1
|
Maekawa S, Seshimo T, Dazai T, Sato K, Hatakeyama-Sato K, Nabae Y, Hayakawa T. Chemically tailored block copolymers for highly reliable sub-10-nm patterns by directed self-assembly. Nat Commun 2024; 15:5671. [PMID: 38971785 PMCID: PMC11227500 DOI: 10.1038/s41467-024-49839-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 06/19/2024] [Indexed: 07/08/2024] Open
Abstract
While block copolymer (BCP) lithography is theoretically capable of printing features smaller than 10 nm, developing practical BCPs for this purpose remains challenging. Herein, we report the creation of a chemically tailored, highly reliable, and practically applicable block copolymer and sub-10-nm line patterns by directed self-assembly. Polystyrene-block-[poly(glycidyl methacrylate)-random-poly(methyl methacrylate)] (PS-b-(PGMA-r-PMMA) or PS-b-PGM), which is based on PS-b-PMMA with an appropriate amount of introduced PGMA (10-33 mol%) is quantitatively post-functionalized with thiols. The use of 2,2,2-trifluoroethanethiol leads to polymers (PS-b-PGFMs) with Flory-Huggins interaction parameters (χ) that are 3.5-4.6-times higher than that of PS-b-PMMA and well-defined higher-order structures with domain spacings of less than 20 nm. This study leads to the smallest perpendicular lamellar domain size of 12.3 nm. Furthermore, thin-film lamellar domain alignment and vertical orientation are highly reliably and reproducibly obtained by directed self-assembly to yield line patterns that correspond to a 7.6 nm half-pitch size.
Collapse
Affiliation(s)
- Shinsuke Maekawa
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, 152-8552, Japan
| | - Takehiro Seshimo
- Research & Development Department, Tokyo Ohka Kogyo Co., Ltd., Kanagawa, 253-0114, Japan
| | - Takahiro Dazai
- Research & Development Department, Tokyo Ohka Kogyo Co., Ltd., Kanagawa, 253-0114, Japan
| | - Kazufumi Sato
- Research & Development Department, Tokyo Ohka Kogyo Co., Ltd., Kanagawa, 253-0114, Japan
| | - Kan Hatakeyama-Sato
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, 152-8552, Japan
| | - Yuta Nabae
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, 152-8552, Japan
| | - Teruaki Hayakawa
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, 152-8552, Japan.
| |
Collapse
|
2
|
Hillery K, Hendeniya N, Abtahi S, Chittick C, Chang B. Substrate Neutrality for Obtaining Block Copolymer Vertical Orientation. Polymers (Basel) 2024; 16:1740. [PMID: 38932090 PMCID: PMC11207976 DOI: 10.3390/polym16121740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Nanopatterning methods utilizing block copolymer (BCP) self-assembly are attractive for semiconductor fabrication due to their molecular precision and high resolution. Grafted polymer brushes play a crucial role in providing a neutral surface conducive for the orientational control of BCPs. These brushes create a non-preferential substrate, allowing wetting of the distinct chemistries from each block of the BCP. This vertically aligns the BCP self-assembled lattice to create patterns that are useful for semiconductor nanofabrication. In this review, we aim to explore various methods used to tune the substrate and BCP interface toward a neutral template. This review takes a historical perspective on the polymer brush methods developed to achieve substrate neutrality. We divide the approaches into copolymer and blended homopolymer methods. Early attempts to obtain neutral substrates utilized end-grafted random copolymers that consisted of monomers from each block. This evolved into side-group-grafted chains, cross-linked mats, and block cooligomer brushes. Amidst the augmentation of the chain architecture, homopolymer blends were developed as a facile method where polymer chains with each chemistry were mixed and grafted onto the substrate. This was largely believed to be challenging due to the macrophase separation of the chemically incompatible chains. However, innovative methods such as sequential grafting and BCP compatibilizers were utilized to circumvent this problem. The advantages and challenges of each method are discussed in the context of neutrality and feasibility.
Collapse
Affiliation(s)
| | | | | | | | - Boyce Chang
- Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
3
|
Sun YS, Jian YQ, Yang ST, Wang HF, Junisu BA, Chen CY, Lin JM. Epitaxial Growth of Surface Perforations on Parallel Cylinders in Terraced Films of Block Copolymer/Homopolymer Blends. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7680-7691. [PMID: 38551605 PMCID: PMC11008238 DOI: 10.1021/acs.langmuir.4c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 04/10/2024]
Abstract
Due to incommensurability between initial thickness and interdomain distance, thermal annealing inevitably produces relief surface terraces (islands and holes) of various morphologies in thin films of block copolymers. We have demonstrated three kinds of surface terraces in blend films: polygrain terraces with diffuse edges, polygrain terraces with step edges, and pseudo-monograin terraces with island coarsening. The three morphologies were obtained by three different thermal histories, respectively. The thermal histories were imposed on blend films, which were prepared by mixing a homopolystyrene (hPS, 6.1 kg/mol) with a weakly segregated, symmetry polystyrene-block poly(methyl methacrylate) (PS-b-PMMA, 42 kg/mol) followed by spin coating. At a given weight-fraction ratio of PS-b-PMMA/hPS = 75/25, the interior of the blend films forms parallel cylinders. Nevertheless, the surface of the blend films is always dominated by a skin layer of perforations, which epitaxially grow on top of parallel cylinders. By oxygen plasma etching at various time intervals to probe interior nanodomains, the epitaxial relationship between surface perforations and parallel cylinders has been identified by a scanning electron microscope.
Collapse
Affiliation(s)
- Ya-Sen Sun
- Department
of Chemical Engineering, National Cheng
Kung University, Tainan 701, Taiwan
| | - Yi-Qing Jian
- Department
of Chemical and Materials Engineering, National
Central University, Taoyuan 32001, Taiwan
| | - Shin-Tung Yang
- Department
of Chemical and Materials Engineering, National
Central University, Taoyuan 32001, Taiwan
| | - Hsiao-Fang Wang
- Department
of Chemical and Materials Engineering, National
Central University, Taoyuan 32001, Taiwan
| | - Belda Amelia Junisu
- Department
of Chemical Engineering, National Cheng
Kung University, Tainan 701, Taiwan
| | - Chun-Yu Chen
- National
Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Jhih-Min Lin
- National
Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| |
Collapse
|
4
|
Baumgarten N, Mumtaz M, Merino DH, Solano E, Halila S, Bernard J, Drockenmuller E, Fleury G, Borsali R. Interface Manipulations Using Cross-Linked Underlayers and Surface-Active Diblock Copolymers to Extend Morphological Diversity in High-χ Diblock Copolymer Thin Films. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23736-23748. [PMID: 37134266 DOI: 10.1021/acsami.3c02247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Top and bottom interfaces of high-χ cylinder-forming polystyrene-block-maltoheptaose (PS-b-MH) diblock copolymer (BCP) thin films are manipulated using cross-linked copolymer underlayers and a fluorinated phase-preferential surface-active polymer (SAP) additive to direct the self-assembly (both morphology and orientation) of BCP microdomains into sub-10 nm patterns. A series of four photo-cross-linkable statistical copolymers with various contents of styrene, a 4-vinylbenzyl azide cross-linker, and a carbohydrate-based acrylamide are processed into 15 nm-thick cross-linked passivation layers on silicon substrates. A partially fluorinated analogue of the PS-b-MH phase-preferential SAP additive is designed to tune the surface energy of the top interface. The self-assembly of PS-b-MH thin films on top of different cross-linked underlayers and including 0-20 wt % of SAP additive is investigated by atomic force microscopy and synchrotron grazing incidence small-angle X-ray scattering analysis. The precise manipulation of the interfaces of ca. 30 nm thick PS-b-MH films not only allows the control of the in-plane/out-of-plane orientation of hexagonally packed (HEX) cylinders but also promotes epitaxial order-order transitions from HEX cylinders to either face-centered orthorhombic or body-centered cubic spheres without modifying the volume fraction of both blocks. This general approach paves the way for the controlled self-assembly of other high-χ BCP systems.
