1
|
Martínez-Galera AJ, Molina-Motos R, Gómez-Rodríguez JM. Unearthing Atomic Dynamics in Nanocatalysts. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60348-60355. [PMID: 39453444 DOI: 10.1021/acsami.4c14382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Being able to access the rich atomic-scale phenomenology, which occurs during the reactions pathways, is a pressing need toward the pursued knowledge-based design of more efficient nanocatalysts, precisely tailored atom by atom for each reaction. However, to reach this goal of achieving maximum optimization, it is mandatory, first, to address how exposure to the experimental conditions, which will be needed to activate the processes, affects the internal configuration of the nanoparticles at the atomic level. In particular, the most critical experimental parameter is probably the temperature, which among other unwanted effects can induce nanocatalyst aggregation. This work highlights the high potential of experimental techniques such as the scanning probe microscopies, which are able to investigate matter in real space with atomic resolution, to reach the key challenge in heterogeneous catalysis of achieving access to the atomic-scale processes taking place in the nanocatalysts. Specifically, the phenomenology occurring in a nanoparticle system during annealing is studied with atomic precision by scanning tunneling microscopy. As a result, the existence of an internal atomic restructuring, occurring already at relatively low temperatures, within Ir nanoparticles grown over h-BN/Ru(0001) surfaces is demonstrated. Such restructuration, which reduces the undercoordination of the outer Ir atoms, is expected to have a significant effect on the reactivity of the nanoparticles. Going a step further, an internal restructuring of the nanoparticles during their involvement as catalysts has also been also identified.
Collapse
Affiliation(s)
- Antonio J Martínez-Galera
- Departamento de Física de Materiales, Universidad Autónoma de Madrid, Madrid E-28049, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid E-28049, Spain
- Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, Madrid E-28049, Spain
| | - Rocío Molina-Motos
- Departamento de Física de Materiales, Universidad Autónoma de Madrid, Madrid E-28049, Spain
| | - José M Gómez-Rodríguez
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid E-28049, Spain
- Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, Madrid E-28049, Spain
- Departamento de Física de la Materia condensada, Universidad Autónoma de Madrid, Madrid E-28049, Spain
| |
Collapse
|
2
|
Xu H, Hu J, Wang F, Qu Y, Liu Y. Nucleation Mechanism of Hexagonal Boron Nitride on Diamond (111) and Its Hydrogen-Terminated Surface: A DFT Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19146-19154. [PMID: 39190803 DOI: 10.1021/acs.langmuir.4c02310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Hexagonal boron nitride (h-BN) has attracted significant attention due to its exceptional properties. Among various substrates used for h-BN growth, diamond emerges as a more promising substrate due to its high-temperature resistance and superior electrical properties. To reveal the nucleation mechanism of h-BN on the diamond (111) surface and the impact of hydrogenation treatment on this process, we explored the adsorption, diffusion, nucleation morphologies, and predicted nucleation pathways in this process using first-principles calculations based on density functional theory (DFT). Our results indicate that N positioned above the first layer of C and B positioned above the second layer of C enhance the stability of BN clusters. During the growth of BN clusters, there is a geometric transformation from chain-like structures to honeycomb-like structures. The proportion of unhybridized sp2 atoms within BN clusters and geometric symmetry significantly influence h-BN growth. Moreover, computational findings also suggest that to enhance the nucleation rate of h-BN it is essential to inhibit the formation of zigzag chain structures by BN clusters during the early stages of nucleation on a clean diamond surface. Additionally, hydrogenation treatment decreases the binding affinity of B and N on the substrate, facilitating atomic diffusion, and has been identified as an effective approach to facilitate nucleation. Furthermore, hydrogen-terminated diamond acts as an electron donor in the system, which profoundly affects the morphology of growing h-BN and the characteristics of the h-BN/diamond heterostructures. These conclusions are important to understanding and optimizing h-BN growth on diamond and provide a theoretical basis of the construction and application of the h-BN/diamond heterostructure.
Collapse
Affiliation(s)
- Hang Xu
- National Center for International Joint Research of Electronic Materials and Systems, International Joint-Laboratory of Electronic Materials and Systems of Henan Province, College of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jiping Hu
- National Center for International Joint Research of Electronic Materials and Systems, International Joint-Laboratory of Electronic Materials and Systems of Henan Province, College of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Fang Wang
- National Center for International Joint Research of Electronic Materials and Systems, International Joint-Laboratory of Electronic Materials and Systems of Henan Province, College of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- Institute of Intelligence Sensing, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- Research Institute of Industrial Technology Co. Ltd., Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- Zhengzhou Way Do Electronics Co. Ltd., Zhengzhou, Henan 450001, P. R. China
| | - Yipu Qu
- National Center for International Joint Research of Electronic Materials and Systems, International Joint-Laboratory of Electronic Materials and Systems of Henan Province, College of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yuhuai Liu
- National Center for International Joint Research of Electronic Materials and Systems, International Joint-Laboratory of Electronic Materials and Systems of Henan Province, College of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- Institute of Intelligence Sensing, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- Research Institute of Industrial Technology Co. Ltd., Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- Zhengzhou Way Do Electronics Co. Ltd., Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
3
|
Seitsonen AP, Greber T. Growing sp 2 materials on transition metals: calculated atomic adsorption energies of hydrogen, boron, carbon, nitrogen, and oxygen atoms, C 2 and BN dimers, C 6 and (BN) 3 hexamers, graphene and h-BN with and without atomic vacancies. NANOSCALE ADVANCES 2023; 6:268-275. [PMID: 38125605 PMCID: PMC10729893 DOI: 10.1039/d3na00472d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/31/2023] [Indexed: 12/23/2023]
Abstract
The growth of graphene and hexagonal boron nitride on hot transition metal surfaces involves the adsorption of precursor molecules, and their dissociation and assembly into two-dimensional honeycomb lattices. In a recent account it was found that h-BN may be distilled on a rhodium metal surface, which yields higher quality h-BN [Cun et al., ACS Nano, 2020, 15, 1351]. In this context, we calculated in a systematic approach the adsorption energies and sites of hydrogen, boron, carbon, nitrogen, and oxygen atoms and from the site dependence the activation energy for diffusion. Existing computed values of the solvation energy into the bulk were compared to the present ones with our calculation scheme and found to be in good agreement. For the distinction of different systems we introduce the concepts of epiphilicity and epiphobicity. The adsorption energies and stabilities of the C2 and BN dimers, the C6 and (BN)3 ring-hexamers and the graphene and h-BN monolayers allow the prediction of the performance of different substrates in chemical vapor deposition (CVD) processes for the growth of graphene and h-BN. Finally, vacancy creation energies were calculated as a criterion for the stability of graphene and h-BN on metallic substrates.
