1
|
Thomas N, Lima D, Trinh D, Kuss S. Temperature Effect on the Electrochemical Current Response during Scanning Electrochemical Microscopy of Living Cells. Anal Chem 2023; 95:17962-17967. [PMID: 38029336 PMCID: PMC10720632 DOI: 10.1021/acs.analchem.3c03716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
Scanning electrochemical microscopy (SECM) is being used increasingly to monitor electrochemical processes at the interface of living cells and electrodes. This allows the detection and quantification of biomarkers that further the understanding of various diseases. Rapid SECM experiments are often carried out without monitoring the analyte solution temperature or are performed at room temperature. The reported research demonstrates that temperature control is crucial during SECM imaging of living cells to obtain reliable data. In this study, a SECM-integrated thermostatic ring on the sample stage enabled imaging of living biological cells in a constant height mode at various temperatures. Two-dimensional line scans were conducted while scanning single Adenocarcinoma Cervical cancer (HeLa) cells. Numerical modeling was carried out to evaluate the effect of the temperature on the electrochemical current response of living cells to compare the apparent heterogeneous rate constant (k0), representing cellular reaction kinetics. This study reveals that even slight temperature variations of approximately 2 °C affect the reaction kinetics of single living cells, altering the measured current during SECM.
Collapse
Affiliation(s)
- Nikita Thomas
- Chemistry
Department, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| | - Dhésmon Lima
- Chemistry
Department, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| | - Dao Trinh
- Laboratoire
des Sciences de l’ Ingenieur Pour l’Environment UMR-7536
CNRS, Université de la Rochelle, Avenue Michel Crépeau, 17042 La Rochelle, France
| | - Sabine Kuss
- Chemistry
Department, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| |
Collapse
|
2
|
Cremin K, Meloni GN, Valavanis D, Soyer OS, Unwin PR. Can Single Cell Respiration be Measured by Scanning Electrochemical Microscopy (SECM)? ACS MEASUREMENT SCIENCE AU 2023; 3:361-370. [PMID: 37868362 PMCID: PMC10588932 DOI: 10.1021/acsmeasuresciau.3c00019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 10/24/2023]
Abstract
Ultramicroelectrode (UME), or, equivalently, microelectrode, probes are increasingly used for single-cell measurements of cellular properties and processes, including physiological activity, such as metabolic fluxes and respiration rates. Major challenges for the sensitivity of such measurements include: (i) the relative magnitude of cellular and UME fluxes (manifested in the current); and (ii) issues around the stability of the UME response over time. To explore the extent to which these factors impact the precision of electrochemical cellular measurements, we undertake a systematic analysis of measurement conditions and experimental parameters for determining single cell respiration rates via the oxygen consumption rate (OCR) in single HeLa cells. Using scanning electrochemical microscopy (SECM), with a platinum UME as the probe, we employ a self-referencing measurement protocol, rarely employed in SECM, whereby the UME is repeatedly approached from bulk solution to a cell, and a short pulse to oxygen reduction reaction (ORR) potential is performed near the cell and in bulk solution. This approach enables the periodic tracking of the bulk UME response to which the near-cell response is repeatedly compared (referenced) and also ensures that the ORR near the cell is performed only briefly, minimizing the effect of the electrochemical process on the cell. SECM experiments are combined with a finite element method (FEM) modeling framework to simulate oxygen diffusion and the UME response. Taking a realistic range of single cell OCR to be 1 × 10-18 to 1 × 10-16 mol s-1, results from the combination of FEM simulations and self-referencing SECM measurements show that these OCR values are at, or below, the present detection sensitivity of the technique. We provide a set of model-based suggestions for improving these measurements in the future but highlight that extraordinary improvements in the stability and precision of SECM measurements will be required if single cell OCR measurements are to be realized.
Collapse
Affiliation(s)
- Kelsey Cremin
- Bio-Electrical
Engineering Innovation Hub, Department of Chemistry, Molecular Analytical
Science Centre for Doctoral Training (MAS CDT), School of Life Sciences, the University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Gabriel N. Meloni
- Bio-Electrical
Engineering Innovation Hub, Department of Chemistry, Molecular Analytical
Science Centre for Doctoral Training (MAS CDT), School of Life Sciences, the University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Dimitrios Valavanis
- Bio-Electrical
Engineering Innovation Hub, Department of Chemistry, Molecular Analytical
Science Centre for Doctoral Training (MAS CDT), School of Life Sciences, the University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Orkun S. Soyer
- Bio-Electrical
Engineering Innovation Hub, Department of Chemistry, Molecular Analytical
Science Centre for Doctoral Training (MAS CDT), School of Life Sciences, the University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Patrick R. Unwin
- Bio-Electrical
Engineering Innovation Hub, Department of Chemistry, Molecular Analytical
Science Centre for Doctoral Training (MAS CDT), School of Life Sciences, the University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
3
|
Zhao X, Zhu R, Anikovskiy M, Wu Q, Ding Z. Profiling H 2O 2 from single COS-7 cells by means of scanning electrochemical microscopy. Biosens Bioelectron 2023; 227:115123. [PMID: 36812793 DOI: 10.1016/j.bios.2023.115123] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/22/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
We report quantitative determination of extracellular H2O2 released from single COS-7 cells with high spatial resolution, using scanning electrochemical microscopy (SECM). Our strategy of depth scan imaging in vertical x-z plane was conveniently utilized to a single cell for obtaining probe approach curves (PACs) to any positions on the membrane of a live cell by simply drawing a vertical line on one depth SECM image. This SECM mode provides an efficient way to record a batch of PACs, and visualize cell topography simultaneously. The H2O2 concentration at the membrane surface in the center of an intact COS-7 cell was deconvoluted from apparent O2, and determined to be 0.020 mM by overlapping the experimental PAC with the simulated one having a known H2O2 release value. The H2O2 profile determined in this way gives insight into physiological activity of single live cells. In addition, intracellular H2O2 profile was demonstrated using confocal microscopy by labelling the cells with a luminomphore, 2',7'-dichlorodihydrofluorescein diacetate. The two methodologies have illustrated complementary experimental results of H2O2 detection, indicating that H2O2 generation is centered at endoplasmic reticula.