Collapse
Affiliation(s)
- Noémie Baumgarten
- Univ Lyon, Université Lyon 1, INSA de Lyon, CNRS, Ingénierie des Matériaux Polymères, UMR 5223, F-69003, Lyon, France
| | | | - Daniel Hermida Merino
- Dutch-Belgian Beamline, Netherlands Organization for Scientific Research, European Synchrotron Radiation Facility, F-38000 Grenoble, France
- Departamento de Física Aplicada, CINBIO, Universidade de Vigo, Campus Lagoas-Marcosende, E36310 Vigo, Galicia, Spain
| | - Eduardo Solano
- NCD-SWEET Beamline, ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Spain
| | - Sami Halila
- Univ Grenoble Alpes, CNRS, CERMAV, F-38000 Grenoble, France
| | - Julien Bernard
- Univ Lyon, Université Lyon 1, INSA de Lyon, CNRS, Ingénierie des Matériaux Polymères, UMR 5223, F-69003, Lyon, France
| | - Eric Drockenmuller
- Univ Lyon, Université Lyon 1, INSA de Lyon, CNRS, Ingénierie des Matériaux Polymères, UMR 5223, F-69003, Lyon, France
| | - Guillaume Fleury
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | | |
Collapse
|
5
|
Angelopoulou PP, Moutsios I, Manesi GM, Ivanov DA, Sakellariou G, Avgeropoulos A. Designing high χ copolymer materials for nanotechnology applications: A systematic bulk vs. thin films approach. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Hong JW, Jian YQ, Liao YP, Hung HH, Huang TY, Nelson A, Tsao IY, Wu CM, Sun YS. Distributions of Deuterated Polystyrene Chains in Perforated Layers of Blend Films of a Symmetric Polystyrene -block-poly(methyl methacrylate). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13046-13058. [PMID: 34696591 DOI: 10.1021/acs.langmuir.1c02132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We have examined the spatial distributions of polymer chains in blend films of weakly segregated polystyrene-block-poly(methyl methacrylate) [P(S-b-MMA)] and deuterated polystyrene (dPS). By fine-tuning the composition (ϕPS+dPS = 63.8 vol %) of the total PS/dPS component and annealing temperature (230 and 270 °C), P(S-b-MMA)/dPS blend films mainly form perforated layers with a parallel orientation (hereafter PLs//). The distributions of dPS in PLs// were probed by grazing-incidence small-angle neutron scattering (GISANS) and time-of-flight neutron reflectivity (ToF-NR). GISANS and ToF-NR results offer evidence that dPS chains preferentially locate at the free surface and within the PS layers for blend films that were annealed at 230 °C. Upon annealing at 270 °C, dPS chains distribute within PS layers and perforated PMMA layers. Nevertheless, dPS chains still retain a surface preference for thin films. In contrast, such surface segregation of dPS chains is prohibited for thick films when annealed at 270 °C.
Collapse
Affiliation(s)
- Jia-Wen Hong
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Yi-Qing Jian
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Yin-Ping Liao
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Hsiang-Ho Hung
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Tzu-Yen Huang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Andrew Nelson
- Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - I-Yu Tsao
- Institute of Materials Science and Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Chun-Ming Wu
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Ya-Sen Sun
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
7
|
An J, Choi JW, Son SR, Kim S, Park J, Park CB, Lee JH. Hierarchical and automatic construction of ultrathin polymer nanoarchitecture with islands of alkyl chains for spontaneous interfacial molecular alignment. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Robertson M, Zhou Q, Ye C, Qiang Z. Developing Anisotropy in Self-Assembled Block Copolymers: Methods, Properties, and Applications. Macromol Rapid Commun 2021; 42:e2100300. [PMID: 34272778 DOI: 10.1002/marc.202100300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/23/2021] [Indexed: 01/03/2023]
Abstract
Block copolymers (BCPs) self-assembly has continually attracted interest as a means to provide bottom-up control over nanostructures. While various methods have been demonstrated for efficiently ordering BCP nanodomains, most of them do not generically afford control of nanostructural orientation. For many applications of BCPs, such as energy storage, microelectronics, and separation membranes, alignment of nanodomains is a key requirement for enabling their practical use or enhancing materials performance. This review focuses on summarizing research progress on the development of anisotropy in BCP systems, covering a variety of topics from established aligning techniques, resultant material properties, and the associated applications. Specifically, the significance of aligning nanostructures and the anisotropic properties of BCPs is discussed and highlighted by demonstrating a few promising applications. Finally, the challenges and outlook are presented to further implement aligned BCPs into practical nanotechnological applications, where exciting opportunities exist.
Collapse
Affiliation(s)
- Mark Robertson
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Qingya Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Changhuai Ye
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zhe Qiang
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| |
Collapse
|
9
|
Maeda H, Nabae Y, Hayakawa T. Orientation Control of the Microphase-separated Nanostructures of Block Copolymers on Polyimide Substrates. J PHOTOPOLYM SCI TEC 2021. [DOI: 10.2494/photopolymer.34.439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hayato Maeda
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology
| | - Yuta Nabae
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology
| | - Teruaki Hayakawa
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology
| |
Collapse
|
10
|
Liu W, Zhang L, Chen R, Wu X, Yang S, Wei Y. The Phase Aggregation Behavior of the Blend Materials Block Copolymer Polystyrene‐
b
‐Polycarbonate (PS‐
b
‐PC) and Homopolymer Polystyrene (PS). MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202000432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Weichen Liu
- Integrated Circuit Advanced Process Center Institute of Microelectronics of Chinese Academy of Sciences (IMECAS) No. 3 Beitucheng West Road Beijing 100029 China
- University of Chinese Academy of Sciences No. 19(A), Yuquan Road Beijing 100049 China
| | - Libin Zhang
- Integrated Circuit Advanced Process Center Institute of Microelectronics of Chinese Academy of Sciences (IMECAS) No. 3 Beitucheng West Road Beijing 100029 China
| | - Rui Chen
- Integrated Circuit Advanced Process Center Institute of Microelectronics of Chinese Academy of Sciences (IMECAS) No. 3 Beitucheng West Road Beijing 100029 China
| | - Xin Wu
- Jiangsu HanTop Photo‐Materials Co., Ltd Floor 4‐5, Building No. 9, No. 1158 Zhongxin Rd Shanghai 201621 China
| | - Shang Yang
- Integrated Circuit Advanced Process Center Institute of Microelectronics of Chinese Academy of Sciences (IMECAS) No. 3 Beitucheng West Road Beijing 100029 China
| | - Yayi Wei
- Integrated Circuit Advanced Process Center Institute of Microelectronics of Chinese Academy of Sciences (IMECAS) No. 3 Beitucheng West Road Beijing 100029 China
- University of Chinese Academy of Sciences No. 19(A), Yuquan Road Beijing 100049 China
| |
Collapse
|
11
|
Dispersity effects on phase behavior and structural evolution in ultrathin films of a deuterated polystyrene-block-poly(methyl methacrylate) diblock copolymer. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.123027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Lin YL, Karapala VK, Shen MH, Chen YF, He HC, Chang CJ, Chang YC, Lu TC, Liau I, Chen JT. Reproducible and Bendable SERS Substrates with Tailored Wettability Using Block Copolymers and Anodic Aluminum Oxide Templates. Macromol Rapid Commun 2020; 41:e2000088. [PMID: 32329178 DOI: 10.1002/marc.202000088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/25/2022]
Abstract
Surface properties are essential for substrates exhibiting high sensitivity in surface-enhanced Raman scattering (SERS) applications. In this work, novel SERS hybrid substrates using polystyrene-block-poly(methyl methacrylate) and anodic aluminum oxide templates is presented. The hybrid substrates not only possess hierarchical porous nanostructures but also exhibit superhydrophilic surface properties with the water contact angle ≈0°. Such surfaces play an important role in providing uniform enhanced intensities over large areas (relative standard deviation ≈10%); moreover, these substrates are found to be highly sensitive (limit of detection ≈10-12 m for rhodamine 6G (R6G)). The results show that the hybrid SERS substrates can achieve the simultaneous detection of multicomponent mixtures of different target molecules, such as R6G, crystal violet, and methylene blue. Furthermore, the bending experiments show that about 70% of the SERS intensities are maintained after bending from ≈30° to 150°.
