1
|
Gisbert-González J, Briega-Martos V, Vidal-Iglesias FJ, Cuesta Á, Feliu JM, Herrero E. Spectroelectrochemical Studies of CTAB Adsorbed on Gold Surfaces in Perchloric Acid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2761-2770. [PMID: 36753691 PMCID: PMC9948534 DOI: 10.1021/acs.langmuir.2c03226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The behaviour of CTAB adsorbed on polycrystalline gold electrodes has been studied using a combination of spectroelectrochemical methods. The results indicate that the formation of the layer is the consequence of the precipitation of the CTAB micelles on the electrode surface as bromide ions, which stabilize the micelles, are replaced by perchlorate anions. This process leads to the formation of CTA+ layers in which perchlorate ions are intercalated, in which the adlayer suffers a continuous rearrangement that leads to the formation of micro-dominions of different types of hydrogen-bonded water populations throughout the adlayer. After prolonged cycling, a stable situation is reached. Under these conditions, water molecules permeate through the adlayer toward the electrode surface at potentials positive of the potential of zero charge, due to the repulsion between the CTA+ layer and the positive charge of the electrode.
Collapse
Affiliation(s)
| | | | | | - Ángel Cuesta
- Department
of Chemistry, School of Natural and Computing Sciences, University of Aberdeen, AB24 3UE Aberdeen, Scotland, U.K.
- Centre
for Energy Transition, University of Aberdeen, AB24 3FX Aberdeen, Scotland, U.K.
| | - Juan M. Feliu
- Instituto
de Electroquímica, Universidad de
Alicante, E-03080 Alicante, Spain
| | - E. Herrero
- Instituto
de Electroquímica, Universidad de
Alicante, E-03080 Alicante, Spain
| |
Collapse
|
2
|
Ranaweera R, An S, Cao Y, Luo L. Highly efficient preconcentration using anodically generated shrinking gas bubbles for per- and polyfluoroalkyl substances (PFAS) detection. Anal Bioanal Chem 2022:10.1007/s00216-022-04175-4. [PMID: 35729349 DOI: 10.1007/s00216-022-04175-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/04/2022] [Accepted: 06/10/2022] [Indexed: 11/29/2022]
Abstract
Here we report a highly efficient PFAS preconcentration method that uses anodically generated shrinking gas bubbles to preconcentrate PFAS via aerosol formation, achieving ~ 1400-fold enrichment of PFOS and PFOA-the two most common PFAS-in 20 min. This new method improves the enrichment factor by 15 to 105% relative to the previous method that uses cathodically generated H2 bubbles. The shrinking gas bubbles are in situ electrogenerated by oxidizing water in an NH4HCO3 solution. H+ produced by water oxidation reacts with HCO3- to generate CO2 gas, forming gas bubbles containing a mixture of O2 and CO2. Due to the high solubility of CO2 in aqueous solutions, the CO2/O2 bubbles start shrinking when they leave the electrode surface region. A mechanistic study reveals two reasons for the improvement: (1) shrinking bubbles increase the enrichment rate, and (2) the attractive interactions between the positively charged anode and negatively charged PFAS provide high enrichment at zero bubble path length. Based on this preconcentration method, we demonstrate the detection of ≥ 70 ng/L PFOA and PFOS in water in ~ 20 min by coupling it with our bubble-nucleation-based detection method, fulfilling the need of the US Environmental Protection Agency.