Collapse
Affiliation(s)
- Xiaocui Zhao
- Department of Chemistry, The University of Western Ontario, Chemistry Building, 1151 Richmond Street, London, Ontario, N6A 5B7, Canada
| | - Renkang Zhu
- Department of Chemistry, The University of Western Ontario, Chemistry Building, 1151 Richmond Street, London, Ontario, N6A 5B7, Canada
| | - Max Anikovskiy
- Department of Chemistry, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Qingxi Wu
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
| | - Zhifeng Ding
- Department of Chemistry, The University of Western Ontario, Chemistry Building, 1151 Richmond Street, London, Ontario, N6A 5B7, Canada.
| |
Collapse
|
4
|
Santana Santos C, Jaato BN, Sanjuán I, Schuhmann W, Andronescu C. Operando Scanning Electrochemical Probe Microscopy during Electrocatalysis. Chem Rev 2023; 123:4972-5019. [PMID: 36972701 PMCID: PMC10168669 DOI: 10.1021/acs.chemrev.2c00766] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Scanning electrochemical probe microscopy (SEPM) techniques can disclose the local electrochemical reactivity of interfaces in single-entity and sub-entity studies. Operando SEPM measurements consist of using a SEPM tip to investigate the performance of electrocatalysts, while the reactivity of the interface is simultaneously modulated. This powerful combination can correlate electrochemical activity with changes in surface properties, e.g., topography and structure, as well as provide insight into reaction mechanisms. The focus of this review is to reveal the recent progress in local SEPM measurements of the catalytic activity of a surface toward the reduction and evolution of O2 and H2 and electrochemical conversion of CO2. The capabilities of SEPMs are showcased, and the possibility of coupling other techniques to SEPMs is presented. Emphasis is given to scanning electrochemical microscopy (SECM), scanning ion conductance microscopy (SICM), electrochemical scanning tunneling microscopy (EC-STM), and scanning electrochemical cell microscopy (SECCM).
Collapse
Affiliation(s)
- Carla Santana Santos
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Bright Nsolebna Jaato
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Ignacio Sanjuán
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Corina Andronescu
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| |
Collapse
|
5
|
Pan S, Li X, Yadav J. Single-nanoparticle spectroelectrochemistry studies enabled by localized surface plasmon resonance. Phys Chem Chem Phys 2021; 23:19120-19129. [PMID: 34524292 DOI: 10.1039/d1cp02801d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review describes recent progress of spectroelectrochemistry (SEC) analysis of single metallic nanoparticles (NPs) which have strong surface plasmon resonance properties. Dark-field scattering (DFS), photoluminescence (PL), and electrogenerated chemiluminescence (ECL) are three commonly used optical methods to detect individual NPs and investigate their local redox activities in an electrochemical cell. These SEC methods are highly dependent on a strong light-scattering cross-section of plasmonic metals and their electrocatalytic characteristics. The surface chemistry and the catalyzed reaction mechanism of single NPs and their chemical transformations can be studied using these SEC methods. Recent progress in the experimental design and fundamental understanding of single-NP electrochemistry and catalyzed reactions using DFS, PL, and ECL is described along with selected examples from recent publications in this field. Perspectives on the challenges and possible solutions for these SEC methods and potential new directions are discussed.