Collapse
Affiliation(s)
| | - Thomas Greber
- Physik-Institut, Universität Zürich CH-8057 Zürich Switzerland +41 44635 5704 +4144 635 5744
| |
Collapse
|
4
|
Islam MS, Mazumder AAM, Sohag MU, Sarkar MMH, Stampfl C, Park J. Growth mechanisms of monolayer hexagonal boron nitride ( h-BN) on metal surfaces: theoretical perspectives. NANOSCALE ADVANCES 2023; 5:4041-4064. [PMID: 37560434 PMCID: PMC10408602 DOI: 10.1039/d3na00382e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023]
Abstract
Two-dimensional hexagonal boron nitride (h-BN) has appeared as a promising material in diverse areas of applications, including as an excellent substrate for graphene devices, deep-ultraviolet emitters, and tunneling barriers, thanks to its outstanding stability, flat surface, and wide-bandgap. However, for achieving such exciting applications, controllable mass synthesis of high-quality and large-scale h-BN is a precondition. The synthesis of h-BN on metal surfaces using chemical vapor deposition (CVD) has been extensively studied, aiming to obtain large-scale and high-quality materials. The atomic-scale growth process, which is a prerequisite for rationally optimizing growth circumstances, is a key topic in these investigations. Although theoretical investigations on h-BN growth mechanisms are expected to reveal numerous new insights and understandings, different growth methods have completely dissimilar mechanisms, making theoretical research extremely challenging. In this article, we have summarized the recent cutting-edge theoretical research on the growth mechanisms of h-BN on different metal substrates. On the frequently utilized Cu substrate, h-BN development was shown to be more challenging than a simple adsorption-dehydrogenation-growth scenario. Controlling the number of surface layers is also an important challenge. Growth on the Ni surface is controlled by precipitation. An unusual reaction-limited aggregation growth behavior has been seen on interfaces having a significant lattice mismatch to h-BN. With intensive theoretical investigations employing advanced simulation approaches, further progress in understanding h-BN growth processes is predicted, paving the way for guided growth protocol design.
Collapse
Affiliation(s)
- Md Sherajul Islam
- Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology Khulna 9203 Bangladesh
- Department of Electrical and Biomedical Engineering, University of Nevada Reno NV 89557 USA
| | | | - Minhaz Uddin Sohag
- Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology Khulna 9203 Bangladesh
| | - Md Mosarof Hossain Sarkar
- Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology Khulna 9203 Bangladesh
| | - Catherine Stampfl
- School of Physics, The University of Sydney New South Wales 2006 Australia
| | - Jeongwon Park
- Department of Electrical and Biomedical Engineering, University of Nevada Reno NV 89557 USA
- School of Electrical Engineering and Computer Science, University of Ottawa Ottawa ON K1N 6N5 Canada
| |
Collapse
|
5
|
Holbrook M, Chen Y, Kim H, Frammolino L, Liu M, Pan CR, Chou MY, Zhang C, Shih CK. Creating a Nanoscale Lateral Junction in a Semiconductor Monolayer with a Large Built-in Potential. ACS NANO 2023; 17:6966-6972. [PMID: 36946518 DOI: 10.1021/acsnano.3c01082] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The ability to engineer atomically thin nanoscale lateral junctions is critical to lay the foundation for future two-dimensional (2D) device technology. However, the traditional approach to creating a heterojunction by direct growth of a heterostructure of two different materials constrains the available band offsets, and it is still unclear if large built-in potentials are attainable for 2D materials. The electronic properties of atomically thin semiconducting transition metal dichalcogenides (TMDs) are not static, and their exciton binding energy and quasiparticle band gap depend strongly on the proximal environment. Recent studies have shown that this effect can be harnessed to engineer the lateral band profile of a monolayer TMD to create a lateral electronic junction. Here we demonstrate the synthesis of a nanoscale lateral junction in monolayer MoSe2 by intercalating Se at the interface of an hBN/Ru(0001) substrate. The Se intercalation creates a spatially abrupt modulation of the local hBN/Ru work function, which is imprinted directly onto an overlying MoSe2 monolayer to create a lateral junction with a large built-in potential of 0.83 ± 0.06 eV. We spatially resolve the MoSe2 band profile and work function using scanning tunneling spectroscopy to map out the nanoscale depletion region. The Se intercalation also modifies the dielectric environment, influencing the local band gap renormalization and increasing the MoSe2 band gap by ∼0.26 ± 0.1 eV. This work illustrates that environmental proximity engineering provides a robust method to indirectly manipulate the band profile of 2D materials outside the limits of their intrinsic properties.