Collapse
Affiliation(s)
- Yu-Liang Lin
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 30010, Taiwan
| | | | - Ming-Hui Shen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Yi-Fan Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Hung-Chieh He
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Chia-Jui Chang
- Department of Photonics, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Yu-Ching Chang
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 30010, Taiwan.,Institute of Molecular Science, National Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Tien-Chang Lu
- Department of Photonics, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Ian Liau
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 30010, Taiwan.,Institute of Molecular Science, National Chiao Tung University, Hsinchu, 30010, Taiwan.,Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Jiun-Tai Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 30010, Taiwan.,Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu, 30010, Taiwan
| |
Collapse
|
13
|
Wang HS, Oh S, Choi J, Jang W, Kim KH, Arellano CL, Huh J, Bang J, Im SG. High-Fidelity, Sub-5 nm Patterns from High-χ Block Copolymer Films with Vapor-Deposited Ultrathin, Cross-Linked Surface-Modification Layers. Macromol Rapid Commun 2020; 41:e1900514. [PMID: 31958190 DOI: 10.1002/marc.201900514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/09/2019] [Indexed: 12/11/2022]
Abstract
Despite their capability, sub-10 nm periodic nano-patterns formed by strongly segregating block copolymer (BCP) thin films cannot be easily oriented perpendicular to the substrate due to the huge surface energy differences of the constituent blocks. To produce perpendicular nano-patterns, the interfacial energies of both the substrate and free interfaces should be controlled precisely to induce non-preferential wetting. Unfortunately, high-performance surface modification layers are challenging to design, and different kinds of surface modification methods must be devised respectively for each neutral layer and top coat. Furthermore, conventional approaches, largely based on spin-coating processes, are highly prone to defect formation and may readily cause dewetting at sub-10 nm thickness. To date, these obstacles have hampered the development of high-fidelity, sub-5 nm BCP patterns. Herein, an all-vapor phase deposition approach initiated chemical vapor deposition is demonstrated to form 9-nm-thick, uniform neutral bottom layer and top coat with exquisite control of composition and thickness. These layers are employed in BCP films to produce perpendicular cylinders with a diameter of ≈4 nm that propagate throughout a BCP thickness of up to ≈60 nm, corresponding to five natural domain spacings of the BCP. Such a robust approach will serve as an advancement for the reliable generation of sub-10 nm nano-patterns.
Collapse
Affiliation(s)
- Hyun Suk Wang
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Seula Oh
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Junhwan Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Wontae Jang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Ki Hyun Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Carlos Luis Arellano
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - June Huh
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Joona Bang
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
14
|
Yang WC, Wu SH, Chen YF, Nelson A, Wu CM, Sun YS. Effects of the Density of Chemical Cross-links and Physical Entanglements of Ultraviolet-Irradiated Polystyrene Chains on Domain Orientation and Spatial Order of Polystyrene- block-Poly(methyl methacrylate) Nano-Domains. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14017-14030. [PMID: 31577149 DOI: 10.1021/acs.langmuir.9b02054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ultraviolet irradiation (UVI) of varied duration caused cross-linking and neutralization of polystyrene (PS) homopolymers of molar mass (Mn) from 6 to 290 kg mol-1 on a silicon-oxide surface. An optimal neutral skin layer on the surface of the PS was obtained via brief UVI in air (UVIA), by which the PS had no preferential interaction with either block in the copolymer. UVI in an inert environment (gaseous dinitrogen) (UVIN) stabilized the PS layers via cross-linking and enabled the PS networks to have an effective adhesive contact with the underlying substrate. Thorough examination of domain orientations and spatial orders of a series of block copolymer, polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA), thin films deposited on these UVI-treated PS support layers yielded clear evidence that a dense layer of neutralized PS chains was required for the perpendicular orientation of PS-b-PMMA nanodomains. In particular, in addition to neutralization, two factors-the densities of physical entanglements and of chemical crosslinks-both in UVI-treated PS should be considered for the perpendicular orientation of nanolamellae and nanocylinders in symmetric and asymmetric PS-b-PMMA thin films. The density of physical entanglement in PS depends intrinsically on Mn of the PS, whereas the density of chemical cross-links was controlled with a varied duration of UVIN. Sufficiently large densities of physical entanglements and chemical cross-links can prevent PS-b-PMMA chains from penetrating through the neutral skin layer. The total density of physical entanglements and chemical cross-links required for the perpendicular orientation is correlated with the dimensions of the PS-b-PMMA chains.
Collapse
Affiliation(s)
- Wei-Chen Yang
- Department of Chemical and Materials Engineering , National Central University , No. 300, Zhongda Rd. , Zhongli District, Taoyuan City 32001 , Taiwan
| | - Song-Hao Wu
- Department of Chemical and Materials Engineering , National Central University , No. 300, Zhongda Rd. , Zhongli District, Taoyuan City 32001 , Taiwan
| | - Yi-Fang Chen
- Department of Chemical and Materials Engineering , National Central University , No. 300, Zhongda Rd. , Zhongli District, Taoyuan City 32001 , Taiwan
| | - Andrew Nelson
- Australian Nuclear Science and Technology Organisation , Locked Bag 2001 , Kirrawee DC , New South Wales 2232 , Australia
| | - Chun-Ming Wu
- National Synchrotron Radiation Research Center , 101 Hsin-Ann Road, Hsinchu Science Park , Hsinchu 30076 , Taiwan
| | - Ya-Sen Sun
- Department of Chemical and Materials Engineering , National Central University , No. 300, Zhongda Rd. , Zhongli District, Taoyuan City 32001 , Taiwan
| |
Collapse
|
15
|
Cintora A, Takano H, Khurana M, Chandra A, Hayakawa T, Ober CK. Block copolymers containing stable radical and fluorinated blocks with long-range ordered morphologies prepared by anionic polymerization. Polym Chem 2019; 10:5094-5102. [PMID: 31853268 PMCID: PMC6919551 DOI: 10.1039/c9py00416e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a facile synthetic approach to create stable radical block copolymers containing a secondary fluorinated block via anionic polymerization using a bulky, sterically hindered countercation composed of a sodium ion and di-benzo-18-crown-6 complex. The synthetic conditions described in this report allowed for controlled molecular weights and dispersity (<1.3) of both homopolymers: poly(2,2,6,6-tetramethyl-1-piperidinyloxy-methacrylate) (PTMA) and poly(2,2,2-trifluoroethyl methacrylate) (PTFEMA) as well as their block copolymers (PTMA-b-PTFEMA). The stable radical concentration of the polymers was determined by electron spin resonance (ESR) and showed radical content above 70%. An analysis of the microphase morphologies in PTMA-b-PTFEMA thin films via atomic force microscopy (AFM) and grazing incidence small angle X-ray scattering (GISAXS) showed clear evidence of long-range ordering of lamellar and cylindrical morphologies with 32 and 36 nm spacing, respectively. The long-range ordering of the morphologies was developed with the aid of two separate neutral layers: PTMA-ran-PTFEMA-ran-poly(hydroxyl ethyl methacrylate) (PHEMA) and poly(isobutyl methacrylate) (PiBMA)-ran-PTFEMA-ran-PHEMA, which helped us corroborate, along with the Zisman method, the surface energy estimation of PTMA to be 30.1 mJ/m2.
