV. IMPORTANCE The viral polymerase from human hepatitis B virus (hPOL) is a well-validated therapeutic target. However, recombinant hPOL has a well-deserved reputation for being extremely difficult to express in a soluble, active form in yields appropriate to the structural studies that usually play an important role in drug discovery programs. This has hindered the development of much-needed new antivirals for HBV. However, we have solved this problem and report here procedures for expressing recombinant hPOL domains in Escherichia coli and also methods for purifying them in soluble forms that have activity in vitro. We also present the first structural and biophysical characterizations of hPOL. Our work paves the way for new insights into hPOL structure and function, which should assist the discovery of novel antivirals for HBV.
Collapse
|
42
|
Influence of surfactants on the photophysics of 4,4-diaminodiphenyl sulfone encapsulated in self-assembled nanocage of diblock copolymer. J Photochem Photobiol A Chem 2013. [DOI: 10.1016/j.jphotochem.2013.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Pocanschi CL, Popot JL, Kleinschmidt JH. Folding and stability of outer membrane protein A (OmpA) from Escherichia coli in an amphipathic polymer, amphipol A8-35. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2013; 42:103-18. [DOI: 10.1007/s00249-013-0887-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 01/02/2013] [Indexed: 11/29/2022]
|
44
|
Ma D, Martin N, Herbet A, Boquet D, Tribet C, Winnik FM. The Thermally Induced Aggregation of Immunoglobulin G in Solution is Prevented by Amphipols. CHEM LETT 2012. [DOI: 10.1246/cl.2012.1380] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dewang Ma
- Department of Chemistry, Faculty of Pharmacy, Universite de Montreal
| | | | - Amaury Herbet
- CEA, iBiTecS, SPI, Laboratoire d’Ingénierie des Anticorps pour la Santé (LIAS)
| | - Dider Boquet
- CEA, iBiTecS, SPI, Laboratoire d’Ingénierie des Anticorps pour la Santé (LIAS)
| | | | - Françoise M. Winnik
- Department of Chemistry, Faculty of Pharmacy, Universite de Montreal
- WPI International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science
| |
Collapse
|
45
|
Amphipol-assisted folding of bacteriorhodopsin in the presence or absence of lipids: functional consequences. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 42:85-101. [PMID: 22926530 DOI: 10.1007/s00249-012-0839-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 06/04/2012] [Accepted: 07/10/2012] [Indexed: 10/27/2022]
Abstract
Amphipols are short amphipathic polymers designed to stabilize membrane proteins in aqueous solutions in the absence of detergent. Bacteriorhodopsin (BR), a light-driven proton pump, has been denatured, either by direct solubilization of the purple membrane in sodium dodecylsulfate (SDS) solution or by a procedure that involves delipidation with organic solvent followed by transfer to SDS, and renatured in amphipol A8-35. The effect of different renaturation procedures and of the presence or absence of lipids and the cofactor retinal have been investigated. The resulting samples have been characterized by absorbance spectroscopy, size-exclusion chromatography, thermostability measurements, and determination of photocycle kinetics. Transfer to A8-35 can be achieved by SDS precipitation, dilution, or dialysis, the first route resulting in the highest yield of refolding. Functional BR can be refolded whether in the presence or absence of lipids, higher yields being achieved in their presence. Retinal is not required for the protein to refold, but it stabilizes the refolded form and, thereby, improves folding yields. Lipids are not required for BR to perform its complete photocycle, but their presence speeds up the return to the ground state. Taken together, these data indicate that a membrane or membrane-mimetic environment is not required for correct decoding of the chemical information contained in the sequence of BR; functional folding is possible even in the highly foreign environment of lipid-free amphipols. BR interactions with lipids, however, contribute to an effective photocycle.