Collapse
Affiliation(s)
- Madisen Holbrook
- Department of Physics, The University of Texas, Austin, Texas 78712, United States
| | - Yuxuan Chen
- Department of Physics, The University of Texas, Austin, Texas 78712, United States
| | - Hyunsue Kim
- Department of Physics, The University of Texas, Austin, Texas 78712, United States
| | - Lisa Frammolino
- Department of Physics, The University of Texas, Austin, Texas 78712, United States
| | - Mengke Liu
- Department of Physics, The University of Texas, Austin, Texas 78712, United States
| | - Chi-Ruei Pan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Mei-Yin Chou
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Chengdong Zhang
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Chih-Kang Shih
- Department of Physics, The University of Texas, Austin, Texas 78712, United States
| |
Collapse
|
6
|
Li J, Ghorbani-Asl M, Lasek K, Pathirage V, Krasheninnikov AV, Batzill M. A van der Waals Heterostructure with an Electronically Textured Moiré Pattern: PtSe 2/PtTe 2. ACS NANO 2023; 17:5913-5920. [PMID: 36926837 DOI: 10.1021/acsnano.2c12879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The interlayer interaction in Pt-dichalcogenides strongly affects their electronic structures. The modulations of the interlayer atom-coordination in vertical heterostructures based on these materials are expected to laterally modify these interlayer interactions and thus provide an opportunity to texture the electronic structure. To determine the effects of local variation of the interlayer atom coordination on the electronic structure of PtSe2, van der Waals heterostructures of PtSe2 and PtTe2 have been synthesized by molecular beam epitaxy. The heterostructure forms a coincidence lattice with 13 unit cells of PtSe2 matching 12 unit cells of PtTe2, forming a moiré superstructure. The interaction with PtTe2 reduces the band gap of PtSe2 monolayers from 1.8 eV to 0.5 eV. While the band gap is uniform across the moiré unit cell, scanning tunneling spectroscopy and dI/dV mapping identify gap states that are localized within certain regions of the moiré unit cell. Deep states associated with chalcogen pz-orbitals at binding energies of ∼ -2 eV also exhibit lateral variation within the moiré unit cell, indicative of varying interlayer chalcogen interactions. Density functional theory calculations indicate that local variations in atom coordination in the moiré unit cell cause variations in the charge transfer from PtTe2 to PtSe2, thus affecting the value of the interface dipole. Experimentally this is confirmed by measuring the local work function by field emission resonance spectroscopy, which reveals a large work function modulation of ∼0.5 eV within the moiré structure. These results show that the local coordination variation of the chalcogen atoms in the PtSe2/PtTe2 van der Waals heterostructure induces a nanoscale electronic structure texture in PtSe2.
Collapse
Affiliation(s)
- Jingfeng Li
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Mahdi Ghorbani-Asl
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Kinga Lasek
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Vimukthi Pathirage
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Arkady V Krasheninnikov
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
- Department of Applied Physics, Aalto University, P.O. Box 11100, 00076 Aalto, Finland
| | - Matthias Batzill
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
7
|
Naclerio AE, Kidambi PR. A Review of Scalable Hexagonal Boron Nitride (h-BN) Synthesis for Present and Future Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207374. [PMID: 36329667 DOI: 10.1002/adma.202207374] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Hexagonal boron nitride (h-BN) is a layered inorganic synthetic crystal exhibiting high temperature stability and high thermal conductivity. As a ceramic material it has been widely used for thermal management, heat shielding, lubrication, and as a filler material for structural composites. Recent scientific advances in isolating atomically thin monolayers from layered van der Waals crystals to study their unique properties has propelled research interest in mono/few layered h-BN as a wide bandgap insulating support for nanoscale electronics, tunnel barriers, communications, neutron detectors, optics, sensing, novel separations, quantum emission from defects, among others. Realizing these futuristic applications hinges on scalable cost-effective high-quality h-BN synthesis. Here, the authors review scalable approaches of high-quality mono/multilayer h-BN synthesis, discuss the challenges and opportunities for each method, and contextualize their relevance to emerging applications. Maintaining a stoichiometric balance B:N = 1 as the atoms incorporate into the growing layered crystal and maintaining stacking order between layers during multi-layer synthesis emerge as some of the main challenges for h-BN synthesis and the development of processes to address these aspects can inform and guide the synthesis of other layered materials with more than one constituent element. Finally, the authors contextualize h-BN synthesis efforts along with quality requirements for emerging applications via a technological roadmap.
Collapse
Affiliation(s)
- Andrew E Naclerio
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | - Piran R Kidambi
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37212, USA
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
- Vanderbilt Institute of Nanoscale Sciences and Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| |
Collapse
|
8
|
Ruckhofer A, Sacchi M, Payne A, Jardine AP, Ernst WE, Avidor N, Tamtögl A. Evolution of ordered nanoporous phases during h-BN growth: controlling the route from gas-phase precursor to 2D material by in situ monitoring. NANOSCALE HORIZONS 2022; 7:1388-1396. [PMID: 36205333 PMCID: PMC9590587 DOI: 10.1039/d2nh00353h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Large-area single-crystal monolayers of two-dimensional (2D) materials such as graphene and hexagonal boron nitride (h-BN) can be grown by chemical vapour deposition (CVD). However, the high temperatures and fast timescales at which the conversion from a gas-phase precursor to the 2D material appears, make it extremely challenging to simultaneously follow the atomic arrangements. We utilise helium atom scattering to discover and control the growth of novel 2D h-BN nanoporous phases during the CVD process. We find that prior to the formation of h-BN from the gas-phase precursor, a metastable (3 × 3) structure is formed, and that excess deposition on the resulting 2D h-BN leads to the emergence of a (3 × 4) structure. We illustrate that these nanoporous structures are produced by partial dehydrogenation and polymerisation of the borazine precursor upon adsorption. These steps are largely unexplored during the synthesis of 2D materials and we unveil the rich phases during CVD growth. Our results provide significant foundations for 2D materials engineering in CVD, by adjusting or carefully controlling the growth conditions and thus exploiting these intermediate structures for the synthesis of covalent self-assembled 2D networks.
Collapse
Affiliation(s)
- Adrian Ruckhofer
- Institute of Experimental Physics, Graz University of Technology, Graz, Austria.
| | - Marco Sacchi
- Department of Chemistry, University of Surrey, Guildford GU2 7XH, UK
| | - Anthony Payne
- Department of Chemistry, University of Surrey, Guildford GU2 7XH, UK
| | - Andrew P Jardine
- Cavendish Laboratory, J. J. Thompson Avenue, Cambridge CB3 0HE, UK.
| | - Wolfgang E Ernst
- Institute of Experimental Physics, Graz University of Technology, Graz, Austria.
| | - Nadav Avidor
- Cavendish Laboratory, J. J. Thompson Avenue, Cambridge CB3 0HE, UK.
| | - Anton Tamtögl
- Institute of Experimental Physics, Graz University of Technology, Graz, Austria.
| |
Collapse
|
9
|
Park C, Yoon M. Topography inversion in scanning tunneling microscopy of single-atom-thick materials from penetrating substrate states. Sci Rep 2022; 12:7321. [PMID: 35513468 PMCID: PMC9072348 DOI: 10.1038/s41598-022-10870-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/12/2022] [Indexed: 11/21/2022] Open
Abstract
Scanning tunneling microscopy (STM) is one of the indispensable tools to characterize surface structures, but the distinction between atomic geometry and electronic effects based on the measured tunneling current is not always straightforward. In particular, for single-atomic-thick materials (graphene or boron nitride) on metallic substrates, counterintuitive phenomena such as a larger tunneling current for insulators than for metal and a topography opposite to the atomic geometry are reported. Using first-principles density functional theory calculations combined with analytical modeling, we reveal the critical role of penetrating states of metallic substrates that surpass 2D material states, hindering the measurement of intrinsic 2D materials states and leading to topography inversion. Our finding should be instrumental in the interpretation of STM topographies of atomic-thick materials and in the development of 2D material for (opto)electronic and various quantum applications.