Collapse
Affiliation(s)
- Shanlin Pan
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Xiao Li
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Jeetika Yadav
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
6
|
Gwon HJ, Lim D, Ahn HS. Bioanalytical chemistry with scanning electrochemical microscopy. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Hyo Jin Gwon
- Department of Chemistry Institution: Yonsei University Seoul South Korea
| | - Donghoon Lim
- Department of Chemistry Institution: Yonsei University Seoul South Korea
| | - Hyun S. Ahn
- Department of Chemistry Institution: Yonsei University Seoul South Korea
| |
Collapse
|
7
|
Optical fibers in analytical electrochemistry: Recent developments in probe design and applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116196] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
8
|
Chen R, Alanis K, Welle TM, Shen M. Nanoelectrochemistry in the study of single-cell signaling. Anal Bioanal Chem 2020; 412:6121-6132. [PMID: 32424795 DOI: 10.1007/s00216-020-02655-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 12/28/2022]
Abstract
Label-free biosensing has been the dream of scientists and biotechnologists as reported by Vollmer and Arnold (Nat Methods 5:591-596, 2008). The ability of examining living cells is crucial to cell biology as noted by Fang (Int J Electrochem 2011:460850, 2011). Chemical measurement with electrodes is label-free and has demonstrated capability of studying living cells. In recent years, nanoelectrodes of different functionality have been developed. These nanometer-sized electrodes, coupled with scanning electrochemical microscopy (SECM), have further enabled nanometer spatial resolution study in aqueous environments. Developments in the field of nanoelectrochemistry have allowed measurement of signaling species at single cells, contributing to better understanding of cell biology. Leading studies using nanoelectrochemistry of a variety of cellular signaling molecules, including redox-active neurotransmitter (e.g., dopamine), non-redox-active neurotransmitter (e.g., acetylcholine), reactive oxygen species (ROS), and reactive nitrogen species (RNS), are reviewed here.
Collapse
Affiliation(s)
- Ran Chen
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Kristen Alanis
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Theresa M Welle
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Mei Shen
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA.
| |
Collapse
|
9
|
Shiku H. Electrochemical Biosensing System for Single Cells, Cellular Aggregates and Microenvironments. ANAL SCI 2018; 35:29-38. [PMID: 30473568 DOI: 10.2116/analsci.18sdr01] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Applications of electrochemical biosensing for surveying intact cells and tissues have been focus of attention. Two experimental approaches have been used when performing amperometric measurements on biological cells, the stylus-type microelectrode probes and the electrode-integrated microdevices based on lithographic technologies. For the probe scanning approach, various types of microsensors were developed to monitor localized physical or chemical natures at a variety of surfaces in situ under wet conditions. Scanning electrochemical microscopy (SECM) has been applied for monitoring local oxygen, enzyme activity, and collection of transcripts. For the non-scanning type of approach, electrode array devices allow very rapid response, parallel monitoring, and multi-analyte assay. Sveral topics of on-chip-culture system were introduced especially concerning on gene expression monitoring by reporter system and reconstruction of in vivo-like nature by controlling microenvironments. Electrochemical reporter assay has been demonstrated to monitor the gene expression process of the gene-modified cultured cells. Long-term monitoring of cellular function of spheroids and three dimensionally-cultured cells were carried out by controlling microenvironments on the cellular chip.
Collapse
Affiliation(s)
- Hitoshi Shiku
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University
| |
Collapse
|
10
|
Neves MMPDS, Martín-Yerga D. Advanced Nanoscale Approaches to Single-(Bio)entity Sensing and Imaging. BIOSENSORS 2018; 8:E100. [PMID: 30373209 PMCID: PMC6316691 DOI: 10.3390/bios8040100] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/11/2018] [Accepted: 10/23/2018] [Indexed: 01/01/2023]
Abstract
Individual (bio)chemical entities could show a very heterogeneous behaviour under the same conditions that could be relevant in many biological processes of significance in the life sciences. Conventional detection approaches are only able to detect the average response of an ensemble of entities and assume that all entities are identical. From this perspective, important information about the heterogeneities or rare (stochastic) events happening in individual entities would remain unseen. Some nanoscale tools present interesting physicochemical properties that enable the possibility to detect systems at the single-entity level, acquiring richer information than conventional methods. In this review, we introduce the foundations and the latest advances of several nanoscale approaches to sensing and imaging individual (bio)entities using nanoprobes, nanopores, nanoimpacts, nanoplasmonics and nanomachines. Several (bio)entities such as cells, proteins, nucleic acids, vesicles and viruses are specifically considered. These nanoscale approaches provide a wide and complete toolbox for the study of many biological systems at the single-entity level.
Collapse
Affiliation(s)
| | - Daniel Martín-Yerga
- Department of Chemical Engineering, KTH Royal Institute of Technology, 100-44 Stockholm, Sweden.
| |
Collapse
|
11
|
Conzuelo F, Schulte A, Schuhmann W. Biological imaging with scanning electrochemical microscopy. Proc Math Phys Eng Sci 2018; 474:20180409. [PMID: 30839832 PMCID: PMC6237495 DOI: 10.1098/rspa.2018.0409] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/04/2018] [Indexed: 12/27/2022] Open
Abstract
Scanning electrochemical microscopy (SECM) is a powerful and versatile technique for visualizing the local electrochemical activity of a surface as an ultramicroelectrode tip is moved towards or over a sample of interest using precise positioning systems. In comparison with other scanning probe techniques, SECM not only enables topographical surface mapping but also gathers chemical information with high spatial resolution. Considerable progress has been made in the analysis of biological samples, including living cells and immobilized biomacromolecules such as enzymes, antibodies and DNA fragments. Moreover, combinations of SECM with comple-mentary analytical tools broadened its applicability and facilitated multi-functional analysis with extended life science capabilities. The aim of this review is to present a brief topical overview on recent applications of biological SECM, with particular emphasis on important technical improvements of this surface imaging technique, recommended applications and future trends.