Collapse
Affiliation(s)
| | - Shizhong An
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yue Cao
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - Long Luo
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
3
|
Gisbert-González JM, Oliver-Pardo MV, Sarabia FJ, Climent V, Feliu JM, Herrero E. On the behavior of CTAB/CTAOH adlayers on gold single crystal surfaces. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Sieling T, Brand I. In Situ Spectroelectrochemical Investigation of Potential‐Dependent Changes in an Amphiphilic Imidazolium‐Based Ionic Liquid Film on the Au(111) Electrode Surface. ChemElectroChem 2020. [DOI: 10.1002/celc.202000385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Thorben Sieling
- University of Oldenburg, Department of Chemistry 26111 Oldenburg Germany
| | - Izabella Brand
- University of Oldenburg, Department of Chemistry 26111 Oldenburg Germany
| |
Collapse
|
5
|
Kobayashi N, Saitoh H, Kawamura R, Yoshikawa HY, Nakabayashi S. Structural change of nonionic surfactant self-assembling at electrochemically controlled HOPG/electrolyte interface. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.06.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Influence of tetrabutylammonium cations on phase transition within adsorbed adlayer and lifting of reconstruction at Au(111) electrode in sulfate solution and in presence of coumarin. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.06.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Investigations of Capping Agent Adsorption for Metal Nanoparticle Stabilization and the Formation of Anisotropic Gold Nanocrystals. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/9783527340934.ch5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
8
|
The influence of surface crystallography on the interfacial behaviour of tetrabutylammonium cations at Au(100) and Au(111) electrodes. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2014.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Vivek JP, Monsur A, Burgess IJ. Differential capacity and chronocoulometry studies of a quaternary ammonium surfactant adsorbed on Au(111). SURF INTERFACE ANAL 2013. [DOI: 10.1002/sia.5300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- J. P. Vivek
- Department of Chemistry; University of Saskatchewan; Saskatoon Saskatchewan S7N 5C9 Canada
- Department of Physics E19; Technical University of Munich; James-Franck-Strasse 1 85748 Garching Germany
| | - Abrar Monsur
- Department of Chemistry; University of Saskatchewan; Saskatoon Saskatchewan S7N 5C9 Canada
| | - Ian J. Burgess
- Department of Chemistry; University of Saskatchewan; Saskatoon Saskatchewan S7N 5C9 Canada
| |
Collapse
|
10
|
Vijaikanth V, Li G, Swaddle TW. Kinetics of reduction of aqueous hexaammineruthenium(III) ion at Pt and Au microelectrodes: electrolyte, temperature, and pressure effects. Inorg Chem 2013; 52:2757-68. [PMID: 23421865 DOI: 10.1021/ic400062b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rate constants kel obtained by impedance spectroscopy for the reduction of Ru(NH3)6(3+) at polycrystalline Pt and Au ultramicroelectrodes depend strongly on the identity and concentration of the anion present in the order CF3SO3(-) < Cl(-) < ClO4(-), but not on the cation of the supporting electrolyte (Na(+), K(+), H(+)). For Cl(-) as the sole anion present, kel is directly proportional to the total [Cl(-)], such that kel would be zero if Cl(-) were hypothetically absent, indicating that Cl(-) is directly involved in mediation of the Ru(NH3)6(3+/2+) electron transfer. For CF3SO3(-) as the sole counterion, the dependence of kel on the total [CF3SO3(-)] is not linear, possibly because blocking of the available electrode surface becomes dominant at high triflate concentrations. Volumes of activation ΔVel(⧧) for reduction of Ru(NH3)6(3+) at an electrode in presence of Cl(-) or CF3SO3(-) are much more negative than predictions based on theory (Swaddle, T. W. Chem. Rev.2005, 105, 2573) that has been successful with other electron transfer reactions but which does not take into account the involvement of the anions in the activation process. The strongly negative ΔVel(⧧) values probably reflect solvation increases peculiar to activation processes of Ru(III/II) am(m)ine complexes, possibly together with promotion of desorption of surface-blocking Cl(-) or CF3SO3(-) from electrodes by applied pressure. Frumkin corrections for Ru(NH3)6(3+) within the diffuse double layer would make ΔVel(⧧) even more negative than is observed, although the corrections would be small. The strongly negative ΔVel(⧧) values are inconsistent with reduction of Ru(NH3)6(3+) in direct contact with the metallic electrode surface, which would entail substantial dehydration of both the electrode and Ru(NH3)6(3+). Reduction of Ru(NH3)6(3+) can be regarded as taking place in hard contact with adsorbed water at the outer Helmholtz plane.