Collapse
Affiliation(s)
- Changwon Park
- School of Computational Sciences, Korea Institute for Advanced Study, Hoegiro 85, Seoul, 02455, Republic of Korea.
| | - Mina Yoon
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
10
|
Rai DP, Chettri B, Patra PK, Sattar S. Hydrogen Storage in Bilayer Hexagonal Boron Nitride: A First-Principles Study. ACS OMEGA 2021; 6:30362-30370. [PMID: 34805667 PMCID: PMC8603186 DOI: 10.1021/acsomega.1c03443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Using first-principles calculations, we report on the structural and electronic properties of bilayer hexagonal boron nitride (h-BN), incorporating hydrogen (H2) molecules inside the cavity for potential H2-storage applications. Decrease in binding energies and desorption temperatures with an accompanying increase in the weight percentage (upto 4%) by increasing the H2 molecular concentration hints at the potential applicability of this study. Moreover, we highlight the role of different density functionals in understanding the decreasing energy gaps and effective carrier masses and the underlying phenomenon for molecular adsorption. Furthermore, energy barriers involving H2 diffusion across minimum-energy sites are also discussed. Our findings provide significant insights into the potential of using bilayer h-BN in hydrogen-based energy-storage applications.
Collapse
Affiliation(s)
- Dibya Prakash Rai
- Physical
Sciences Research Center (PSRC), Department of Physics, Pachhunga
University College, Mizoram University, Aizawl 796001, India
| | - Bhanu Chettri
- Department
of Physics, North-Eastern Hill University, Shillong 793022, Meghalaya, India
- Physical
Sciences Research Center (PSRC), Department of Physics, Pachhunga University College, Aizawl 796001, Mizoram, India
| | - Prasanta Kumar Patra
- Department
of Physics, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| | - Shahid Sattar
- Department
of Physics and Electrical Engineering, Linnaeus
University, Kalmar SE-39231, Sweden
| |
Collapse
|
11
|
First-Principles Studies of the Adsorption and Catalytic Properties for Gas Molecules on h-BN Monolayer Doped with Various Transition Metal Atoms. CATALYSIS SURVEYS FROM ASIA 2021. [DOI: 10.1007/s10563-021-09350-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Roy S, Zhang X, Puthirath AB, Meiyazhagan A, Bhattacharyya S, Rahman MM, Babu G, Susarla S, Saju SK, Tran MK, Sassi LM, Saadi MASR, Lai J, Sahin O, Sajadi SM, Dharmarajan B, Salpekar D, Chakingal N, Baburaj A, Shuai X, Adumbumkulath A, Miller KA, Gayle JM, Ajnsztajn A, Prasankumar T, Harikrishnan VVJ, Ojha V, Kannan H, Khater AZ, Zhu Z, Iyengar SA, Autreto PADS, Oliveira EF, Gao G, Birdwell AG, Neupane MR, Ivanov TG, Taha-Tijerina J, Yadav RM, Arepalli S, Vajtai R, Ajayan PM. Structure, Properties and Applications of Two-Dimensional Hexagonal Boron Nitride. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101589. [PMID: 34561916 DOI: 10.1002/adma.202101589] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/24/2021] [Indexed: 05/09/2023]
Abstract
Hexagonal boron nitride (h-BN) has emerged as a strong candidate for two-dimensional (2D) material owing to its exciting optoelectrical properties combined with mechanical robustness, thermal stability, and chemical inertness. Super-thin h-BN layers have gained significant attention from the scientific community for many applications, including nanoelectronics, photonics, biomedical, anti-corrosion, and catalysis, among others. This review provides a systematic elaboration of the structural, electrical, mechanical, optical, and thermal properties of h-BN followed by a comprehensive account of state-of-the-art synthesis strategies for 2D h-BN, including chemical exfoliation, chemical, and physical vapor deposition, and other methods that have been successfully developed in recent years. It further elaborates a wide variety of processing routes developed for doping, substitution, functionalization, and combination with other materials to form heterostructures. Based on the extraordinary properties and thermal-mechanical-chemical stability of 2D h-BN, various potential applications of these structures are described.
