1
|
Miyamoto E, Sato T, Matsubara T. Cyclization of Peptides Enhances the Inhibitory Activity against Ganglioside-Induced Aβ Fibril Formation. ACS Chem Neurosci 2023; 14:4199-4207. [PMID: 37971427 DOI: 10.1021/acschemneuro.3c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disease and is the most common cause of dementia. It has been reported that the assembly of amyloid β-protein (Aβ) on the cell membrane is induced by the interaction of the Aβ monomer with gangliosides such as GM1. The ganglioside-bound Aβ (GAβ) complex acts as a seed to promote the toxic assembly of the Aβ fibrils. In a previous study, we found that a GM1 cluster-binding peptide (GCBP) specifically recognizes Aβ-sensitive ganglioside nanoclusters and inhibits the assembly of Aβ on a GM1-containing lipid membrane. In this study, cysteine-substituted double mutants of GCBP were designed and cyclized by intramolecular disulfide bond formation. Affinity assays indicated that one of the cyclic peptides had a higher affinity to a GM1-containing membrane compared to that of GCBP. Furthermore, surface topography analysis indicated that this peptide recognizes GM1 nanoclusters on the lipid membrane. An evaluation of the inhibitory kinetics indicated that the cyclic peptide could inhibit the formation of Aβ fibrils with an IC50 value of 1.2 fM, which is 10,000-fold higher than that of GCBP. The cyclic peptide was also shown to have a clearance effect on Aβ fibrils deposited on the lipid membrane and suppressed the formation of toxic Aβ assemblies. Our results indicate that the cyclic peptide that binds to the Aβ-sensitive ganglioside nanocluster is a potential novel inhibitor of ganglioside-induced Aβ assembly.
Collapse
Affiliation(s)
- Erika Miyamoto
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| | - Toshinori Sato
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| | - Teruhiko Matsubara
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
2
|
Wang S, Uchida N, Ueno K, Matsubara T, Sato T, Aida T, Ishida Y. Effects of the Magnetic Orientation of M13 Bacteriophage on Phage Display Selection. Chemistry 2023; 29:e202302261. [PMID: 37638672 DOI: 10.1002/chem.202302261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 08/29/2023]
Abstract
Although phage display selection using a library of M13 bacteriophage has become a powerful tool for finding peptides that bind to target materials on demand, a remaining concern of this method is the interference by the M13 main body, which is a huge filament >103 times larger than the displayed peptide, and therefore would nonspecifically adhere to the target or sterically inhibit the binding of the displayed peptide. Meanwhile, filamentous phages are known to be orientable by an external magnetic field. If M13 filaments are magnetically oriented during the library selection, their angular arrangement relative to the target surface would be changed, being expected to control the interference by the M13 main body. This study reports that the magnetic orientation of M13 filaments vertical to the target surface significantly affects the selection. When the target surface was affinitive to the M13 main body, this orientation notably suppressed the nonspecific adhesion. Furthermore, when the target surface was less affinitive to the M13 main body and intrinsically free from the nonspecific adhesion, this orientation drastically changed the population of M13 clones obtained through library selection. The method of using no chemicals but only a physical stimulus is simple, clean, and expected to expand the scope of phage display selection.