Collapse
Affiliation(s)
- Alicia Cintora
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Hiroki Takano
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-S8-36 Ookayama, Meguro-ku, Tokyo, Japan
| | - Mohit Khurana
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Alvin Chandra
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-S8-36 Ookayama, Meguro-ku, Tokyo, Japan
| | - Teruaki Hayakawa
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-S8-36 Ookayama, Meguro-ku, Tokyo, Japan
| | - Christopher K Ober
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
16
|
Kim J, Choe J, Son D, Kim M. Copolymerization Kinetics of a Simple Methacrylate and Functional Comonomers Via Cu(0)‐mediated Reversible Deactivation Radical Polymerization. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jisu Kim
- Department of Chemistry and Chemical EngineeringInha University Incheon 22212 South Korea
| | - Jongwon Choe
- Department of Chemistry and Chemical EngineeringInha University Incheon 22212 South Korea
| | - Dongwan Son
- Department of Chemistry and Chemical EngineeringInha University Incheon 22212 South Korea
| | - Myungwoong Kim
- Department of Chemistry and Chemical EngineeringInha University Incheon 22212 South Korea
| |
Collapse
|
17
|
Wylie K, Nabae Y, Hayakawa T. Altering the Self-Assembly of Poly(styrene- block-methyl methacrylate) by Introduction of Strongly Dissimilar Molecules at the Block Interface. J PHOTOPOLYM SCI TEC 2019. [DOI: 10.2494/photopolymer.32.395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kevin Wylie
- Department of Materials Science and Engineering, Tokyo Institute of Technology
| | - Yuta Nabae
- Department of Materials Science and Engineering, Tokyo Institute of Technology
| | - Teruaki Hayakawa
- Department of Materials Science and Engineering, Tokyo Institute of Technology
| |
Collapse
|
18
|
Yoshimura Y, Chandra A, Nabae Y, Hayakawa T. Chemically tailored high-χ block copolymers for perpendicular lamellae via thermal annealing. SOFT MATTER 2019; 15:3497-3506. [PMID: 30855615 DOI: 10.1039/c9sm00128j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A chemically tailored high-χ block copolymer (BCP), polystyrene-block-poly[2-hydroxy-3-(2,2,2-trifluoroethylsulfanyl)propyl methacrylate] (PS-b-PHFMA), was designed to incorporate tailored surface affinities and chemical incompatibilities for engineering perpendicular lamellae using thermal annealing. PS-b-PHFMA was synthesized via the sequential anionic polymerization of styrene and glycidyl methacrylate and the post-polymerization functionalization of the glycidyl moieties with 2,2,2-trifluoroethanethiol. The bulk studies revealed lamellae with a minimum domain spacing of 9.6 nm and a large effective Flory-Huggins interaction parameter (χeff) of 0.191 at 25 °C. Furthermore, atomic force microscopy and scanning electron microscopy showed perpendicular lamellae of the PS-b-PHFMA prepared on thermally-annealed thin films. The introduction of hydrophobic trifluoroethyl moieties onto the hydrophilic glycidyl moieties successfully balanced the surface affinity of the PHFMA block relative to PS, while simultaneously increasing the strength of segregation. Thus, χeff of the chemically tailored BCP increased, and a perpendicular orientation was facilitated on the thin films using thermal annealing.
Collapse
Affiliation(s)
- Yasunari Yoshimura
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-S8-36 Ookayama, Meguro-ku, Tokyo 152-8552, Japan.
| | | | | | | |
Collapse
|
19
|
Chambers LC, Huang Y, Jack KS, Blakey I. Spatial control of the topography of photo-sensitive block copolymer thin films. Polym Chem 2019. [DOI: 10.1039/c9py00200f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Spatially controlling self-assembly of block copolymer thin films through photoinduced molecular interactions that significantly impact on the glass transition temperature.
Collapse
Affiliation(s)
- Lewis C. Chambers
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
| | - Yun Huang
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
| | - Kevin S. Jack
- Centre for Microscopy and Microanalysis
- The University of Queensland
- Brisbane
- Australia
| | - Idriss Blakey
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
- Centre for Microscopy and Microanalysis
| |
Collapse
|
20
|
Wang HS, Kim KH, Bang J. Thermal Approaches to Perpendicular Block Copolymer Microdomains in Thin Films: A Review and Appraisal. Macromol Rapid Commun 2018; 40:e1800728. [PMID: 30500096 DOI: 10.1002/marc.201800728] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/17/2018] [Indexed: 01/20/2023]
Abstract
Block copolymer thin films are highly versatile and accessible materials capable of producing nanofeatures in the size regime of a few to hundreds of nanometers by a simple spin-coating-and-anneal process. Unfortunately, this simple protocol usually leads to parallel microdomains, which limits the applicability of such nanofeatures. A great deal of effort has been put into achieving perpendicular microdomains, but those that incorporate thermal annealing are arguably the most practical and reproducible in the lab and industry. This review discusses the recent ongoing efforts on various thermal approaches to achieving perpendicular microdomains in order to provide the readers with a toolbox to work with.
Collapse
Affiliation(s)
- Hyun Suk Wang
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ki Hyun Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Joona Bang
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
21
|
Effect of Ink Molecular Weights and Annealing Conditions on Molecular Transfer Printing. CHINESE JOURNAL OF POLYMER SCIENCE 2018. [DOI: 10.1007/s10118-018-2056-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Chen X, Zhou C, Chen SJ, Craig GSW, Rincon-Delgadillo P, Dazai T, Miyagi K, Maehashi T, Yamazaki A, Gronheid R, Stoykovich MP, Nealey PF. Ionic Liquids as Additives to Polystyrene- Block-Poly(Methyl Methacrylate) Enabling Directed Self-Assembly of Patterns with Sub-10 nm Features. ACS APPLIED MATERIALS & INTERFACES 2018; 10:16747-16759. [PMID: 29667409 DOI: 10.1021/acsami.8b02990] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Polystyrene- block-poly(methyl methacrylate) (PS- b-PMMA) is one of the prototypical block copolymers in directed self-assembly (DSA) research and development, with standardized protocols in place for processing on industrially relevant 300 mm wafers. Scaling of DSA patterns to pitches below 20 nm using PS- b-PMMA, however, is hindered by the relatively low Flory-Huggins interaction parameter, χ. Here, we investigate the approach of adding small amounts of ionic liquids (ILs) into PS- b-PMMA, which selectively segregates into the PMMA domain and effectively increases the χ parameter and thus the pattern resolution. The amount of IL additive is small enough to result in limited changes in PS- b-PMMA's surface and interfacial properties, thus maintaining industry-friendly processing by thermal annealing with a free surface. Three different ILs are studied comparatively regarding their compositional process window, capability of increasing χ, and thermal stability. By adding ∼3.1 vol % of the champion IL into a low-molecular-weight PS- b-PMMA ( Mn = 10.3k- b-9.5k), we demonstrated DSA on chemically patterned substrates of lamellar structures with feature sizes <8.5 nm. Compatibility of the PS- b-PMMMA/IL blends with the standardized processes that have been previously developed suggests that such blend materials could provide a drop-in solution for sub-10 nm lithography with the processing advantages of PS- b-PMMA.