Collapse
Affiliation(s)
- Soumyabrata Roy
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Xiang Zhang
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Anand B Puthirath
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Ashokkumar Meiyazhagan
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Sohini Bhattacharyya
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Muhammad M Rahman
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Ganguli Babu
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Sandhya Susarla
- Materials Science Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Sreehari K Saju
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Mai Kim Tran
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Lucas M Sassi
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - M A S R Saadi
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Jiawei Lai
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Onur Sahin
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Seyed Mohammad Sajadi
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Bhuvaneswari Dharmarajan
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Devashish Salpekar
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Nithya Chakingal
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Abhijit Baburaj
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Xinting Shuai
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Aparna Adumbumkulath
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Kristen A Miller
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Jessica M Gayle
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Alec Ajnsztajn
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Thibeorchews Prasankumar
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | | | - Ved Ojha
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Harikishan Kannan
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Ali Zein Khater
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Zhenwei Zhu
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Sathvik Ajay Iyengar
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Pedro Alves da Silva Autreto
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Av. Dos Estados, 5001-Bangú, Santo André - SP, Santo André, 09210-580, Brazil
| | - Eliezer Fernando Oliveira
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
- Applied Physics Department, State University of Campinas - UNICAMP, Campinas, São Paulo, 13083-859, Brazil
- Center for Computational Engineering and Sciences (CCES), State University of Campinas - UNICAMP, Campinas, São Paulo, 13083-859, Brazil
| | - Guanhui Gao
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - A Glen Birdwell
- Combat Capabilities Development Command, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD, 20783, USA
| | - Mahesh R Neupane
- Combat Capabilities Development Command, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD, 20783, USA
| | - Tony G Ivanov
- Combat Capabilities Development Command, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD, 20783, USA
| | - Jaime Taha-Tijerina
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
- Engineering Department, Universidad de Monterrey, Av. Ignacio Morones Prieto 4500 Pte., San Pedro Garza Garcí, Monterrey, Nuevo Leon, 66238, Mexico
- Department of Manufacturing and Industrial Engineering, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Ram Manohar Yadav
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
- Department of Physics, VSSD College, Kanpur, Uttar Pradesh, 208002, India
| | - Sivaram Arepalli
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Robert Vajtai
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| |
Collapse
|
13
|
Helal MA, El-Sayed HM, Maarouf AA, Fadlallah MM. Metal dichalcogenide nanomeshes: structural, electronic and magnetic properties. Phys Chem Chem Phys 2021; 23:21183-21195. [PMID: 34528957 DOI: 10.1039/d1cp03743a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Motivated by the successful preparation of two-dimensional transition metal dichalcogenide (2D-TMD) nanomeshes in the last three years, we use density functional theory (DFT) to study the structural stability, mechanical, magnetic, and electronic properties of porous 2H-MoX2 (X = S, Se and Te) without and with pore passivation. We consider structures with multiple, systematically created pores. The molecular dynamics simulations and cohesive energy calculations showed the stability of the 2D-TMD nanomeshes, with larger stability for those with smaller pores. The lattice undergoes some deformations to accommodate the pore energetically, and as the pore size increases Young's modulus decreases. In most cases, the missing metal atoms disrupt the spin states' even population, resulting in some nanomeshes becoming magnetic. The electronic gaps of the MoX2 nanomesh systems are diminished because of the emergence of pore-edge localized mid-gap metal 4d states in the spin-polarized spectrum, making some systems half-metallic. The oxygen passivation of the pore edges of 2D-TMD nanomeshes restores the even population of spin states, and makes those systems metallic. Our results can be used in different applications such as spintronics, ion chelation, and molecular sensing applications.
Collapse
Affiliation(s)
- Mohamed A Helal
- Department of Physics, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - H M El-Sayed
- Department of Physics, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Ahmed A Maarouf
- Department of Physics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| | - Mohamed M Fadlallah
- Department of Physics, Faculty of Science, Benha University, Benha 13518, Egypt.
| |
Collapse
|
14
|
Marie Freiberger E, Späth F, Bauer U, Düll F, Bachmann P, Steinhauer J, Hemauer F, Waleska NJ, Schwaab V, Steinrück HP, Papp C. Selective Oxygen and Hydrogen Functionalization of the h-BN/Rh(111) Nanomesh. Chemistry 2021; 27:13172-13180. [PMID: 34254706 DOI: 10.1002/chem.202101946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Indexed: 11/05/2022]
Abstract
We present detailed studies on the covalent adsorption of molecular oxygen and atomic hydrogen on the hexagonal boron nitride (h-BN) nanomesh on Rh(111). The functionalization of this two-dimensional (2D) material was investigated under ultra-high vacuum conditions using synchrotron radiation-based in situ high-resolution X-ray photoelectron spectroscopy, temperature-programmed X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy. We are able to provide a deep insight into the adsorption behavior and thermal stability of oxygen and hydrogen on h-BN/Rh(111). Oxygen functionalization was achieved via a supersonic molecular beam while hydrogen functionalization was realized using an atomic hydrogen source. Adsorption of the respective species was observed to occur selectively in the pores of h-BN leading to spatially defined modification of the 2D layer. The adsorption of the observed molecular oxygen species was found to be an activated process that requires high-energy oxygen molecules. Upon heating to 700 K, oxygen functionalization was observed to be almost reversible except for small amounts of boron oxides evolving due to the reaction of oxygen with the 2D material. Hydrogen functionalization of h-BN/Rh(111) was fully reversed upon heating to about 640 K.
Collapse
Affiliation(s)
- Eva Marie Freiberger
- Physikalische Chemie II, Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Florian Späth
- Physikalische Chemie II, Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Udo Bauer
- Physikalische Chemie II, Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Fabian Düll
- Physikalische Chemie II, Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Philipp Bachmann
- Physikalische Chemie II, Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Johann Steinhauer
- Physikalische Chemie II, Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Felix Hemauer
- Physikalische Chemie II, Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Natalie J Waleska
- Physikalische Chemie II, Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Valentin Schwaab
- Physikalische Chemie II, Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Hans-Peter Steinrück
- Physikalische Chemie II, Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Christian Papp
- Physikalische Chemie II, Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| |
Collapse
|
15
|
Han Z, Li M, Li L, Jiao F, Wei Z, Geng D, Hu W. When graphene meets white graphene - recent advances in the construction of graphene and h-BN heterostructures. NANOSCALE 2021; 13:13174-13194. [PMID: 34477725 DOI: 10.1039/d1nr03733a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
2D heterostructures have very recently witnessed a boom in scientific and technological activities owing to the customized spatial orientation and tailored physical properties. A large amount of 2D heterostructures have been constructed on the basis of the combination of mechanical exfoliation and located transfer method, opening wide possibilities for designing novel hybrid systems with tuned structures, properties, and applications. Among the as-developed 2D heterostructures, in-plane graphene and h-BN heterostructures have drawn the most attention in the past few decades. The controllable synthesis, the investigation of properties, and the expansion of applications have been widely explored. Herein, the fabrication of graphene and h-BN heterostructures is mainly focused on. Then, the spatial configurations for the heterostructures are systematically probed to identify the highly related unique features. Moreover, as a most promising approach for the scaled production of 2D materials, the in situ CVD fabrication of the heterostructures is summarized, demonstrating a significant potential in the controllability of size, morphology, and quality. Further, the recent applications of the 2D heterostructures are discussed. Finally, the concerns and challenges are fully elucidated and a bright future has been envisioned.