Collapse
Affiliation(s)
- Shuxu Wang
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Noriyuki Uchida
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kento Ueno
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Teruhiko Matsubara
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama, 223-8522, Japan
| | - Toshinori Sato
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama, 223-8522, Japan
| | - Takuzo Aida
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yasuhiro Ishida
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
3
|
Matsubara T, Nakai M, Nishihara M, Miyamoto E, Sato T. Ganglioside Nanocluster-Targeting Peptidyl Inhibitor Prevents Amyloid β Fibril Formation on the Neuronal Membrane. ACS Chem Neurosci 2022; 13:1868-1876. [PMID: 35729803 DOI: 10.1021/acschemneuro.2c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Neurotoxicity caused by peptide and protein aggregates is associated with the onset of neurodegenerative diseases. Accumulation of the amyloid β protein (Aβ) induced by neuronal ganglioside-enriched nanodomains (nanoclusters) in the presynaptic neuronal membrane, resulting in toxic oligomeric and fibrous forms, is implicated in the onset of Alzheimer's disease (AD). In the current study, we found that the ganglioside cluster-binding peptide (GCBP), a pentadecapeptide VWRLLAPPFSNRLLP that binds to ganglioside-enriched nanoclusters, inhibits the formation of Aβ assemblies with an IC50 of 12 pM and also removes Aβ fibrils deposited on the lipid membrane. Thus, in addition to inhibiting Aβ assembly formation, GCBP effectively clears toxic Aβ assemblies as well, thereby suppressing neuronal cellular damage and death induced by such assemblies. These results indicate that ganglioside cluster-binding molecules may act as novel Aβ-targeting drugs with a unique mechanism of action that may be utilized to ameliorate AD.
Collapse
Affiliation(s)
- Teruhiko Matsubara
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| | - Mako Nakai
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| | - Masaya Nishihara
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| | - Erika Miyamoto
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| | - Toshinori Sato
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
4
|
Matsuura K, Hisamoto K, Tanaka T, Sakamoto R, Okazaki M, Inaba H. Turn-On Fluorescent Probe Based on a Dansyl Triarginine Peptide for Ganglioside Imaging. ACS ORGANIC & INORGANIC AU 2021; 1:60-67. [PMID: 36855753 PMCID: PMC9954261 DOI: 10.1021/acsorginorgau.1c00013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gangliosides play pivotal biological roles in the animal cell membranes, and it is vital to develop fluorescent probes for imaging them. To date, various artificial receptors for ganglioside imaging have been developed; however, turn-on fluorescence imaging for gangliosides with high contrast has not been achieved. We developed a simple fluorescent probe on the basis of a dansyl triarginine peptide for turn-on ganglioside imaging on the liposome membrane. The probe bound to monosialyl gangliosides and other anionic lipids with association constants was 105 M-1, which enhanced from 6-fold to 7-fold the fluorescence intensity. Upon binding to monosialyl ganglioside-containing giant liposomes, the turn-on probe selectively enhanced the fluorescence intensity compared with the other anionic lipids. This simple peptide probe for turn-on fluorescence imaging of gangliosides would provide a novel molecular tool for chemical biology.
Collapse
Affiliation(s)
- Kazunori Matsuura
- Department
of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan,Centre
for Research on Green Sustainable Chemistry, Tottori University, Tottori 680-8552, Japan,E-mail:
| | - Koichi Hisamoto
- Department
of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan
| | - Tomoya Tanaka
- Department
of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan
| | - Ryota Sakamoto
- Department
of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan
| | - Mizuki Okazaki
- Department
of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan
| | - Hiroshi Inaba
- Department
of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan,Centre
for Research on Green Sustainable Chemistry, Tottori University, Tottori 680-8552, Japan
| |
Collapse
|
5
|
Matsubara T, IIjima K, Kojima T, Hirai M, Miyamoto E, Sato T. Heterogeneous Ganglioside-Enriched Nanoclusters with Different Densities in Membrane Rafts Detected by a Peptidyl Molecular Probe. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:646-654. [PMID: 33398996 DOI: 10.1021/acs.langmuir.0c02387] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The specific features of the lateral distribution of gangliosides play key roles in cell-cell communications and the onset of various diseases related to the plasma membrane. We herein demonstrated that an artificial peptide identified from a phage-displayed library is available as a molecular probe for specific ganglioside nanoclustering sites in caveolae/membrane rafts on the cell surface. Atomic force microscopy studies indicated that the peptide specifically binds to the highly enriched monosialoganglioside GM1 nanodomains of reconstituted lipid bilayers composed of GM1, sphingomyelin, cholesterol, and unsaturated phospholipids. The ganglioside-containing area recognized by the peptide on the surface of PC12 cells was part of the area recognized by the cholera toxin B subunit, which has high affinity for GM1. Furthermore, the peptide bound to the cell surface after a treatment with methyl-β-cyclodextrin (MβCD), which disrupts membrane rafts by removing cholesterol. The present results indicate that there are heterogeneous ganglioside clusters with different ganglioside densities in caveolae/membrane rafts, and the peptidyl probe selectively recognizes the high-density ganglioside nanodomain that resists the MβCD treatment. This peptidyl probe will be useful for obtaining information on the lipid organization of the cell membrane and will help clarify the mechanisms by which the lateral distribution of gangliosides affects biological functions and the onset of diseases.