Collapse
|
46
|
Giusti F, Popot JL, Tribet C. Well-defined critical association concentration and rapid adsorption at the air/water interface of a short amphiphilic polymer, amphipol A8-35: a study by Förster resonance energy transfer and dynamic surface tension measurements. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:10372-10380. [PMID: 22712750 DOI: 10.1021/la300774d] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Amphipols (APols) are short amphiphilic polymers designed to handle membrane proteins (MPs) in aqueous solutions as an alternative to small surfactants (detergents). APols adsorb onto the transmembrane, hydrophobic surface of MPs, forming small, water-soluble complexes, in which the protein is biochemically stabilized. At variance with MP/detergent complexes, MP/APol ones remain stable even at extreme dilutions. Pure APol solutions self-associate into well-defined micelle-like globules comprising a few APol molecules, a rather unusual behavior for amphiphilic polymers, which typically form ill-defined assemblies. The best characterized APol to date, A8-35, is a random copolymer of acrylic acid, isopropylacrylamide, and octylacrylamide. In the present work, the concentration threshold for self-association of A8-35 in salty buffer (NaCl 100 mM, Tris/HCl 20 mM, pH 8.0) has been studied by Förster resonance energy transfer (FRET) measurements and tensiometry. In a 1:1 mol/mol mixture of APols grafted with either rhodamine or 7-nitro-1,2,3-benzoxadiazole, the FRET signal as a function of A8-35 concentration is essentially zero below a threshold concentration of 0.002 g·L(-1) and increases linearly with concentration above this threshold. This indicates that assembly takes place in a narrow concentration interval around 0.002 g·L(-1). Surface tension measurements decreases regularly with concentration until a threshold of ca. 0.004 g·L(-1), beyond which it reaches a plateau at ca. 30 mN·m(-1). Within experimental uncertainties, the two techniques thus yield a comparable estimate of the critical self-assembly concentration. The kinetics of variation of the surface tension was analyzed by dynamic surface tension measurements in the time window 10 ms-100 s. The rate of surface tension decrease was similar in solutions of A8-35 and of the anionic surfactant sodium dodecylsulfate when both compounds were at a similar molar concentration of n-alkyl moieties. Overall, the solution properties of APol "micelles" (in salty buffer) appear surprisingly similar to those of the micelles formed by small, nonpolymeric surfactants, a feature that was not anticipated owing to the polymeric and polydisperse nature of A8-35. The key to the remarkable stability to dilution of A8-35 globules, likely to include also that of MP/APol complexes, lies accordingly in the low value of the critical self-association concentration as compared to that of small amphiphilic analogues.
Collapse
Affiliation(s)
- Fabrice Giusti
- UMR 7099, CNRS/Université Paris-7, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | | | | |
Collapse
|
47
|
Bechara C, Bolbach G, Bazzaco P, Sharma KS, Durand G, Popot JL, Zito F, Sagan S. MALDI-TOF mass spectrometry analysis of amphipol-trapped membrane proteins. Anal Chem 2012; 84:6128-35. [PMID: 22703540 DOI: 10.1021/ac301035r] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amphipols (APols) are amphipathic polymers with the ability to substitute detergents to keep membrane proteins (MPs) soluble and functional in aqueous solutions. APols also protect MPs against denaturation. Here, we have examined the ability of APol-trapped MPs to be analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). For that purpose, we have used ionic and nonionic APols and as model proteins (i) the transmembrane domain of Escherichia coli outer membrane protein A, a β-barrel, eubacterial MP, (ii) Halobacterium salinarum bacteriorhodopsin, an α-helical archaebacterial MP with a single cofactor, and (iii, iv) two eukaryotic MP complexes comprising multiple subunits and many cofactors, cytochrome b(6)f from the chloroplast of the green alga Chlamydomonas reinhardtii and cytochrome bc(1) from beef heart mitochondria. We show that these MP/APol complexes can be readily analyzed by MALDI-TOF-MS; most of the subunits and some lipids and cofactors were identified. APols alone, even ionic ones, had no deleterious effects on MS signals and were not detected in mass spectra. Thus, the combination of MP stabilization by APols and MS analyses provides an interesting new approach to investigating supramolecular interactions in biological membranes.
