2
|
Li Z, Ashraf KM, Collinson MM, Higgins DA. Single Molecule Catch and Release: Potential-Dependent Plasmid DNA Adsorption along Chemically Graded Electrode Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8651-8662. [PMID: 28383916 DOI: 10.1021/acs.langmuir.7b00044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Single molecule detection methods were employed to study the potential dependent adsorption and desorption of dye labeled plasmid DNA along chemical gradients prepared on indium tin oxide (ITO) electrodes. Gradients were formed over silica-base-layer-coated ITO surfaces by exposing them in a directional fashion to aminopropyltrimethoxysilane from the vapor phase. Sessile drop water contact angle measurements, spectroscopic ellipsometry, and X-ray photoelectron spectroscopy were used to verify that a gradient was formed and to characterize its wettability, thickness, and composition as a function of position. The gradient-coated ITO electrode served as both the working electrode and a window into the electrochemical cell used to manipulate DNA adsorption. For single molecule studies, the electrochemical cell was filled with buffer solution containing YOYO-1-labeled plasmid DNA. Fluorescence videos acquired along the gradients depicted clear position-, potential-, and pH-dependent variations in DNA adsorption and desorption. The results demonstrate that DNA adsorption was largely independent of applied potential and irreversible at high amine coverage (i.e., multilayers), under pH ∼ 6 buffer. DNA adsorption became more reversible as the amine coverage decreased and the solution pH increased. Potential dependent control over DNA adsorption and desorption was best achieved at monolayer-to-submonolayer aminosilane coverage under pH ∼ 8 buffer. The knowledge gained in these studies will aid in the development of electrochemical methods for the capture and release of DNA and other polyelectrolytes at electrode surfaces.
Collapse
Affiliation(s)
- Zi Li
- Department of Chemistry, Kansas State University , Manhattan, Kansas 66506-0401, United States
| | - Kayesh M Ashraf
- Department of Chemistry, Virginia Commonwealth University , Richmond, Virginia 23284-2006, United States
| | - Maryanne M Collinson
- Department of Chemistry, Virginia Commonwealth University , Richmond, Virginia 23284-2006, United States
| | - Daniel A Higgins
- Department of Chemistry, Kansas State University , Manhattan, Kansas 66506-0401, United States
| |
Collapse
|
3
|
Peterson EM, Harris JM. Single-molecule fluorescence imaging of DNA at a potential-controlled interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:8292-8301. [PMID: 23741971 DOI: 10.1021/la400884t] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Many interfacial chemical phenomena are governed in part by electrostatic interactions between polyelectrolytes and charged surfaces; these phenomena can influence the performance of biosensors, adsorption of natural polyelectrolytes (humic substances) on soils, and production of polyelectrolyte multilayer films. In order to understand electrostatic interactions that govern these phenomena, we have investigated the behavior of a model polyelectrolyte, 15 kbp fluorescently labeled plasmid DNA, near a polarized indium tin oxide (ITO) electrode surface. The interfacial population of DNA was monitored in situ by imaging individual molecules through the transparent electrode using total-internal-reflection fluorescence microscopy. At applied potentials of +0.8 V versus Ag/AgCl, the DNA interfacial population near the ITO surface can be increased by 2 orders of magnitude relative to bulk solution. The DNA molecules attracted to the interface do not adsorb to ITO, but rather they remain mobile with a diffusion coefficient comparable to free solution. Ionic strength strongly influences the sensitivity of the interfacial population to applied potential, where the increase in the interfacial population over a +300 mV change in potential varies from 20% in 30 mM ionic strength to over 25-fold in 300 μM electrolyte. The DNA accumulation with applied potential was interpreted using a simple Boltzmann model to predict average ion concentrations in the electrical double layer and the fraction of interfacial detection volume that is influenced by applied potential. A Gouy-Chapman model was also applied to the data to account for the dependence of the ion population on distance from the electrode surface, which indicates that the net charge on DNA responsible for interactions with the polarized surface is low, on the order of one excess electron. The results are consistent with a small fraction of the DNA plasmid being resident in the double-layer and with counterions screening much of the DNA excess charge.
Collapse
Affiliation(s)
- Eric M Peterson
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | | |
Collapse
|
9
|
Lowry M, Fakayode SO, Geng ML, Baker GA, Wang L, McCarroll ME, Patonay G, Warner IM. Molecular Fluorescence, Phosphorescence, and Chemiluminescence Spectrometry. Anal Chem 2008; 80:4551-74. [DOI: 10.1021/ac800749v] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Mark Lowry
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale,
| | - Sayo O. Fakayode
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale,
| | - Maxwell L. Geng
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale,
| | - Gary A. Baker
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale,
| | - Lin Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale,
| | - Matthew E. McCarroll
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale,
| | - Gabor Patonay
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale,
| | - Isiah M. Warner
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale,
| |
Collapse
|