Collapse
Affiliation(s)
- Teruhiko Matsubara
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| | - Kazutoshi IIjima
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| | - Takahiro Kojima
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| | - Miwa Hirai
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| | - Erika Miyamoto
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| | - Toshinori Sato
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
6
|
Melkoumov A, St-Jean I, Banquy X, Leclair G, Leblond Chain J. GM1-Binding Conjugates To Improve Intestinal Permeability. Mol Pharm 2018; 16:60-70. [PMID: 30422668 DOI: 10.1021/acs.molpharmaceut.8b00776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Drugs and proteins with poor intestinal permeability have a limited oral bioavailability. To remediate this problem, a receptor-mediated endocytosis and transcytosis approach was explored. Indeed, the nontoxic β subunit of cholera toxin (CTB) can cross the intestinal barrier by binding to receptor GM1. In this study, we explored the use of GM1-binding peptides and CTB as potential covalent carriers of poorly permeable molecules. GM1-binding peptides (G23, P3) and CTB were conjugated to poorly permeable fluorescent probes such as fluorescein isothiocyanate (FITC) and albumin-FITC using triethylene glycol spacers and click chemistry. The affinity of the peptide conjugates with receptor GM1 was confirmed by isothermal titration calorimetry or microscale thermophoresis, and the results suggested the involvement of nonspecific interactions. Conjugating the model drugs to G23 and P3 improved the internalization into Caco-2 and T84 cells, although the process was not dependent on the amount of GM1 receptor. However, conjugation of bovine serum albumin FITC to CTB increased the internalization in the same cells in a GM1-dependent pathway. Peptide conjugates demonstrated a limited permeability through a Caco-2 monolayer, whereas G23 and CTB conjugates slightly enhanced permeability through a T84 cell monolayer compared to model drugs alone. Since CTB can improve the permeability of large macromolecules such as albumin, it is an interesting carrier for the improvement of oral bioavailability of various other macromolecules such as heparins, proteins, and siRNAs.
Collapse
Affiliation(s)
- Alexandre Melkoumov
- Faculty of Pharmacy , Université de Montréal , H3C 3J7 Montréal , Québec , Canada
| | - Isabelle St-Jean
- Faculty of Pharmacy , Université de Montréal , H3C 3J7 Montréal , Québec , Canada
| | - Xavier Banquy
- Faculty of Pharmacy , Université de Montréal , H3C 3J7 Montréal , Québec , Canada
| | - Grégoire Leclair
- Faculty of Pharmacy , Université de Montréal , H3C 3J7 Montréal , Québec , Canada
| | - Jeanne Leblond Chain
- Faculty of Pharmacy , Université de Montréal , H3C 3J7 Montréal , Québec , Canada
| |
Collapse
|
7
|
Responsibility of lipid compositions for the amyloid ß assembly induced by ganglioside nanoclusters in mouse synaptosomal membranes. Polym J 2018. [DOI: 10.1038/s41428-018-0041-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Sakurai K. A Peptide–Glycolipid Interaction Probed by Retroinverso Peptide Analogues. Chem Pharm Bull (Tokyo) 2018; 66:45-50. [DOI: 10.1248/cpb.c17-00455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kaori Sakurai
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology
| |
Collapse
|
9
|
Jun YW, Lee JA, Jang DJ. Development of intracellular organelle markers using modified glycolipid-binding peptides in mammalian cells. ANALYTICAL SCIENCE AND TECHNOLOGY 2015. [DOI: 10.5806/ast.2015.28.1.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Iwao Y, Shiga K, Shiroshita A, Yoshikawa T, Sakiie M, Ueno T, Ueno S, Ijiri TW, Sato KI. The need of MMP-2 on the sperm surface for Xenopus fertilization: Its role in a fast electrical block to polyspermy. Mech Dev 2014; 134:80-95. [DOI: 10.1016/j.mod.2014.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 01/31/2023]
|
11
|