Collapse
Affiliation(s)
- Xuanxuan Chen
- Institute for Molecular Engineering , University of Chicago , 5640 S Ellis Avenue , Chicago , Illinois 60637 , United States
- IMEC , Kapeldreef 75 , Leuven B-3001 , Belgium
| | - Chun Zhou
- Institute for Molecular Engineering , University of Chicago , 5640 S Ellis Avenue , Chicago , Illinois 60637 , United States
| | - Shuang-Jun Chen
- College of Materials Science and Engineering , Nanjing University of Technology , 5 Xin Mo Fan Road , Nanjing , Jiangsu 210009 , China
| | - Gordon S W Craig
- Institute for Molecular Engineering , University of Chicago , 5640 S Ellis Avenue , Chicago , Illinois 60637 , United States
| | | | - Takahiro Dazai
- Tokyo Ohka Kogyo , 1590 Tabata , Samukawa-Machi, Koza-Gun , Kanagawa 253-0114 , Japan
| | - Ken Miyagi
- Tokyo Ohka Kogyo , 1590 Tabata , Samukawa-Machi, Koza-Gun , Kanagawa 253-0114 , Japan
| | - Takaya Maehashi
- Tokyo Ohka Kogyo , 1590 Tabata , Samukawa-Machi, Koza-Gun , Kanagawa 253-0114 , Japan
| | - Akiyoshi Yamazaki
- Tokyo Ohka Kogyo , 1590 Tabata , Samukawa-Machi, Koza-Gun , Kanagawa 253-0114 , Japan
| | | | - Mark P Stoykovich
- Institute for Molecular Engineering , University of Chicago , 5640 S Ellis Avenue , Chicago , Illinois 60637 , United States
| | - Paul F Nealey
- Institute for Molecular Engineering , University of Chicago , 5640 S Ellis Avenue , Chicago , Illinois 60637 , United States
- Material Science Division , Argonne National Laboratory , 9700 South Cass Avenue , Lemont , Illinois 60439 , United States
| |
Collapse
|
23
|
Zhang Z, Zheng L, Khurram M, Yan Q. Phosphorene-directed self-assembly of asymmetric PS-b-PMMA block copolymer for perpendicularly-oriented sub-10 nm PS nanopore arrays. NANOTECHNOLOGY 2017; 28:424001. [PMID: 28825413 DOI: 10.1088/1361-6528/aa8748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Few-layer black phosphorus, also known as phosphorene, is a new two-dimensional material which is of enormous interest for applications, mainly in electronics and optoelectronics. Herein, we for the first time employ phosphorene for directing the self-assembly of asymmetric polystyrene-block-polymethylmethacrylate (PS-b-PMMA) block copolymer (BCP) thin film to form the perpendicular orientation of sub-10 nm PS nanopore arrays in a hexagonal fashion normal to the interface. We experimentally demonstrate that none of the PS and PMMA blocks exhibit preferential affinity to the phosphorene-modified surface. Furthermore, the perpendicularly-oriented PS nanostructures almost stay unchanged with the variation of number of layers of few-layer phosphorene nanoflakes between 15-30 layers. Differing from the neutral polymer brushes which are widely used for chemical modification of the silicon substrate, phosphorene provides a novel physical way to control the interfacial interactions between the asymmetric PS-b-PMMA BCP thin film and the silicon substrate. Based on our results, it is possible to build a new scheme for producing sub-10 nm PS nanopore arrays oriented perpendicularly to the few-layer phosphorene nanoflakes. Furthermore, the nanostructural microdomains could serve as a promising nanolithography template for surface patterning of phosphorene nanoflakes.
Collapse
|
24
|
Pang Y, Wan L, Huang G, Zhang X, Jin X, Xu P, Liu Y, Han M, Wu GP, Ji S. Controlling Block Copolymer–Substrate Interactions by Homopolymer Brushes/Mats. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00743] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yuanyuan Pang
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
- University of
Chinese Academy of Sciences, Beijing, China
| | - Lei Wan
- HGST, A Western
Digital Company, 5601 Great Oaks Parkway, San Jose, California 95119, United States
| | - Guangcheng Huang
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
- University of
Chinese Academy of Sciences, Beijing, China
| | - Xiaosa Zhang
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
- University of
Chinese Academy of Sciences, Beijing, China
| | - Xiaosa Jin
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
- University of
Chinese Academy of Sciences, Beijing, China
| | - Peng Xu
- College
of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yadong Liu
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Miaomiao Han
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Guang-Peng Wu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shengxiang Ji
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| |
Collapse
|
25
|
Lee W, Park S, Kim Y, Sethuraman V, Rebello N, Ganesan V, Ryu DY. Effect of Grafting Density of Random Copolymer Brushes on Perpendicular Alignment in PS-b-PMMA Thin Films. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00133] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Wooseop Lee
- Department
of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Sungmin Park
- Department
of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Yeongsik Kim
- Department
of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Vaidyanathan Sethuraman
- Department
of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Nathan Rebello
- Department
of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Venkat Ganesan
- Department
of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Du Yeol Ryu
- Department
of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
26
|
Wylie K, Bennett I, Marić M. Self-assembly of gradient copolymers synthesized in semi-batch mode by nitroxide mediated polymerization. SOFT MATTER 2017; 13:2836-2843. [PMID: 28352902 DOI: 10.1039/c6sm02808j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The effect of diffuse compositional interfaces on copolymer self-assembly was studied via gradient copolymers (GCP). Poly(methyl methacrylate)-grad-(styrene) (PMMA-grad-PSt) copolymers were synthesized in semi-batch mode using nitroxide-mediated polymerization (NMP) with varied monomer injection protocols to produce varied diffuse interfaces (number average molecular weights (Mn) ranged from 62 000 g mol-1 to 94 000 g mol-1 with dispersities (Đ) between 1.35 and 1.59). The GCPs were spun into thin films on substrates made neutral by (St-ran-MMA-ran-hydroxyethyl methacrylate) terpolymers and annealed at elevated temperature to produce vertically oriented microphase-separated domains. The GCPs were found to have domain spacing larger than equivalent monodisperse BCPs, due to their polydisperse nature. This effect was partially offset by the decrease in χ due to the gradient. GCPs synthesized with a single-injection protocol (i.e. less diffuse interfaces) were found to self-assemble into ordered domains. However, GCPs synthesized with long injection times (i.e. more diffuse interfaces) exhibited poor self-assembly attributed to their predicted statistical-copolymer-like middle sequence, which caused a reduction of the effective enthalpic interaction parameter.
Collapse
Affiliation(s)
- Kevin Wylie
- Dept. of Chemical Engineering, McGill Institute of Advanced Materials (MIAM) McGill University, 3610 University Street, Montreal, QC, Canada H3A 0C5.
| | | | | |
Collapse
|
27
|
Morris MA, Gartner TE, Epps TH. Tuning Block Polymer Structure, Properties, and Processability for the Design of Efficient Nanostructured Materials Systems. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201600513] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Melody A. Morris
- Department of Chemical and Biomolecular Engineering University of Delaware Newark DE 19716 USA
| | - Thomas E. Gartner
- Department of Chemical and Biomolecular Engineering University of Delaware Newark DE 19716 USA
| | - Thomas H. Epps
- Department of Chemical and Biomolecular Engineering University of Delaware Newark DE 19716 USA
- Department of Materials Science and Engineering University of Delaware Newark DE 19716 USA
| |
Collapse
|
28
|
Song JQ, Liu YX, Zhang HD. A surface interaction model for self-assembly of block copolymers under soft confinement. J Chem Phys 2016; 145:214902. [PMID: 28799373 DOI: 10.1063/1.4968599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The surface interaction between substrates and block copolymers is one of the most important factors that control the alignment of self-assembled domains under thin film confinement. Most previous studies simply modeled substrates modified by grafting polymers as a hard wall with a specified surface energy, leading to an incomplete understanding of the role of grafted polymers. In this study, we propose a general model of surface interactions where the role of grafted polymers is decomposed into two independent contributions: the surface preference and the surface softness. Based on this model, we perform a numerical analysis of the stability competition between perpendicular and parallel lamellae of symmetric diblock copolymers on substrates modified by homopolymers using self-consistent field theory. The effects of the surface preference and the surface softness on the alignment of lamellar domains are carefully examined. A phase diagram of the alignment in the plane of the surface preference parameter and the surface softness parameter is constructed, which reveals a considerable parameter window for preparing stable perpendicular lamellae even on highly preferential substrates.