Collapse
Affiliation(s)
- Chérine Bechara
- Université Pierre et Marie Curie (UPMC Université Paris 06), Laboratoire des BioMolécules (LBM), Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Kyrychenko A, Rodnin MV, Vargas-Uribe M, Sharma SK, Durand G, Pucci B, Popot JL, Ladokhin AS. Folding of diphtheria toxin T-domain in the presence of amphipols and fluorinated surfactants: Toward thermodynamic measurements of membrane protein folding. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1818:1006-12. [PMID: 21945883 PMCID: PMC3261334 DOI: 10.1016/j.bbamem.2011.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 08/18/2011] [Accepted: 09/12/2011] [Indexed: 11/22/2022]
Abstract
Solubilizing membrane proteins for functional, structural and thermodynamic studies is usually achieved with the help of detergents, which, however, tend to destabilize them. Several classes of non-detergent surfactants have been designed as milder substitutes for detergents, most prominently amphipathic polymers called 'amphipols' and fluorinated surfactants. Here we test the potential usefulness of these compounds for thermodynamic studies by examining their effect on conformational transitions of the diphtheria toxin T-domain. The advantage of the T-domain as a model system is that it exists as a soluble globular protein at neutral pH yet is converted into a membrane-competent form by acidification and inserts into the lipid bilayer as part of its physiological action. We have examined the effects of various surfactants on two conformational transitions of the T-domain, thermal unfolding and pH-induced transition to a membrane-competent form. All tested detergent and non-detergent surfactants lowered the cooperativity of the thermal unfolding of the T-domain. The dependence of enthalpy of unfolding on surfactant concentration was found to be least for fluorinated surfactants, thus making them useful candidates for thermodynamic studies. Circular dichroism measurements demonstrate that non-ionic homopolymeric amphipols (NAhPols), unlike any other surfactants, can actively cause a conformational change of the T-domain. NAhPol-induced structural rearrangements are different from those observed during thermal denaturation and are suggested to be related to the formation of the membrane-competent form of the T-domain. Measurements of leakage of vesicle content indicate that interaction with NAhPols not only does not prevent the T-domain from inserting into the bilayer, but it can make bilayer permeabilization even more efficient, whereas the pH-dependence of membrane permeabilization becomes more cooperative. This article is part of a Special Issue entitled: Protein Folding in Membranes.
Collapse
Affiliation(s)
- Alexander Kyrychenko
- Department of Biochemistry and Molecular Biology, Kansas University Medical Center, Kansas City, KS 66160-7421, U.S.A
| | - Mykola V. Rodnin
- Department of Biochemistry and Molecular Biology, Kansas University Medical Center, Kansas City, KS 66160-7421, U.S.A
| | - Mauricio Vargas-Uribe
- Department of Biochemistry and Molecular Biology, Kansas University Medical Center, Kansas City, KS 66160-7421, U.S.A
| | - Shivaji K. Sharma
- Université d’Avignon et des Pays de Vaucluse, Equipe Chimie Bioorganique et Systèmes Amphiphiles, 33 rue Louis Pasteur, F-84000 Avignon, France
| | - Grégory Durand
- Université d’Avignon et des Pays de Vaucluse, Equipe Chimie Bioorganique et Systèmes Amphiphiles, 33 rue Louis Pasteur, F-84000 Avignon, France
- Institut des Biomolécules Max Mousseron (UMR 5247), 15 avenue Charles Flahault, F-34093 Montpellier Cedex 05, France
| | - Bernard Pucci
- Université d’Avignon et des Pays de Vaucluse, Equipe Chimie Bioorganique et Systèmes Amphiphiles, 33 rue Louis Pasteur, F-84000 Avignon, France
- Institut des Biomolécules Max Mousseron (UMR 5247), 15 avenue Charles Flahault, F-34093 Montpellier Cedex 05, France
| | - Jean-Luc Popot
- Institut de Biologie Physico-Chimique, UMR 7099, CNRS and Université Paris-7 F-75005, Paris, France
| | - Alexey S. Ladokhin
- Department of Biochemistry and Molecular Biology, Kansas University Medical Center, Kansas City, KS 66160-7421, U.S.A
| |
Collapse
|
49
|
Sharma KS, Durand G, Gabel F, Bazzacco P, Le Bon C, Billon-Denis E, Catoire LJ, Popot JL, Ebel C, Pucci B. Non-ionic amphiphilic homopolymers: synthesis, solution properties, and biochemical validation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:4625-4639. [PMID: 22299604 DOI: 10.1021/la205026r] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A novel type of nonionic amphipols for handling membrane proteins in detergent-free aqueous solutions has been obtained through free-radical homo-telomerization of an acrylamide-based monomer comprising a C(11) alkyl chain and two glucose moieties, using a thiol as transfer reagent. By controlling the thiol/monomer ratio, the number-average molecular weight of the polymers was varied from 8 to 63 kDa. Homopolymeric nonionic amphipols were found to be highly soluble in water and to self-organize, within a large concentration range, into small, compact particles of ~6 nm diameter with a narrow size distribution, regardless of the molecular weight of the polymer. They proved able to trap and stabilize two test membrane proteins, bacteriorhodopsin from Halobium salinarum and the outer membrane protein X of Escherichia coli, under the form of small and well-defined complexes, whose size, composition, and shape were studied by aqueous size-exclusion chromatography, analytical ultracentrifugation, and small-angle neutron scattering. As shown in a companion paper, nonionic amphipols can be used for membrane protein folding, cell-free synthesis, and solution NMR studies (Bazzacco et al. 2012, Biochemistry, DOI: 10.1021/bi201862v).