Collapse
Affiliation(s)
- Vijendran Vijaikanth
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | | | | |
Collapse
|
11
|
Vivek JP, Burgess IJ. Quaternary ammonium bromide surfactant adsorption on low-index surfaces of gold. 1. Au(111). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:5031-5039. [PMID: 22375812 DOI: 10.1021/la300035n] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The coadsorption of the anionic and cationic components of a model quaternary ammonium bromide surfactant on Au(111) has been measured using the thermodynamics of an ideally polarized electrode. The results indicate that both bromide and trimethyloctylammonium (OTA(+)) ions are coadsorbed over a broad range of the electrical state of the gold surface. At negative polarizations, the Gibbs surface excess of the cationic surfactant is largely unperturbed by the presence of bromide ions in solution. However, when the Au(111) surface is weakly charged the existence of a low-coverage, gaslike phase of adsorbed halide induces an appreciable (~25%) enhancement of the interfacial concentration of the cationic surfactant ion. At more positive polarizations, the coadsorbed OTA(+)/Br(-) layer undergoes at least one phase transition which appears to be concomitant with the lifting of the Au(111) reconstruction and the formation of a densely packed bromide adlayer. In the absence of coadsorbed halide, the OTA(+) ions are completely desorbed from the Au(111) surface at the most positive electrode polarizations studied. However, with NaBr present in the electrolyte, a high surface excess of bromide species leads to the stabilization of adsorbed OTA(+) at such positive potentials (or equivalent charge densities).
Collapse
Affiliation(s)
- J P Vivek
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | |
Collapse
|
12
|
Leitch JJ, Collins J, Friedrich AK, Stimming U, Dutcher JR, Lipkowski J. Infrared studies of the potential controlled adsorption of sodium dodecyl sulfate at the Au(111) electrode surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:2455-2464. [PMID: 22204422 DOI: 10.1021/la204451s] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Quantitative subtractively normalized interfacial Fourier transform infrared reflection spectroscopy (SNIFTIRS) was used to determine the conformation and orientation of sodium dodecyl sulfate (SDS) molecules adsorbed at the single crystal Au(111) surface. The SDS molecules form a hemimicellar/hemicylindrical (phase I) structure for the range of potentials between -200 ≤ E < 450 mV and condensed (phase II) film for electrode potentials ≥500 mV vs Ag/AgCl. The SNIFTIRS measurements indicate that the alkyl chains within the two adsorbed states of SDS film are in the liquid-crystalline state rather than the gel state. However, the sulfate headgroup is in an oriented state in phase I and is disordered in phase II. The newly acquired SNIFTIR spectroscopy measurements were coupled with previous electrochemical, atomic force microscopy, and neutron reflectivity data to improve the current existing models of the SDS film adsorbed on the Au(111) surface. The IR data support the existence of a hemicylindrical film for SDS molecules adsorbed at the Au(111) surface in phase I and suggest that the structure of the condensed film in phase II can be more accurately modeled by a disordered bilayer.
Collapse
Affiliation(s)
- J Jay Leitch
- Department of Chemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Mostany J, Climent V, Herrero E, Feliu JM. Surface excesses at very low concentrations from extrapolation of thermodynamic data: A way to explore beyond practical limits from reliable experimental data. J Electroanal Chem (Lausanne) 2010. [DOI: 10.1016/j.jelechem.2010.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Sek S, Chen M, Brosseau CL, Lipkowski J. In situ STM study of potential-driven transitions in the film of a cationic surfactant adsorbed on a Au(111) electrode surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:12529-12534. [PMID: 17929849 DOI: 10.1021/la702095a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Electrochemical scanning tunneling microscopy (EC-STM) has been employed to study the structure of a film formed by cationic surfactant N-decyl-N,N,N-trimethylammonium triflate (DeTATf) adsorbed on the Au(111) electrode surface. The film is disordered at potentials corresponding to either large negative charge densities or to positive charge densities. At small negative charge densities, an ordered adlayer of flat-lying DeTATf molecules is formed. High-resolution images of this adlayer reveal that the triflate anion is coadsorbed with the N-decyl-N,N,N-trimethylammonium cation, effectively forming an ion pair at the electrode surface. This is a significant result because it explains why this surfactant behaves like a zwitterionic surfactant at the metal/solution interface.
Collapse
Affiliation(s)
- Slawomir Sek
- Department of Chemistry, University of Guelph, Guelph, ON, Canada
| | | | | | | |
Collapse
|