Collapse
Affiliation(s)
- Jun-Qing Song
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Yi-Xin Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Hong-Dong Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Ishige R, Ohta N, Ogawa H, Tokita M, Takahara A. Fully Liquid-Crystalline ABA Triblock Copolymer of Fluorinated Side-Chain Liquid-Crystalline A Block and Main-Chain Liquid-Crystalline B Block: Higher Order Structure in Bulk and Thin Film States. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00855] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | - Noboru Ohta
- Japan Synchrotron Radiation Research
Institute (JASRI/SPring-8), Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Hiroki Ogawa
- Japan Synchrotron Radiation Research
Institute (JASRI/SPring-8), Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Masatoshi Tokita
- Department of Chemical Science and Engineering,
School of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama,
Meguro-ku, Tokyo 152-8552, Japan
| | | |
Collapse
|
30
|
Jin XS, Pang YY, Ji SX. From self-assembled monolayers to chemically patterned brushes: Controlling the orientation of block copolymer domains in films by substrate modification. CHINESE JOURNAL OF POLYMER SCIENCE 2016. [DOI: 10.1007/s10118-016-1800-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
31
|
Sun YS, Wang CT, Liou JY. Tuning polymer-surface chemistries and interfacial interactions with UV irradiated polystyrene chains to control domain orientations in thin films of PS-b-PMMA. SOFT MATTER 2016; 12:2923-2931. [PMID: 26890311 DOI: 10.1039/c5sm02605a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We demonstrate a simple, rapid, cost-effective and robust approach to modify the surface of a solid substrate, based on a UV-irradiated film of a general plastic polymer. Thin films of homopolymer polystyrene (PS) of controlled thickness were spin-coated on diverse metal, semiconductor and polymeric surfaces. Specific surface chemistry was tuned with UV irradiation in air (UVIA); interactions at the PS/substrate interface were enhanced with UV irradiation in nitrogen (UVIN). Oxidized and cross-linked PS served as a neutral surface on various metal, quartz, semiconductor and polymeric substrates to induce perpendicularly oriented cylinders or lamellae in a self-assembled block copolymer.
Collapse
Affiliation(s)
- Ya-Sen Sun
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan.
| | - Ching-Tun Wang
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan.
| | - Jiun-You Liou
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| |
Collapse
|
32
|
|
33
|
Kato F, Chandra A, Horiuchi S, Hayakawa T. Morphological dependence on the addition of a soft middle block segment to rigid POSS-containing triblock copolymers for forming cylindrical nanostructures. RSC Adv 2016. [DOI: 10.1039/c6ra11113k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of novel polyhedral oligomelic silsesquioxane (POSS)-containing triblock copolymers that self-assemble into hexagonally-packed cylinders of the POSS domain in a polystyrene (PS) matrix was developed in this study.
Collapse
Affiliation(s)
- Fuminobu Kato
- Department of Materials Science and Engineering
- School of Materials and Chemical Technology
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - Alvin Chandra
- Department of Materials Science and Engineering
- School of Materials and Chemical Technology
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - Shin Horiuchi
- Nanomaterials Research Institute
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba 305-8565
- Japan
| | - Teruaki Hayakawa
- Department of Materials Science and Engineering
- School of Materials and Chemical Technology
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| |
Collapse
|
34
|
Varol HS, Sánchez MA, Lu H, Baio JE, Malm C, Encinas N, Mermet-Guyennet MRB, Martzel N, Bonn D, Bonn M, Weidner T, Backus EHG, Parekh SH. Multiscale Effects of Interfacial Polymer Confinement in Silica Nanocomposites. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01111] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
| | | | | | - Joe E. Baio
- School of
Chemical,
Biological and Environmental Engineering, Oregon State University, Corvalis, Oregon 97333, United States
| | | | | | | | - Nicolas Martzel
- Manufacture française
des pneumatiques MICHELIN, Site de Ladoux, 23 place Carmes Déchaux, 63040 Clermont-Ferrand, France
| | - Daniel Bonn
- Institute
of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
35
|
Ceresoli M, Palermo M, Ferrarese Lupi F, Seguini G, Perego M, Zuccheri G, Phadatare SD, Antonioli D, Gianotti V, Sparnacci K, Laus M. Neutral wetting brush layers for block copolymer thin films using homopolymer blends processed at high temperatures. NANOTECHNOLOGY 2015; 26:415603. [PMID: 26404164 DOI: 10.1088/0957-4484/26/41/415603] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Binary homopolymer blends of two hydroxyl-terminated polystyrene (PS-OH) and polymethylmethacrylate (PMMA-OH) homopolymers (Mn ∼ 16000 g mol(-1)) were grafted on SiO2 substrates by high-temperature (T > 150 °C), short-time (t < 600 s) thermal treatments. The resulting brush layer was tested to screen preferential interactions of the SiO2 substrate with the different symmetric and asymmetric PS-b-PMMA block copolymers deposited on top of the grafted molecules. By properly adjusting the blend composition and the processing parameters, an efficient surface neutralization path was identified, enabling the formation, in the block copolymer film, of homogeneous textures of lamellae or cylinders perpendicularly oriented with respect to the substrate. A critical interplay between the phase segregation of the homopolymer blends and their grafting process on the SiO2 was observed. In fact, the polar SiO2 is preferential for the PMMA-rich phase that forms a homogeneous layer on the substrate, while the PS-rich phase is located at the polymer-air interface. During the thermal treatment, phase segregation and grafting proceed simultaneously. Complete wetting of the PS rich phase on the PMMA rich phase leads to the formation of a PS/PMMA bilayer. In this case, the progressive diffusion of PS chains toward the polymer-SiO2 interface during the thermal treatment allows tuning of the brush layer composition.
Collapse
Affiliation(s)
- M Ceresoli
- Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza, MB, Italy. Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, Milano, 20133, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Murphy JN, Harris KD, Buriak JM. Automated Defect and Correlation Length Analysis of Block Copolymer Thin Film Nanopatterns. PLoS One 2015; 10:e0133088. [PMID: 26207990 PMCID: PMC4514826 DOI: 10.1371/journal.pone.0133088] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/22/2015] [Indexed: 11/22/2022] Open
Abstract
Line patterns produced by lamellae- and cylinder-forming block copolymer (BCP) thin films are of widespread interest for their potential to enable nanoscale patterning over large areas. In order for such patterning methods to effectively integrate with current technologies, the resulting patterns need to have low defect densities, and be produced in a short timescale. To understand whether a given polymer or annealing method might potentially meet such challenges, it is necessary to examine the evolution of defects. Unfortunately, few tools are readily available to researchers, particularly those engaged in the synthesis and design of new polymeric systems with the potential for patterning, to measure defects in such line patterns. To this end, we present an image analysis tool, which we have developed and made available, to measure the characteristics of such patterns in an automated fashion. Additionally we apply the tool to six cylinder-forming polystyrene-block-poly(2-vinylpyridine) polymers thermally annealed to explore the relationship between the size of each polymer and measured characteristics including line period, line-width, defect density, line-edge roughness (LER), line-width roughness (LWR), and correlation length. Finally, we explore the line-edge roughness, line-width roughness, defect density, and correlation length as a function of the image area sampled to determine each in a more rigorous fashion.