Collapse
Affiliation(s)
- Felipe Conzuelo
- Analytical Chemistry—Center for Electrochemical Sciences (CES), Faculty for Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | - Albert Schulte
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Wolfgang Schuhmann
- Analytical Chemistry—Center for Electrochemical Sciences (CES), Faculty for Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| |
Collapse
|
12
|
Single Cell Oxygen Mapping (SCOM) by Scanning Electrochemical Microscopy Uncovers Heterogeneous Intracellular Oxygen Consumption. Sci Rep 2017; 7:11428. [PMID: 28900258 PMCID: PMC5596008 DOI: 10.1038/s41598-017-11956-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/01/2017] [Indexed: 01/13/2023] Open
Abstract
We developed a highly sensitive oxygen consumption scanning microscopy system using platinized platinum disc microelectrodes. The system is capable of reliably detecting single-cell respiration, responding to classical regulators of mitochondrial oxygen consumption activity as expected. Comparisons with commercial multi-cell oxygen detection systems show that the system has comparable errors (if not smaller), with the advantage of being able to monitor inter and intra-cell heterogeneity in oxygen consumption characteristics. Our results uncover heterogeneous oxygen consumption characteristics between cells and within the same cell´s microenvironments. Single Cell Oxygen Mapping (SCOM) is thus capable of reliably studying mitochondrial oxygen consumption characteristics and heterogeneity at a single-cell level.
Collapse
|
13
|
Ying YL, Ding Z, Zhan D, Long YT. Advanced electroanalytical chemistry at nanoelectrodes. Chem Sci 2017; 8:3338-3348. [PMID: 28507703 PMCID: PMC5416909 DOI: 10.1039/c7sc00433h] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 02/16/2017] [Indexed: 01/10/2023] Open
Abstract
Nanoelectrodes, with dimensions below 100 nm, have the advantages of high sensitivity and high spatial resolution. These electrodes have attracted increasing attention in various fields such as single cell analysis, single-molecule detection, single particle characterization and high-resolution imaging. The rapid growth of novel nanoelectrodes and nanoelectrochemical methods brings enormous new opportunities in the field. In this perspective, we discuss the challenges, advances, and opportunities for nanoelectrode fabrication, real-time characterizations and high-performance electrochemical instrumentation.
Collapse
Affiliation(s)
- Yi-Lun Ying
- School of Chemistry & Molecular Engineering , East China University of Science and Technology , Shanghai , 200237 , P. R. China .
| | - Zhifeng Ding
- Department of Chemistry , University of Western Ontario , 1151 Richmond Street , London , ON N6A 5B7 , Canada
| | - Dongping Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces , Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM) , Department of Chemistry , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , 361005 , P. R. China
| | - Yi-Tao Long
- School of Chemistry & Molecular Engineering , East China University of Science and Technology , Shanghai , 200237 , P. R. China .
| |
Collapse
|
14
|
MATSUOKA R, AOYAGI S, MATSUMOTO N, MATSUDAIRA M, TAKAHASHI Y, KUMATANI A, IDA H, MUNAKATA H, IIDA K, SHIKU H, KANAMURA K, MATSUE T. Advanced Scanning Electrochemical Microscope System for High-Resolution imaging and Electrochemical Applications. ELECTROCHEMISTRY 2017. [DOI: 10.5796/electrochemistry.85.319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
| | | | | | | | - Yasufumi TAKAHASHI
- Division of Electrical and Computer Engineering, Kanazawa University
- PRESTO, JST
| | - Akichika KUMATANI
- Graduate School of Environmental Stadies, Tohoku University
- WPI-Advanced Institute for Materials Research, Tohoku University
| | - Hiroki IDA
- Graduate School of Environmental Stadies, Tohoku University
| | - Hirokazu MUNAKATA
- Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University
| | | | | | - Kiyoshi KANAMURA
- Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University
| | - Tomokazu MATSUE
- Graduate School of Environmental Stadies, Tohoku University
- WPI-Advanced Institute for Materials Research, Tohoku University
- Graduate School of Engineering, Tohoku University
| |
Collapse
|
15
|
Takahashi Y, Kumatani A, Shiku H, Matsue T. Scanning Probe Microscopy for Nanoscale Electrochemical Imaging. Anal Chem 2016; 89:342-357. [DOI: 10.1021/acs.analchem.6b04355] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yasufumi Takahashi
- Division
of Electrical Engineering and Computer Science, Kanazawa University, Kanazawa 920-1192, Japan
- Precursory
Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Akichika Kumatani
- Advanced
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
- Graduate
School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan
| | - Hitoshi Shiku
- Department
of Applied Chemistry, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Tomokazu Matsue
- Advanced
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
- Graduate
School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan
| |
Collapse
|
16
|
Polcari D, Dauphin-Ducharme P, Mauzeroll J. Scanning Electrochemical Microscopy: A Comprehensive Review of Experimental Parameters from 1989 to 2015. Chem Rev 2016; 116:13234-13278. [PMID: 27736057 DOI: 10.1021/acs.chemrev.6b00067] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- David Polcari
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec Canada, H3A 0B8
| | - Philippe Dauphin-Ducharme
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec Canada, H3A 0B8
| | - Janine Mauzeroll
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec Canada, H3A 0B8
| |
Collapse
|
17
|
Nanoelectrodes: Applications in electrocatalysis, single-cell analysis and high-resolution electrochemical imaging. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.01.018] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
18
|
TAKAHASHI Y. Development of High-Resolution Scanning Electrochemical Microscopy for Nanoscale Topography and Electrochemical Simultaneous Imaging. ELECTROCHEMISTRY 2016. [DOI: 10.5796/electrochemistry.84.662] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Yasufumi TAKAHASHI
- Division of Electrical Engineering and Computer Science, Kanazawa University
- PRESTO, JST
| |
Collapse
|
19
|
Holzinger A, Steinbach C, Kranz C. Scanning Electrochemical Microscopy (SECM): Fundamentals and Applications in Life Sciences. ELECTROCHEMICAL STRATEGIES IN DETECTION SCIENCE 2015. [DOI: 10.1039/9781782622529-00125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In recent years, scanning electrochemical microscopy (SECM) has made significant contributions to the life sciences. Innovative developments focusing on high-resolution imaging, developing novel operation modes, and combining SECM with complementary optical or scanning probe techniques renders SECM an attractive analytical approach. This chapter gives an introduction to the essential instrumentation and operation principles of SECM for studying biologically-relevant systems. Particular emphasis is given to applications aimed at imaging the activity of biochemical constituents such as enzymes, antibodies, and DNA, which play a pivotal role in biomedical diagnostics. Furthermore, the unique advantages of SECM and combined techniques for studying live cells is highlighted by discussion of selected examples.