Collapse
Affiliation(s)
- Ziyi Han
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 P. R. China.
| | | | | | | | | | | | | |
Collapse
|
16
|
Zhang L, Dong J, Ding F. Strategies, Status, and Challenges in Wafer Scale Single Crystalline Two-Dimensional Materials Synthesis. Chem Rev 2021; 121:6321-6372. [PMID: 34047544 DOI: 10.1021/acs.chemrev.0c01191] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The successful exfoliation of graphene has given a tremendous boost to research on various two-dimensional (2D) materials in the last 15 years. Different from traditional thin films, a 2D material is composed of one to a few atomic layers. While atoms within a layer are chemically bonded, interactions between layers are generally weak van der Waals (vdW) interactions. Due to their particular dimensionality, 2D materials exhibit special electronic, magnetic, mechanical, and thermal properties, not found in their 3D counterparts, and therefore they have great potential in various applications, such as 2D materials-based devices. To fully realize their large-scale practical applications, especially in devices, wafer scale single crystalline (WSSC) 2D materials are indispensable. In this review, we present a detailed overview on strategies toward the synthesis of WSSC 2D materials while highlighting the recent progress on WSSC graphene, hexagonal boron nitride (hBN), and transition metal dichalcogenide (TMDC) synthesis. The challenges that need to be addressed in future studies have also been described. In general, there have been two distinct routes to synthesize WSSC 2D materials: (i) allowing only one nucleus on a wafer scale substrate to be formed and developed into a large single crystal and (ii) seamlessly stitching a large number of unidirectionally aligned 2D islands on a wafer scale substrate, which is generally single crystalline. Currently, the synthesis of WSSC graphene has been realized by both routes, and WSSC hBN and MoS2 have been synthesized by route (ii). On the other hand, the growth of other WSSC 2D materials and WSSC multilayer 2D materials still remains a big challenge. In the last section, we wrap up this review by summarizing the future challenges and opportunities in the synthesis of various WSSC 2D materials.
Collapse
Affiliation(s)
- Leining Zhang
- Centre for Multidimensional Carbon Materials, Institute for Basic Science, Ulsan 44919, South Korea.,School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Jichen Dong
- Centre for Multidimensional Carbon Materials, Institute for Basic Science, Ulsan 44919, South Korea.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Feng Ding
- Centre for Multidimensional Carbon Materials, Institute for Basic Science, Ulsan 44919, South Korea.,School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| |
Collapse
|
17
|
Zhang J, Tan B, Zhang X, Gao F, Hu Y, Wang L, Duan X, Yang Z, Hu P. Atomically Thin Hexagonal Boron Nitride and Its Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000769. [PMID: 32803781 DOI: 10.1002/adma.202000769] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Atomically thin hexagonal boron nitride (h-BN) is an emerging star of 2D materials. It is taken as an optimal substrate for other 2D-material-based devices owing to its atomical flatness, absence of dangling bonds, and excellent stability. Specifically, h-BN is found to be a natural hyperbolic material in the mid-infrared range, as well as a piezoelectric material. All the unique properties are beneficial for novel applications in optoelectronics and electronics. Currently, most of these applications are merely based on exfoliated h-BN flakes at their proof-of-concept stages. Chemical vapor deposition (CVD) is considered as the most promising approach for producing large-scale, high-quality, atomically thin h-BN films and heterostructures. Herein, CVD synthesis of atomically thin h-BN is the focus. Also, the growth kinetics are systematically investigated to point out general strategies for controllable and scalable preparation of single-crystal h-BN film. Meanwhile, epitaxial growth of 2D materials onto h-BN and at its edge to construct heterostructures is summarized, emphasizing that the specific orientation of constituent parts in heterostructures can introduce novel properties. Finally, recent applications of atomically thin h-BN and its heterostructures in optoelectronics and electronics are summarized.
Collapse
Affiliation(s)
- Jia Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology, No. 92, Dazhi Street, Harbin, 150001, China
- Key Laboratory of Microsystems and Microstructure Manufacturing, Ministry of Education, Harbin Institute of Technology, No. 2 Yikuang Street, Harbin, 150080, China
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, No. 2 Yikuang Street, Harbin, 150080, China
| | - Biying Tan
- Key Laboratory of Microsystems and Microstructure Manufacturing, Ministry of Education, Harbin Institute of Technology, No. 2 Yikuang Street, Harbin, 150080, China
| | - Xin Zhang
- Key Laboratory of Microsystems and Microstructure Manufacturing, Ministry of Education, Harbin Institute of Technology, No. 2 Yikuang Street, Harbin, 150080, China
| | - Feng Gao
- School of Materials Science and Engineering, Harbin Institute of Technology, No. 92, Dazhi Street, Harbin, 150001, China
| | - Yunxia Hu
- School of Materials Science and Engineering, Harbin Institute of Technology, No. 92, Dazhi Street, Harbin, 150001, China
| | - Lifeng Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, No. 92, Dazhi Street, Harbin, 150001, China
| | - Xiaoming Duan
- School of Materials Science and Engineering, Harbin Institute of Technology, No. 92, Dazhi Street, Harbin, 150001, China
- Institute for Advanced Ceramics, Harbin Institute of Technology, No. 92 Dazhi Street, Harbin, 150001, China
| | - Zhihua Yang
- School of Materials Science and Engineering, Harbin Institute of Technology, No. 92, Dazhi Street, Harbin, 150001, China
- Institute for Advanced Ceramics, Harbin Institute of Technology, No. 92 Dazhi Street, Harbin, 150001, China
| | - PingAn Hu
- School of Materials Science and Engineering, Harbin Institute of Technology, No. 92, Dazhi Street, Harbin, 150001, China
- Key Laboratory of Microsystems and Microstructure Manufacturing, Ministry of Education, Harbin Institute of Technology, No. 2 Yikuang Street, Harbin, 150080, China
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, No. 2 Yikuang Street, Harbin, 150080, China
- Institute for Advanced Ceramics, Harbin Institute of Technology, No. 92 Dazhi Street, Harbin, 150001, China
| |
Collapse
|
18
|
Cun H, Miao Z, Hemmi A, Al-Hamdani Y, Iannuzzi M, Osterwalder J, Altman MS, Greber T. High-Quality Hexagonal Boron Nitride from 2D Distillation. ACS NANO 2021; 15:1351-1357. [PMID: 33377769 DOI: 10.1021/acsnano.0c08616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The production of high-quality two-dimensional (2D) materials is essential for the ultimate performance of single layers and their hybrids. Hexagonal boron nitride (h-BN) is foreseen to become the key 2D hybrid and packaging material since it is insulating, impermeable, flat, transparent, and chemically inert, though it is difficult to attain in ultimate quality. Here, a scheme is reported for producing single layer h-BN that shows higher quality in view of mosaicity and strain variations than material from chemical vapor deposition (CVD). We delaminate CVD h-BN from Rh(111) and transfer it to a clean metal surface. The twisting angle between BN and the second substrate yields metastable moiré structures. Annealing above 1000 K leads to 2D distillation, i.e., catalyst-assisted BN sublimation from the edges of the transferred layer and subsequent condensation into superior quality h-BN. This provides a way for 2D material production remote from CVD instrumentation.