Capability of ganglioside GM1 in modulating interactions, structure, location and dynamics of peptides/proteins: biophysical approaches. Glycoconj J 2014; 31:435-47. [DOI: 10.1007/s10719-014-9554-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Matsubara T, Iijima K, Yamamoto N, Yanagisawa K, Sato T. Density of GM1 in nanoclusters is a critical factor in the formation of a spherical assembly of amyloid β-protein on synaptic plasma membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:2258-2264. [PMID: 23294326 DOI: 10.1021/la3038999] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The deposition of amyloid β-protein (Aβ) is a pathological hallmark of Alzheimer's disease (AD). We previously found that the ganglioside-enriched microdomains (ganglioside clusters) in presynaptic neuronal membranes play a key role in the initiation of the Aβ assembly process. However, not all ganglioside clusters accelerate Aβ assembly. In the present study, we directly observed a spherical Aβ in an atomic force microscopic study on the morphology of a reconstituted lipid bilayer composed of lipids that were extracted from a detergent-resistant membrane microdomain (DRM) fraction of synaptosomes prepared from aged mouse brain. The Aβ assembly was generated on a distinctive GM1 domain, which was characterized as the Aβ-sensitive ganglioside nanocluster (ASIGN). By using an artificial GM1 cluster-binding peptide, ASIGN was found to have a high density of GM1; therefore, there would be a critical density of GM1 in nanoclusters to induce Aβ binding and assembly. These results suggest that ganglioside-bound Aβ (GAβ), which acts as an endogenous seed for Aβ fibril formation in AD brains, is generated on ASIGN on synaptosomal membranes.
Collapse
Affiliation(s)
- Teruhiko Matsubara
- Department of Biosciences and Informatics, Keio University, Kouhoku-ku, Yokohama, Japan
| | | | | | | | | |
Collapse
|
13
|
Röckendorf N, Borschbach M, Frey A. Molecular evolution of peptide ligands with custom-tailored characteristics for targeting of glycostructures. PLoS Comput Biol 2012; 8:e1002800. [PMID: 23271960 PMCID: PMC3521706 DOI: 10.1371/journal.pcbi.1002800] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 10/09/2012] [Indexed: 11/19/2022] Open
Abstract
As an advanced approach to identify suitable targeting molecules required for various diagnostic and therapeutic interventions, we developed a procedure to devise peptides with customizable features by an iterative computer-assisted optimization strategy. An evolutionary algorithm was utilized to breed peptides in silico and the “fitness” of peptides was determined in an appropriate laboratory in vitro assay. The influence of different evolutional parameters and mechanisms such as mutation rate, crossover probability, gaussian variation and fitness value scaling on the course of this artificial evolutional process was investigated. As a proof of concept peptidic ligands for a model target molecule, the cell surface glycolipid ganglioside GM1, were identified. Consensus sequences describing local fitness optima were reached from diverse sets of L- and proteolytically stable D lead peptides. Ten rounds of evolutional optimization encompassing a total of just 4400 peptides lead to an increase in affinity of the peptides towards fluorescently labeled ganglioside GM1 by a factor of 100 for L- and 400 for D-peptides. A clever identification procedure is crucial when peptidic ligands for diagnostic and therapeutic techniques such as in vivo imaging or drug targeting are to be developed. Here, we present a propitious and versatile approach for the discovery of peptide sequences with custom features that is based on an iterative computer-assisted optimization process. The methodology smartly combines in silico evolution with in vitro testing to quickly obtain promising peptide ligand candidates with desired properties. To validate our method in a proof of concept we tried to identify peptide sequences that can bind to a glycosidic cell membrane component. We applied the evolution process by starting out with a small population of peptide lead sequences and achieved a constant increase in affinity between the peptide candidates and their target molecule with each generation. After 10 rounds and a total number of only 4400 peptides synthesized and tested, a more than 100fold improvement in target recognition could be achieved. Since all kinds of building blocks useable in chemical solid phase peptide synthesis can in principle be employed in this evolutionary optimization process, our method should prove a most versatile approach for the optimization of peptides, peptoids and peptomers towards a preset functionality.