Collapse
Affiliation(s)
- Angelika Holzinger
- Institute of Analytical and Bioanalytical Chemistry, University of Ulm 89069 Ulm Germany
| | - Charlotte Steinbach
- Institute of Analytical and Bioanalytical Chemistry, University of Ulm 89069 Ulm Germany
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, University of Ulm 89069 Ulm Germany
| |
Collapse
|
20
|
Yamada H, Haraguchi D, Yasunaga K. Fabrication and Characterization of a K+-Selective Nanoelectrode and Simultaneous Imaging of Topography and Local K+ Flux Using Scanning Electrochemical Microscopy. Anal Chem 2014; 86:8547-52. [DOI: 10.1021/ac502444y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hiroshi Yamada
- Department of Applied Chemistry, National Defense Academy, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 239-8686, Japan
| | - Daiki Haraguchi
- Department of Applied Chemistry, National Defense Academy, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 239-8686, Japan
| | - Kenji Yasunaga
- Department of Applied Chemistry, National Defense Academy, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 239-8686, Japan
| |
Collapse
|
21
|
Imaging a Single Living Cell via Shear Force-based Scanning Ion Conductance Microscopy in Standing Approach Mode with Differential Control. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.05.109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Matsumae Y, Takahashi Y, Ino K, Shiku H, Matsue T. Electrochemical monitoring of intracellular enzyme activity of single living mammalian cells by using a double-mediator system. Anal Chim Acta 2014; 842:20-6. [PMID: 25127647 DOI: 10.1016/j.aca.2014.06.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/25/2014] [Accepted: 06/27/2014] [Indexed: 11/16/2022]
Abstract
UNLABELLED We evaluated the intracellular NAD(P)H quinone oxidoreductase (NQO) activity of single HeLa cells by using the menadione-ferrocyanide double-mediator system combined with scanning electrochemical microscopy (SECM). The double-mediator system was used to amplify the current response from the intracellular NQO activity and to reduce menadione-induced cell damage. The electron shuttle between the electrode and menadione was mediated by the ferrocyanide/ferricyanide redox couple. Generation of ferrocyanide was observed immediately after the addition of a lower concentration (10 μM) of menadione. The ferrocyanide generation rate was constant for 120 min. At a higher menadione concentration (100 μM), the ferrocyanide generation rate decreased within 30 min because of the cytotoxic effect of menadione. We also investigated the relationship between intracellular reactive oxygen species or glutathione levels and exposure to different menadione concentrations to determine the optimal condition for SECM with minimal invasiveness. The present study clearly demonstrates that SECM is useful for the analysis of intracellular enzymatic activities in single cells with a double-mediator system.
Collapse
Affiliation(s)
- Yoshiharu Matsumae
- Graduate School of Environmental Studies, Tohoku University, Aramaki 6-6-11-605, Aoba, Sendai 980-8579, Japan
| | - Yasufumi Takahashi
- Advanced Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba, Sendai 980-8577, Japan
| | - Kosuke Ino
- Graduate School of Environmental Studies, Tohoku University, Aramaki 6-6-11-605, Aoba, Sendai 980-8579, Japan
| | - Hitoshi Shiku
- Graduate School of Environmental Studies, Tohoku University, Aramaki 6-6-11-605, Aoba, Sendai 980-8579, Japan.
| | - Tomokazu Matsue
- Graduate School of Environmental Studies, Tohoku University, Aramaki 6-6-11-605, Aoba, Sendai 980-8579, Japan; Advanced Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba, Sendai 980-8577, Japan.