Collapse
Affiliation(s)
- Huanyao Cun
- Physik-Institut, Universität Zürich, 8057 Zürich, Switzerland
| | - Zichun Miao
- Department of Physics, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Adrian Hemmi
- Physik-Institut, Universität Zürich, 8057 Zürich, Switzerland
| | | | - Marcella Iannuzzi
- Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| | | | - Michael S Altman
- Department of Physics, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Thomas Greber
- Physik-Institut, Universität Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
19
|
Chai K, Shi Y, Wang Y, Zou P, Yuan Q, Xu W, Zhang P. Visible light-driven oxidative coupling of dibenzylamine and substituted anilines with a 2D WSe 2 nanomesh material. NANOSCALE 2020; 12:21869-21878. [PMID: 33107549 DOI: 10.1039/d0nr05128d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A novel 2D WSe2 nanomesh material was synthesized with a 3D SBA-15 mesoporous material via a nanocasting strategy. The formation of the 2D sheet-like nanomesh structure of WSe2 inside a 3D confined pore space is mainly attributed to the synergistic effect arising from the crystal self-limitation growth caused by the layered crystal structure of the WSe2 material and to the space-limitation effect coming from the unique pore structure of the SBA-15 template. The 2D WSe2 nanomesh material possesses extremely high exposure of crystal layer edges, making it an excellent photocatalyst. It shows good visible light-driven photocatalytic performance in oxidative coupling of dibenzylamine and 2-amino/hydroxy/mercaptoanilines to prepare a group of heterocyclic compounds, including benzimidazoles, benzoxazoles and benzothiazoles with oxygen as the sole oxidant. A gram-scale experiment was also carried out to exhibit the scope of this method.
Collapse
Affiliation(s)
- Kejie Chai
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | | | | | | | | | | | | |
Collapse
|
20
|
Zhang L, Ng ML, Vojvodic A. Role of Undercoordinated Sites for the Catalysis in Confined Spaces Formed by Two-Dimensional Material Overlayers. J Phys Chem Lett 2020; 11:9400-9407. [PMID: 33104328 DOI: 10.1021/acs.jpclett.0c02652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Adding a two-dimensional (2D) overlayer on a metal surface is a promising route for activating reactants confined in the interfacial space. However, an atomistic understanding of the role played by undercoordinated sites of the 2D overlayer in the activation of molecules in this nanoscaled confined space is yet to be developed. In this paper, we study CO dissociation as a prototypical reaction to investigate CO activation in the confined space enclosed by Rh(111) and a monolayer of hexagonal boron nitride (h-BN). The effect of the space size (i.e., the distance between h-BN and the metal surface), the type of undercoordinated sites, and the size of the defect are explicitly studied by density functional theory with dispersion correction. The following temperature-programmed X-ray photoelectron spectroscopy measurement suggests that a small portion of the CO dissociated during the desorption, leaving the residual atomic oxygen incorporated into the h-BN lattice, which validates the theoretical prediction. The combination of theory and experiment calls for further attention to be paid to the role of undercoordinated sites in the 2D overlayers in confined systems forming potential new catalytic environments.
Collapse
Affiliation(s)
- Liang Zhang
- Center for Combustion Energy, Tsinghua University, Beijing 100084, China
- School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
| | - May Ling Ng
- SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Aleksandra Vojvodic
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6315, United States
| |
Collapse
|
21
|
Mehler A, Néel N, Kröger J. Dissimilar Decoupling Behavior of Two-Dimensional Materials on Metal Surfaces. J Phys Chem Lett 2020; 11:5204-5211. [PMID: 32515963 DOI: 10.1021/acs.jpclett.0c01320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The efficiency of hexagonal boron nitride and graphene to separate the hydrocarbon molecule C64H36 from Ru(0001) and Pt(111) surfaces is explored in low-temperature scanning tunneling microscopy and spectroscopy experiments. Both 2D materials enable the observation of the Franck-Condon effect in both frontier orbitals. On hexagonal boron nitride, vibronic progression with two vibrational energies gives rise to sharp orbital sidebands that are clearly visible up to the second order of the vibrational quantum number with different Huang-Rhys factors. In contrast, on graphene, orbital and vibronic spectroscopic signatures exhibit broad line shapes, with the second-order progression being hardly discriminable. Only a single vibrational quantum energy leaves its fingerprint in the Franck-Condon spectrum.
Collapse
Affiliation(s)
- Alexander Mehler
- Institut für Physik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany
| | - Nicolas Néel
- Institut für Physik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany
| | - Jörg Kröger
- Institut für Physik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany
| |
Collapse
|
22
|
Szitás Á, Gubó R, Pásztor T, Farkas AP, Ajtai T, Óvári L, Palotás K, Berkó A, Kónya Z. Adsorption of Azobenzene on Hexagonal Boron Nitride Nanomesh Supported by Rh(111). THE JOURNAL OF PHYSICAL CHEMISTRY C 2020; 124:14182-14194. [PMID: 32952773 PMCID: PMC7493209 DOI: 10.1021/acs.jpcc.0c01725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/03/2020] [Indexed: 11/29/2022]
Abstract
![]()
Adsorption
properties of azobenzene, the prototypical molecular
switch, were investigated on a hexagonal boron nitride (h-BN) monolayer
(“nanomesh”) prepared on Rh(111). The h-BN layer was
produced by decomposing borazine (B3N3H6) at 1000–1050 K. Temperature-programmed desorption
(TPD) studies revealed that azobenzene molecules adsorbed on the “wire”
and “pore” regions desorb at slightly different temperatures.