Collapse
Affiliation(s)
- K Shivaji Sharma
- Université d'Avignon et des Pays de Vaucluse, Equipe Chimie Bioorganique et Systèmes Amphiphiles, Avignon, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Bazzacco P, Billon-Denis E, Sharma KS, Catoire LJ, Mary S, Le Bon C, Point E, Banères JL, Durand G, Zito F, Pucci B, Popot JL. Nonionic Homopolymeric Amphipols: Application to Membrane Protein Folding, Cell-Free Synthesis, and Solution Nuclear Magnetic Resonance. Biochemistry 2012; 51:1416-30. [DOI: 10.1021/bi201862v] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Paola Bazzacco
- Unité Mixte de Recherche
7099, Centre National de la Recherche Scientifique and Université Paris 7, Institut de Biologie Physico-Chimique,
13 rue Pierre-et-Marie Curie, F-75005 Paris, France
| | - Emmanuelle Billon-Denis
- Unité Mixte de Recherche
7099, Centre National de la Recherche Scientifique and Université Paris 7, Institut de Biologie Physico-Chimique,
13 rue Pierre-et-Marie Curie, F-75005 Paris, France
| | - K. Shivaji Sharma
- Université d′Avignon et des Pays de Vaucluse, Equipe Chimie
Bioorganique et Systèmes Amphiphiles, 33 rue Louis Pasteur,
F-84000 Avignon, France
| | - Laurent J. Catoire
- Unité Mixte de Recherche
7099, Centre National de la Recherche Scientifique and Université Paris 7, Institut de Biologie Physico-Chimique,
13 rue Pierre-et-Marie Curie, F-75005 Paris, France
| | - Sophie Mary
- Unité Mixte de Recherche 5247, Centre National de la Recherche Scientifique and Universités de Montpellier 1 & 2, Faculté de Pharmacie, Institut des Biomolécules Max Mousseron, 15 avenue Charles Flahault, F-34093 Montpellier Cedex 05, France
| | - Christel Le Bon
- Unité Mixte de Recherche
7099, Centre National de la Recherche Scientifique and Université Paris 7, Institut de Biologie Physico-Chimique,
13 rue Pierre-et-Marie Curie, F-75005 Paris, France
| | - Elodie Point
- Unité Mixte de Recherche
7099, Centre National de la Recherche Scientifique and Université Paris 7, Institut de Biologie Physico-Chimique,
13 rue Pierre-et-Marie Curie, F-75005 Paris, France
| | - Jean-Louis Banères
- Unité Mixte de Recherche 5247, Centre National de la Recherche Scientifique and Universités de Montpellier 1 & 2, Faculté de Pharmacie, Institut des Biomolécules Max Mousseron, 15 avenue Charles Flahault, F-34093 Montpellier Cedex 05, France
| | - Grégory Durand
- Université d′Avignon et des Pays de Vaucluse, Equipe Chimie
Bioorganique et Systèmes Amphiphiles, 33 rue Louis Pasteur,
F-84000 Avignon, France
- Unité Mixte de Recherche 5247, Centre National de la Recherche Scientifique and Universités de Montpellier 1 & 2, Faculté de Pharmacie, Institut des Biomolécules Max Mousseron, 15 avenue Charles Flahault, F-34093 Montpellier Cedex 05, France
| | - Francesca Zito
- Unité Mixte de Recherche
7099, Centre National de la Recherche Scientifique and Université Paris 7, Institut de Biologie Physico-Chimique,
13 rue Pierre-et-Marie Curie, F-75005 Paris, France
| | - Bernard Pucci
- Université d′Avignon et des Pays de Vaucluse, Equipe Chimie
Bioorganique et Systèmes Amphiphiles, 33 rue Louis Pasteur,
F-84000 Avignon, France
- Unité Mixte de Recherche 5247, Centre National de la Recherche Scientifique and Universités de Montpellier 1 & 2, Faculté de Pharmacie, Institut des Biomolécules Max Mousseron, 15 avenue Charles Flahault, F-34093 Montpellier Cedex 05, France
| | - Jean-Luc Popot
- Unité Mixte de Recherche
7099, Centre National de la Recherche Scientifique and Université Paris 7, Institut de Biologie Physico-Chimique,
13 rue Pierre-et-Marie Curie, F-75005 Paris, France
| |
Collapse
|