| |
Collapse
|
23
|
Kranz C. Recent advancements in nanoelectrodes and nanopipettes used in combined scanning electrochemical microscopy techniques. Analyst 2014; 139:336-52. [DOI: 10.1039/c3an01651j] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Krejcova L, Nejdl L, Hynek D, Krizkova S, Kopel P, Adam V, Kizek R. Beads-based electrochemical assay for the detection of influenza hemagglutinin labeled with CdTe quantum dots. Molecules 2013; 18:15573-86. [PMID: 24352014 PMCID: PMC6270527 DOI: 10.3390/molecules181215573] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/25/2013] [Accepted: 12/05/2013] [Indexed: 01/11/2023] Open
Abstract
In this study we describe a beads-based assay for rapid, sensitive and specific isolation and detection of influenza vaccine hemagglutinin (HA). Amplification of the hemagglutinin signal resulted from binding of an electrochemical label as quantum dots (QDs). For detection of the metal and protein part of the resulting HA-CdTe complex, two differential pulse voltammetric methods were used. The procedure includes automated robotic isolation and electrochemical analysis of the isolated product. The isolation procedure was based on the binding of paramagnetic particles (MPs) with glycan (Gly), where glycan was used as the specific receptor for linkage of the QD-labeled hemagglutinin.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rene Kizek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic.
| |
Collapse
|
25
|
Bai HY, del Campo FJ, Tsai YC. Scanning electrochemical microscopy for study of aptamer-thrombin interfacial interactions on gold disk microelectrodes. J Colloid Interface Sci 2013; 417:333-5. [PMID: 24407695 DOI: 10.1016/j.jcis.2013.11.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 11/20/2013] [Indexed: 01/16/2023]
Abstract
A feasibility for the determination of thrombin on gold disk microelectrodes (GDMs) using scanning electrochemical microscopy (SECM) is reported. The assembly process step-by-step of thrombin aptasensor on GDMs is monitored by SECM. SECM analysis reveals the immobilization of thrombin aptamers on GDMs. The interaction between thrombin aptamers and thrombin on GDMs is imaged by SECM with feedback mode using ferrocenemethanol as an electrochemical mediator. The formation of thrombin/thrombin aptamer complex on GDMs results in a decrease in the tip peak current on spatial SECM images. This method is able to linearly and selectively detect thrombin over a linear range from 10(-12) to 10(-5)M with a detection limit of 6.07 fM.
Collapse
Affiliation(s)
- Huei-Yu Bai
- Department of Chemical Engineering, National Chung Hsing University, 250, Kuo Kuang Road, Taichung 402, Taiwan
| | - F Javier del Campo
- Centro Nacional de Microelectrónica (CNM-IMB), CSIC Campus Universidad Autónoma de Barcelona, Bellaterra 08193, Spain
| | - Yu-Chen Tsai
- Department of Chemical Engineering, National Chung Hsing University, 250, Kuo Kuang Road, Taichung 402, Taiwan.
| |
Collapse
|
26
|
Arai T, Nishijo T, Matsumae Y, Zhou Y, Ino K, Shiku H, Matsue T. Noninvasive Measurement of Alkaline Phosphatase Activity in Embryoid Bodies and Coculture Spheroids with Scanning Electrochemical Microscopy. Anal Chem 2013; 85:9647-54. [DOI: 10.1021/ac401824q] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Toshiharu Arai
- Graduate
School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan
| | - Taku Nishijo
- Graduate
School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan
| | - Yoshiharu Matsumae
- Graduate
School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan
| | - Yuanshu Zhou
- Graduate
School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan
| | - Kosuke Ino
- Graduate
School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan
| | - Hitoshi Shiku
- Graduate
School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan
| | - Tomokazu Matsue
- Graduate
School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan
- WPI-Advanced
Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| |
Collapse
|
27
|
Nebel M, Grützke S, Diab N, Schulte A, Schuhmann W. Visualisierung des O2-Verbrauchs einzelner lebender Zellen mithilfe elektrochemischer Rastermikroskopie: der Einfluss der faradayschen Sondenreaktion. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201301098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Nebel M, Grützke S, Diab N, Schulte A, Schuhmann W. Visualization of oxygen consumption of single living cells by scanning electrochemical microscopy: the influence of the faradaic tip reaction. Angew Chem Int Ed Engl 2013; 52:6335-8. [PMID: 23630168 DOI: 10.1002/anie.201301098] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Michaela Nebel
- Lehrstuhl für Analytische Chemie, Elektroanalytik & Sensorik and Center for Electrochemical Sciences, CES, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | | | | | | | | |
Collapse
|
29
|
Bergner S, Vatsyayan P, Matysik FM. Recent advances in high resolution scanning electrochemical microscopy of living cells--a review. Anal Chim Acta 2013; 775:1-13. [PMID: 23601970 DOI: 10.1016/j.aca.2012.12.042] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/14/2012] [Accepted: 12/26/2012] [Indexed: 11/16/2022]
Abstract
This review discusses advances in the field of high resolution scanning electrochemical microscopy (HR-SECM) and scanning ion conductance microscopy (SICM) to study living cells. Relevant references from the advent of this technique in the late 1980s to most recent contributions in 2012 are presented with special discussion on high resolution images. A clear progress especially within the last 5 years can be seen in the field of HR-SECM. Furthermore, we also concentrate on the intrinsic properties of SECM imaging techniques e.g. different modes of image acquisition, their advantages and disadvantages in imaging living cells and strategies for further enhancement of image resolution, etc. Some of the recent advances of SECM in nanoimaging have also been discussed which may have potential applications in high resolution imaging of cellular processes.