Collapse
Affiliation(s)
- Niels Röckendorf
- Division of Mucosal Immunology & Diagnostics, Priority Program Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | | | - Andreas Frey
- Division of Mucosal Immunology & Diagnostics, Priority Program Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
- * E-mail:
| |
Collapse
|
14
|
Carbohydrate recognition by pentadecapeptide ligands for a series of sialylated oligosaccharides. Bioorg Med Chem 2012; 20:6452-8. [DOI: 10.1016/j.bmc.2012.08.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 08/18/2012] [Accepted: 08/21/2012] [Indexed: 11/18/2022]
|
15
|
Matsubara T, Sumi M, Kubota H, Taki T, Okahata Y, Sato T. Inhibition of influenza virus infections by sialylgalactose-binding peptides selected from a phage library. J Med Chem 2009; 52:4247-56. [PMID: 19558186 DOI: 10.1021/jm801570y] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Influenza virus hemagglutinin recognizes sialyloligosaccharides of glycoproteins and glycolipids as cell surface receptors in the initial stage of the infection process. We demonstrate that pentadecapeptides that bind to a sialylgalactose structure (Neu5Ac-Gal) inhibited the infection of cells by influenza virus. The pentadecapeptides were identified through affinity selection from a phage-displayed random peptide library using a monolayer of the ganglioside Neu5Acalpha2-3Galbeta1-4Glcbeta1-1'Cer (GM3). The peptides were found to have affinity for GM3, and alanine scanning showed seven amino acid residues that contribute to carbohydrate recognition. The binding of peptides to the cell surface was significantly inhibited in the presence of sialic acid or by the digestion of cell surface sialyl residues by neuraminidase. Plaque assays indicated that a molecular assembly of alkylated peptides inhibited the infection of Madin-Darby canine kidney cells by influenza virus. Carbohydrate-binding peptides that inhibit carbohydrate-virus interaction showed inhibitory activity. These results may lead to a new approach to the design of antiviral drugs.
Collapse
Affiliation(s)
- Teruhiko Matsubara
- Department of Biosciences and Informatics, Keio University, Yokohama 223-8522, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Kawano N, Yoshida K, Iwamoto T, Yoshida M. Ganglioside GM1 Mediates Decapacitation Effects of SVS2 on Murine Spermatozoa1. Biol Reprod 2008; 79:1153-9. [DOI: 10.1095/biolreprod.108.069054] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
17
|
Amyloid-β detection with saccharide immobilized gold nanoparticle on carbon electrode. Bioelectrochemistry 2008; 74:118-23. [DOI: 10.1016/j.bioelechem.2008.06.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 05/15/2008] [Accepted: 06/02/2008] [Indexed: 11/19/2022]
|
18
|
Yamamoto N, Matsubara T, Sato T, Yanagisawa K. Age-dependent high-density clustering of GM1 ganglioside at presynaptic neuritic terminals promotes amyloid beta-protein fibrillogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2717-26. [PMID: 18727916 DOI: 10.1016/j.bbamem.2008.07.028] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 07/15/2008] [Accepted: 07/30/2008] [Indexed: 11/25/2022]
Abstract
The deposition of amyloid beta-protein (Abeta) is an invariable feature of Alzheimer's disease (AD); however, the biological mechanism underlying Abeta assembly into fibrils in the brain remains unclear. Here, we show that a high-density cluster of GM1 ganglioside (GM1), which was detected by the specific binding of a novel peptide (p3), appeared selectively on synaptosomes prepared from aged mouse brains. Notably, the synaptosomes bearing the high-density GM1 cluster showed extraordinary potency to induce Abeta assembly, which was suppressed by an antibody specific to GM1-bound Abeta, an endogenous seed for AD amyloid. Together with evidence that Abeta deposition starts at presynaptic terminals in the AD brain and that GM1 levels significantly increase in amyloid-positive synaptosomes prepared from the AD brain, our results suggest that the age-dependent high-density GM1 clustering at presynaptic neuritic terminals is a critical step for Abeta deposition in AD.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Department of Alzheimer's Disease Research, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Obu 474-8522, Japan