Collapse
Affiliation(s)
- Jeffrey N. Murphy
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
- National Institute for Nanotechnology (NINT), Edmonton, Alberta, Canada
| | - Kenneth D. Harris
- National Institute for Nanotechnology (NINT), Edmonton, Alberta, Canada
| | - Jillian M. Buriak
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
- National Institute for Nanotechnology (NINT), Edmonton, Alberta, Canada
| |
Collapse
|
38
|
Sparnacci K, Antonioli D, Gianotti V, Laus M, Lupi FF, Giammaria TJ, Seguini G, Perego M. Ultrathin random copolymer-grafted layers for block copolymer self-assembly. ACS APPLIED MATERIALS & INTERFACES 2015; 7:10944-10951. [PMID: 25954979 DOI: 10.1021/acsami.5b02201] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Hydroxyl-terminated P(S-r-MMA) random copolymers (RCPs) with molecular weights (Mn) from 1700 to 69000 and a styrene unit fraction of approximately 61% were grafted onto a silicon oxide surface and subsequently used to study the orientation of nanodomains with respect to the substrate, in cylinder-forming PS-b-PMMA block copolymer (BCP) thin films. When the thickness (H) of the grafted layer is greater than 5-6 nm, a perpendicular orientation is always observed because of the efficient decoupling of the BCP film from the polar SiO2 surface. Conversely, if H is less than 5 nm, the critical thickness of the grafted layer, which allows the neutralization of the substrate and promotion of the perpendicular orientation of the nanodomains in the BCP film, is found to depend on the Mn of the RCP. In particular, when Mn = 1700, a 2.0 nm thick grafted layer is sufficient to promote the perpendicular orientation of the PMMA cylinders in the PS-b-PMMA BCP film. A proximity shielding mechanism of the BCP molecules from the polar substrate surface, driven by chain stretching of the grafted RCP molecules, is proposed.
Collapse
Affiliation(s)
- Katia Sparnacci
- †Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale "A. Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy
- ‡INSTM, UdR, Alessandria, Italy
| | - Diego Antonioli
- †Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale "A. Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy
- ‡INSTM, UdR, Alessandria, Italy
| | - Valentina Gianotti
- †Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale "A. Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy
- ‡INSTM, UdR, Alessandria, Italy
| | - Michele Laus
- †Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale "A. Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy
- ‡INSTM, UdR, Alessandria, Italy
| | | | | | - Gabriele Seguini
- §Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza, Italy
| | - Michele Perego
- §Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza, Italy
| |
Collapse
|
39
|
Sparnacci K, Antonioli D, Gianotti V, Laus M, Zuccheri G, Ferrarese Lupi F, Giammaria TJ, Seguini G, Ceresoli M, Perego M. Thermal stability of functional P(S-r-MMA) random copolymers for nanolithographic applications. ACS APPLIED MATERIALS & INTERFACES 2015; 7:3920-3930. [PMID: 25664773 DOI: 10.1021/am509088s] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Two strategies are envisioned to improve the thermal stability of the grafted layer and to allow the processing of the random copolymer/block copolymer (RCP/BCP) system at high temperature. From one side, a high-temperature thermal treatment of a commercial α-hydroxyl ω-2,2,6,6-tetramethylpiperidinyloxy functional RCP, namely, TR58, leads to the formation of a stabilized layer able to induce the perpendicular orientation of a symmetric BCP to temperatures higher than 310 °C. On the other side, an α-hydroxyl ω-Br functional RCP, namely, BrR58, with the same molar mass and composition of TR58, was prepared by activator regenerated by electron transfer atom transfer radical polymerization. The resulting brush layer can sustain the self-assembly of the symmetric BCP for processing temperatures as high as 330 °C. In both systems, the disruption of the BCP film, deposited on the grafted RCP layer, occurs because of the formation of bubbles, due to a low-temperature evolution of monomers from the RCP layer. The extent of the low-temperature monomer evolution is higher for TR58 than it is for BrR58 and starts at lower temperatures. For both copolymers, the thermal treatment offsets the low-temperature monomer evolution while still maintaining surface characteristics suitable to induce the perpendicular orientation of the BCPs, thus ultimately extending the range of processing temperatures of the BCP film and consequently speeding the self-organization process.
Collapse
Affiliation(s)
- Katia Sparnacci
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale ''A. Avogadro'' , Viale T. Michel 11, 15121 Alessandria, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wang D, He C, Stoykovich MP, Schwartz DK. Nanoscale topography influences polymer surface diffusion. ACS NANO 2015; 9:1656-1664. [PMID: 25621372 DOI: 10.1021/nn506376n] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Using high-throughput single-molecule tracking, we studied the diffusion of poly(ethylene glycol) chains at the interface between water and a hydrophobic surface patterned with an array of hexagonally arranged nanopillars. Polymer molecules displayed anomalous diffusion; in particular, they exhibited intermittent motion (i.e., immobilization and "hopping") suggestive of continuous-time random walk (CTRW) behavior associated with desorption-mediated surface diffusion. The statistics of the molecular trajectories changed systematically on surfaces with pillars of increasing height, exhibiting motion that was increasingly subdiffusive and with longer waiting times between diffusive steps. The trajectories were well-described by kinetic Monte Carlo simulations of CTRW motion in the presence of randomly distributed permeable obstacles, where the permeability (the main undetermined parameter) was conceptually related to the obstacle height. These findings provide new insights into the mechanisms of interfacial transport in the presence of obstacles and on nanotopographically patterned surfaces.
Collapse
Affiliation(s)
- Dapeng Wang
- Department of Chemical and Biological Engineering, University of Colorado Boulder , Boulder, Colorado 80309, United States
| | | | | | | |
Collapse
|
41
|
Maher MJ, Rettner CT, Bates CM, Blachut G, Carlson MC, Durand WJ, Ellison CJ, Sanders DP, Cheng JY, Willson CG. Directed self-assembly of silicon-containing block copolymer thin films. ACS APPLIED MATERIALS & INTERFACES 2015; 7:3323-3328. [PMID: 25594107 DOI: 10.1021/am508197k] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The directed self-assembly (DSA) of lamella-forming poly(styrene-block-trimethylsilylstyrene) (PS-PTMSS, L0=22 nm) was achieved using a combination of tailored top interfaces and lithographically defined patterned substrates. Chemo- and grapho-epitaxy, using hydrogen silsesquioxane (HSQ) based prepatterns, achieved density multiplications up to 6× and trench space subdivisions up to 7×, respectively. These results establish the compatibility of DSA techniques with a high etch contrast, Si-containing BCP that requires a top coat neutral layer to enable orientation.
Collapse
Affiliation(s)
- Michael J Maher
- Department of Chemistry and §McKetta Department of Chemical Engineering, The University of Texas at Austin , Austin, Texas 78712, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Microphase Separation of a PS- b-PFS Block Copolymer viaSolvent Annealing: Effect of Solvent, Substrate, and Exposure Time on Morphology. INT J POLYM SCI 2015. [DOI: 10.1155/2015/270891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Block copolymer (BCP) lithography makes use of the microphase separation properties of BCPs to pattern ordered nanoscale features over large areas. This work presents the microphase separation of an asymmetric polystyrene-block-poly(ferrocenyl dimethylsilane) (PS-b-PFS) BCP that allows ordered arrays of nanostructures to be formed by spin casting PS-b-PFS on substrates and subsequent solvent annealing. The effects of the solvent annealing conditions on self-assembly and structural stability are discussed.