Collapse
Affiliation(s)
- Stefan Bergner
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| | | | | |
Collapse
|
30
|
Shu Q, Adam C, Sojic N, Schmittel M. Electrochemiluminescent polymer films with a suitable redox “turn-off” absorbance window for remote selective sensing of Hg2+. Analyst 2013; 138:4500-4. [DOI: 10.1039/c3an00545c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
31
|
Affiliation(s)
- Tomokazu MATSUE
- WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University
| |
Collapse
|
32
|
Nebel M, Grützke S, Diab N, Schulte A, Schuhmann W. Microelectrochemical visualization of oxygen consumption of single living cells. Faraday Discuss 2013; 164:19-32. [DOI: 10.1039/c3fd00011g] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Matsue T. Development of Biosensing Devices and Systems Using Micro/Nanoelectrodes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2012. [DOI: 10.1246/bcsj.20110249] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Tomokazu Matsue
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University
| |
Collapse
|
34
|
A Pt layer/Pt disk electrode configuration to evaluate respiration and alkaline phosphatase activities of mouse embryoid bodies. Talanta 2012; 94:30-5. [DOI: 10.1016/j.talanta.2012.01.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 01/27/2012] [Accepted: 01/30/2012] [Indexed: 01/16/2023]
|
35
|
Affiliation(s)
- Francisco Zaera
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
36
|
HIRANO Y, YASUKAWA T, MASE Y, OYAMATSU D, SHIKU H, MIZUTANI F, MATSUE T. Improvement of Detectable Sensitivity for Enzyme Reaction by Scanning Electrochemical Microscopy with Distance Control System for Immunosensing. ELECTROCHEMISTRY 2012. [DOI: 10.5796/electrochemistry.80.30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
37
|
Takahashi Y, Shevchuk AI, Novak P, Zhang Y, Ebejer N, Macpherson JV, Unwin PR, Pollard AJ, Roy D, Clifford CA, Shiku H, Matsue T, Klenerman D, Korchev YE. Multifunctional nanoprobes for nanoscale chemical imaging and localized chemical delivery at surfaces and interfaces. Angew Chem Int Ed Engl 2011; 50:9638-42. [PMID: 21882305 DOI: 10.1002/anie.201102796] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 07/14/2010] [Indexed: 02/03/2023]
|
38
|
Takahashi Y, Shevchuk AI, Novak P, Zhang Y, Ebejer N, Macpherson JV, Unwin PR, Pollard AJ, Roy D, Clifford CA, Shiku H, Matsue T, Klenerman D, Korchev YE. Multifunctional Nanoprobes for Nanoscale Chemical Imaging and Localized Chemical Delivery at Surfaces and Interfaces. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201102796] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
39
|
Nagamine K, Takahashi Y, Ino K, Shiku H, Matsue T. Influence of Tip Size on Single Yeast Cell Imaging Using Scanning Electrochemical Microscopy. ELECTROANAL 2011. [DOI: 10.1002/elan.201000595] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Beaulieu I, Kuss S, Mauzeroll J, Geissler M. Biological scanning electrochemical microscopy and its application to live cell studies. Anal Chem 2011; 83:1485-92. [PMID: 21214262 DOI: 10.1021/ac101906a] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
41
|
Bergner S, Wegener J, Matysik FM. Simultaneous Imaging and Chemical Attack of a Single Living Cell within a Confluent Cell Monolayer by Means of Scanning Electrochemical Microscopy. Anal Chem 2010; 83:169-74. [DOI: 10.1021/ac1021375] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stefan Bergner
- Institute of Analytical Chemistry, Chemo- und Biosensors, University of Regensburg, 93053 Regensburg, Germany
| | - Joachim Wegener
- Institute of Analytical Chemistry, Chemo- und Biosensors, University of Regensburg, 93053 Regensburg, Germany
| | - Frank-Michael Matysik
- Institute of Analytical Chemistry, Chemo- und Biosensors, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
42
|
Bergner S, Palatzky P, Wegener J, Matysik FM. High-Resolution Imaging of Nanostructured Si/SiO2 Substrates and Cell Monolayers Using Scanning Electrochemical Microscopy. ELECTROANAL 2010. [DOI: 10.1002/elan.201000446] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
43
|
Ona T, Shibata J. Advanced dynamic monitoring of cellular status using label-free and non-invasive cell-based sensing technology for the prediction of anticancer drug efficacy. Anal Bioanal Chem 2010; 398:2505-33. [DOI: 10.1007/s00216-010-4223-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 08/24/2010] [Accepted: 09/13/2010] [Indexed: 12/26/2022]
|
44
|
Takahashi Y, Shevchuk AI, Novak P, Murakami Y, Shiku H, Korchev YE, Matsue T. Simultaneous Noncontact Topography and Electrochemical Imaging by SECM/SICM Featuring Ion Current Feedback Regulation. J Am Chem Soc 2010; 132:10118-26. [DOI: 10.1021/ja1029478] [Citation(s) in RCA: 235] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Yasufumi Takahashi
- Graduate School of Environmental Studies, Tohoku University, Aramaki Aoba 6-6-11-605, Sendai 980-8579, Japan, and Division of Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | - Andrew I. Shevchuk