| | | | | | | |
Collapse
|
19
|
Matsubara T, Iida M, Tsumuraya T, Fujii I, Sato T. Selection of a carbohydrate-binding domain with a helix-loop-helix structure. Biochemistry 2008; 47:6745-51. [PMID: 18540680 DOI: 10.1021/bi8000837] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We obtained a novel carbohydrate-binding peptide having a helix-loop-helix scaffold from a random peptide library. The helix-loop-helix peptide library randomized at five amino acid residues was displayed on the major coat protein of a filamentous phage. Affinity selection with a ganglioside, Galbeta1-3GalNAcbeta1-4(Neu5Acalpha2-3)Galbeta1-4Glcbeta1-1'Cer (GM1), gave positive phage clones. Surface plasmon resonance spectroscopy showed that a corresponding 35-mer synthetic peptide had high affinity for GM1 with a dissociation constant of 0.24 microM. This peptide preferentially binds to GM1 rather than asialo GM1 and GM2, suggesting that a terminal galactose and sialic acid are required for the binding as for cholera toxin. Circular dichroism spectroscopic studies indicated that a helical structure is important for the affinity and specificity. Furthermore, alanine scanning at randomized positions showed that arginine and phenylalanine play an especially important role in the recognition of carbohydrates. Such a de novo helix-loop-helix peptide would be available for the design of carbohydrate-binding proteins.
Collapse
|
20
|
Driving force of binding of amyloid β-protein to lipid bilayers. Biochem Biophys Res Commun 2008; 370:525-9. [DOI: 10.1016/j.bbrc.2008.03.130] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 03/27/2008] [Indexed: 11/24/2022]
|
21
|
Fujitani N, Shimizu H, Matsubara T, Ohta T, Komata Y, Miura N, Sato T, Nishimura SI. Structural transition of a 15 amino acid residue peptide induced by GM1. Carbohydr Res 2007; 342:1895-903. [PMID: 17572397 DOI: 10.1016/j.carres.2007.05.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 05/11/2007] [Accepted: 05/15/2007] [Indexed: 11/15/2022]
Abstract
The ganglioside GM1-binding peptide, p3, with a sequence of VWRLLAPPFSNRLLP, displayed a clear structural alteration depending on the presence or absence of GM1 micelles. The three-dimensional structures of the p3 peptide in the free and GM1 bound states were analyzed using two-dimensional NMR spectroscopic experiments with distance-restrained simulated annealing calculations. The NMR experiments for the p3 peptide alone indicated that the peptide has two conformers derived from the exchange of cis and trans forms at Pro(7)-Pro(8). Further study with theoretical modeling revealed that the p3 peptide has a curb conformation without regular secondary structure. On the other hand, the NMR studies for the p3 peptide with the GM1 micelles elucidated a trans conformer and gave a structure stabilized by hydrophobic interactions of beta- and helical turns. Based on these structural investigations, tryptophan, a core residue of the hydrophobic cluster, might be an essential residue for the recognition of the GM1 saccharides. The dynamic transition of the p3 peptide may play an important role in the function of GM1 as a multiple receptor as in the traditional pathway of the infection by cholera toxin.
Collapse
Affiliation(s)
- Naoki Fujitani
- Division of Advanced Chemical Biology, Graduate School of Advanced Life Science, Frontier Research Center for Post-Genomic Science and Technology, Hokkaido University, Sapporo 011-0021, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Matsubara T, Sato T. Identification of Oligosaccharide-Recognition Molecules by Phage-Display Technology. TRENDS GLYCOSCI GLYC 2007. [DOI: 10.4052/tigg.19.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|