Collapse
|
43
|
Lee PTC, Chiu CW, Chang LY, Chou PY, Lee TM, Chang TY, Wu MT, Cheng WY, Kuo SW, Lin JJ. Tailoring pigment dispersants with polyisobutylene twin-tail structures for electrowetting display application. ACS APPLIED MATERIALS & INTERFACES 2014; 6:14345-14352. [PMID: 25046453 DOI: 10.1021/am503599k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We have designed a class of highly hydrophobic dispersants for finely dispersing carbon black and organic pigment nanoparticles in apolar mediums. The synthesis involved the use of polyisobutylene-g-succinic anhydride (PIB-SA) and judiciously selected amines by amidation and imidation. The structures were characterized by infrared spectroscopy for anhydride functionalities in the starting materials and amide/imide linkages in the products. These polymeric forms of dispersants were structurally varied with respects to their PIB molecular weight, twin-tails, and linkages. Their relative performance for dispersing six different pigments in decane was evaluated against solution homogeneity, viscosity, stability, and particle size. The fine dispersion was achieved at particle sizes of ca. 100 nm, with the viscosity as low as 2-3 cP. The measurement of zeta potentials, which varied from -39.8 to -5.1 mV with pigment addition, revealed a strong surface-charge interaction between pigment and PIB dispersant molecules. Examination by TEM (transmission electronic microscope) showed the homogeneous dispersion of the primary structures of pigment particles at ca. 20 nm in diameter. The polymeric dispersants with different PIB tails and imide functionalities could be tailored for pigment stability in the oil phase, which is potentially suitable for the electrowetting devices.
Collapse
Affiliation(s)
- Patricia T C Lee
- Institute of Polymer Science and Engineering, National Taiwan University , Taipei 10617, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Stabilizing the Microphase Separation of Block Copolymers by Controlled Photo-crosslinking. MACROMOL CHEM PHYS 2014. [DOI: 10.1002/macp.201400214] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
Hu H, Gopinadhan M, Osuji CO. Directed self-assembly of block copolymers: a tutorial review of strategies for enabling nanotechnology with soft matter. SOFT MATTER 2014; 10:3867-89. [PMID: 24740355 DOI: 10.1039/c3sm52607k] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Self-assembly of soft materials is broadly considered an attractive means of generating nanoscale structures and patterns over large areas. However, the spontaneous formation of equilibrium nanostructures in response to temperature and concentration changes, for example, must be guided to yield the long-range order and orientation required for utility in a given scenario. In this review we examine directed self-assembly (DSA) of block copolymers (BCPs) as canonical examples of nanostructured soft matter systems which are additionally compelling for creating functional materials and devices. We survey well established and newly emerging DSA methods from a tutorial perspective. Special emphasis is given to exploring underlying physical phenomena, identifying prototypical BCPs that are compatible with different DSA techniques, describing experimental methods and highlighting the attractive functional properties of block copolymers overall. Finally we offer a brief perspective on some unresolved issues and future opportunities in this field.
Collapse
Affiliation(s)
- Hanqiong Hu
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA.
| | | | | |
Collapse
|
46
|
Campbell IP, Hirokawa S, Stoykovich MP. Processing Approaches for the Defect Engineering of Lamellar-Forming Block Copolymers in Thin Films. Macromolecules 2013. [DOI: 10.1021/ma401704m] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ian P. Campbell
- Department of Chemical and
Biological Engineering University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Soichi Hirokawa
- Department of Chemical and
Biological Engineering University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Mark P. Stoykovich
- Department of Chemical and
Biological Engineering University of Colorado at Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
47
|
Sweat DP, Kim M, Yu X, Schmitt SK, Han E, Choi JW, Gopalan P. A dual functional layer for block copolymer self-assembly and the growth of nanopatterned polymer brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:12858-12865. [PMID: 24053350 DOI: 10.1021/la403474k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We present a versatile method for fabricating nanopatterned polymer brushes using a cross-linked thin film made from a random copolymer consisting of an inimer (p-(2-bromoisobutyloylmethyl)styrene), styrene, and glycidyl methacrylate (GMA). The amount of inimer was held constant at 20 or 30% while the relative amount of styrene to GMA was varied to induce perpendicular domain orientation in an overlying P(S-b-MMA) block copolymer (BCP) film for lamellar and cylindrical morphologies. A cylinder forming BCP blend with PMMA homopolymer was assembled to create a perpendicular hexagonal array of cylinders, which allowed access to a nanoporous template without the loss of initiator functionality. Surface-initiated ATRP of 2-hydroxyethyl methacrylate was conducted through the pores to generate a dense array of nanopatterned brushes. Alternatively, gold was deposited into the nanopores, and brushes were grown around the dots after removal of the template. This is the first example of combining the chemistry of nonpreferential surfaces with surface-initiated growth of polymer chains.
Collapse
Affiliation(s)
- Daniel P Sweat
- Department of Chemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| | | | | | | | | | | | | |
Collapse
|
48
|
Gianotti V, Antonioli D, Sparnacci K, Laus M, Giammaria TJ, Ferrarese Lupi F, Seguini G, Perego M. On the Thermal Stability of PS-b-PMMA Block and P(S-r-MMA) Random Copolymers for Nanopatterning Applications. Macromolecules 2013. [DOI: 10.1021/ma401023y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Valentina Gianotti
- Dipartimento
di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale ‘‘A. Avogadro’’, INSTM, UdR Alessandria, Viale T. Michel 11, Alessandria 15121, Italy
| | - Diego Antonioli
- Dipartimento
di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale ‘‘A. Avogadro’’, INSTM, UdR Alessandria, Viale T. Michel 11, Alessandria 15121, Italy
| | - Katia Sparnacci
- Dipartimento
di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale ‘‘A. Avogadro’’, INSTM, UdR Alessandria, Viale T. Michel 11, Alessandria 15121, Italy
| | - Michele Laus
- Dipartimento
di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale ‘‘A. Avogadro’’, INSTM, UdR Alessandria, Viale T. Michel 11, Alessandria 15121, Italy
| | | | | | - Gabriele Seguini
- Laboratorio MDM, IMM-CNR, Via C.
Olivetti 2, 20864 Agrate Brianza (MB), Italy
| | - Michele Perego
- Laboratorio MDM, IMM-CNR, Via C.
Olivetti 2, 20864 Agrate Brianza (MB), Italy
| |
Collapse
|
49
|
Pitet LM, Wuister SF, Peeters E, Kramer EJ, Hawker CJ, Meijer EW. Well-Organized Dense Arrays of Nanodomains in Thin Films of Poly(dimethylsiloxane)-b-poly(lactide) Diblock Copolymers. Macromolecules 2013. [DOI: 10.1021/ma401719p] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Louis M. Pitet
- Institute
for Complex Molecular Systems and Laboratory for Macromolecular and
Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | | | - Emiel Peeters
- Department
of Applied Chemical Technology, Philips Group Innovation, Research, High Tech
Campus 7, 5656AE Eindhoven, The Netherlands
| | | | | | - E. W. Meijer
- Institute
for Complex Molecular Systems and Laboratory for Macromolecular and
Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
50
|
Barandiaran I, Katsigiannopoulos D, Grana E, Avgeropoulos A, Eceiza A, Kortaberria G. PI-b-PMMA diblock copolymers: nanostructure development in thin films and nanostructuring of thermosetting epoxy systems. Colloid Polym Sci 2013. [DOI: 10.1007/s00396-013-2961-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|