- Graduate School of Environmental Studies, Tohoku University, Aramaki Aoba 6-6-11-605, Sendai 980-8579, Japan, and Division of Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | - Pavel Novak
- Graduate School of Environmental Studies, Tohoku University, Aramaki Aoba 6-6-11-605, Sendai 980-8579, Japan, and Division of Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | - Yumi Murakami
- Graduate School of Environmental Studies, Tohoku University, Aramaki Aoba 6-6-11-605, Sendai 980-8579, Japan, and Division of Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | - Hitoshi Shiku
- Graduate School of Environmental Studies, Tohoku University, Aramaki Aoba 6-6-11-605, Sendai 980-8579, Japan, and Division of Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | - Yuri E. Korchev
- Graduate School of Environmental Studies, Tohoku University, Aramaki Aoba 6-6-11-605, Sendai 980-8579, Japan, and Division of Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | - Tomokazu Matsue
- Graduate School of Environmental Studies, Tohoku University, Aramaki Aoba 6-6-11-605, Sendai 980-8579, Japan, and Division of Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| |
Collapse
|
45
|
Takahashi Y, Murakami Y, Nagamine K, Shiku H, Aoyagi S, Yasukawa T, Kanzaki M, Matsue T. Topographic imaging of convoluted surface of live cells by scanning ion conductance microscopy in a standing approach mode. Phys Chem Chem Phys 2010; 12:10012-7. [PMID: 20485766 DOI: 10.1039/c002607g] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Scanning ion conductance microscopy (SICM) using a nanopipette as a probe and ionic current as a feedback signal was introduced as a novel technique to study live cells in a physiological environment. To avoid contact between the pipette tip and cells during the conventional lateral scanning mode, we adopted a standing approach (STA) mode in which the probe was moved vertically to first approach and then retracted from the cell surface at each measurement point on an XY plane. The STA mode ensured non-contact imaging of the topography of live cells and for a wide range of uneven substrates (500 x 300 microm to 5 x 5 microm). We also used a field-programmable gate array (FPGA) board to enhance feedback distance regulation. FPGA dramatically increased the feedback speed and decreased the imaging time (450 s per image) with enhanced accuracy and quality of live cell images. To evaluate the potential of the STA mode for SICM, we carried out imaging of a convoluted surface of live cell in various scan ranges and estimated the spatial resolutions of these images.
Collapse
Affiliation(s)
- Yasufumi Takahashi
- Graduate School of Environmental Studies, Tohoku University, Aramaki Aoba 6-6-11-605, Sendai 980-8579
| | | | | | | | | | | | | | | |
Collapse
|
46
|
HIRANO Y, YASUKAWA T, SAWAYASHIKI Y, SHIKU H, MIZUTANI F, MATSUE T. Preparation of Immunosensors Using a Microfluidic Device with an Interdigitated Array Electrode Modified with Antibodies. ELECTROCHEMISTRY 2010. [DOI: 10.5796/electrochemistry.78.175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
47
|
Schulte A, Nebel M, Schuhmann W. Scanning electrochemical microscopy in neuroscience. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2010; 3:299-318. [PMID: 20636044 DOI: 10.1146/annurev.anchem.111808.073651] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This article reviews recent work involving the application of scanning electrochemical microscopy (SECM) to the study of individual cultured living cells, with an emphasis on topographical and functional imaging of neuronal and secretory cells of the nervous and endocrine system. The basic principles of biological SECM and associated negative amperometric-feedback and generator/collector-mode SECM imaging are discussed, and successful use of the methodology for screening soft and fragile membranous objects is outlined. The drawbacks of the constant-height mode of probe movement and the benefits of the constant-distance mode of SECM operation are described. Finally, representative examples of constant-height and constant-distance mode SECM on a variety of live cells are highlighted to demonstrate the current status of single-cell SECM in general and of SECM in neuroscience in particular.
Collapse
Affiliation(s)
- Albert Schulte
- Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
| | | | | |
Collapse
|
48
|
Shiku H, Ino K, Matsue T. ELECTROCHEMISTRY 2010; 78:832-836. [DOI: 10.5796/electrochemistry.78.832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
49
|
Murata T, Yasukawa T, Shiku H, Matsue T. Electrochemical single-cell gene-expression assay combining dielectrophoretic manipulation with secreted alkaline phosphatase reporter system. Biosens Bioelectron 2009; 25:913-9. [DOI: 10.1016/j.bios.2009.09.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 08/20/2009] [Accepted: 09/01/2009] [Indexed: 11/28/2022]
|
50
|
Deiss F, Sojic N, White DJ, Stoddart PR. Nanostructured optical fibre arrays for high-density biochemical sensing and remote imaging. Anal Bioanal Chem 2009; 396:53-71. [DOI: 10.1007/s00216-009-3211-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 09/27/2009] [Accepted: 10/04/2009] [Indexed: 02/06/2023]
|