Angle-resolved high-resolution electron energy loss spectroscopy (HREELS)
measurements demonstrated that the first molecular layer is characterized
predominantly by an adsorption geometry with the molecular plane parallel
to the surface. Scanning tunneling microscopy (STM) indicated a clear
preference for adsorption in the pores, manifesting a templating effect,
but in some cases one-dimensional molecular stripes also form, implying
attractive molecule–molecule interaction. Density functional
theory (DFT) calculations provided further details regarding the adsorption
energetics and bonding and confirmed the experimental findings that
the molecules adsorb with the phenyl rings parallel to the surface,
preferentially in the pores, and indicated also the presence of an
attractive molecule–molecule interaction.
Collapse
Affiliation(s)
- Á Szitás
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. tér 1, H-6720 Szeged, Hungary
| | - R Gubó
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. tér 1, H-6720 Szeged, Hungary.,ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3, H-6728 Szeged, Hungary
| | - T Pásztor
- MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, University of Szeged, Rerrich B. tér 1, H-6720 Szeged, Hungary
| | - A P Farkas
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3, H-6728 Szeged, Hungary.,MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, University of Szeged, Rerrich B. tér 1, H-6720 Szeged, Hungary
| | - T Ajtai
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3, H-6728 Szeged, Hungary.,Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, H-6720 Szeged, Hungary
| | - L Óvári
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3, H-6728 Szeged, Hungary.,MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, University of Szeged, Rerrich B. tér 1, H-6720 Szeged, Hungary
| | - K Palotás
- MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, University of Szeged, Rerrich B. tér 1, H-6720 Szeged, Hungary.,Institute for Solid State Physics and Optics, Wigner Research Center for Physics, P. O. Box 49, H-1525 Budapest, Hungary
| | - A Berkó
- MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, University of Szeged, Rerrich B. tér 1, H-6720 Szeged, Hungary
| | - Z Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. tér 1, H-6720 Szeged, Hungary.,MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, University of Szeged, Rerrich B. tér 1, H-6720 Szeged, Hungary
| |
Collapse
|
23
|
Goriachko A, He Y, Knapp M, Over H, Corso M, Brugger T, Berner S, Osterwalder J, Greber T. Correction to "Self-Assembly of a Hexagonal Boron Nitride Nanomesh on Ru(0001)". LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6070. [PMID: 32432885 DOI: 10.1021/acs.langmuir.0c01239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
|
24
|
Arias P, Ebnonnasir A, Ciobanu CV, Kodambaka S. Growth Kinetics of Two-Dimensional Hexagonal Boron Nitride Layers on Pd(111). NANO LETTERS 2020; 20:2886-2891. [PMID: 32130016 DOI: 10.1021/acs.nanolett.0c00704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Using in situ variable-temperature scanning tunneling microscopy (300-673 K) during chemical vapor deposition of two-dimensional hexagonal boron nitride (hBN) on Pd(111) from borazine precursor at pressures up to 10-6 mbar, we identify the mechanisms leading to carpetlike uphill or downhill growth across the Pd steps. Deposition at a higher rate and lower temperature promotes uphill growth via preferential attachment at the ascending and descending step-edges, whereas a lower deposition rate and higher temperature lead to downhill growth via nucleation and growth of islands on Pd terraces. We attribute this unusual growth behavior to differences in temperature-dependent rates of hBN deposition at the steps versus on the Pd terraces. Our results illustrate how growth mechanisms can be activated by a pair of parameters (substrate temperature and partial pressure of borazine) and provide new insights into the mechanisms underlying carpetlike growth of hBN and other layered materials.
Collapse
Affiliation(s)
- Pedro Arias
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California 90095 United States
| | - Abbas Ebnonnasir
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California 90095 United States
| | - Cristian V Ciobanu
- Department of Mechanical Engineering and Materials Science Program, Colorado School of Mines, Golden, Colorado 80401 United States
| | - Suneel Kodambaka
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California 90095 United States
| |
Collapse
|
25
|
Zhu H, Zhao X, Li H, Zhao R. Revealing stable geometries and magic clusters of hexagonal boron nitride in the nucleation of chemical vapor deposition growth on Ni(111)/Cu(111) surfaces: a theoretical study. Phys Chem Chem Phys 2020; 22:4023-4031. [PMID: 32022041 DOI: 10.1039/c9cp06425g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To improve the quality of chemical vapor deposition (CVD)-prepared hexagonal boron nitride (h-BN), it is essential to understand the growth mechanism, particularly to learn the structures as well as their stabilities and kinetic evolutions of the formed clusters in the initial growth stage. Herein, we performed systematic studies on the stabilities of various geometries of different-/identical-sized BN clusters on (111) surfaces of Ni and Cu by density functional theory simulations. The results show that the stable configurations of different-sized clusters are those containing the most normal hexagons composed with alternate B and N atoms. There exist ultra-stable magic clusters on the (111) surfaces of both the metals. On Ni(111), the geometries of the magic clusters are composed of hexagons arranged in the core-shell structure, while they contain tetragons on the Cu(111) surface. The ultra-high stabilities of the magic clusters can be attributed to the comprehensive effect from the core-shell structure, high symmetry, edged atoms, and adsorption sites. The stable geometries of different-sized clusters as well as magic clusters present the vital roles of metal substrates in CVD-synthesis of h-BN and provide instructive information in improving the quality of h-BN by selecting appropriate metal substrates.
Collapse
Affiliation(s)
- Hongxia Zhu
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Henan 454003, China.
| | | | | | | |
Collapse
|
26
|
Petrović M, Hoegen MHV, Meyer Zu Heringdorf FJ. Equilibrium shape of single-layer hexagonal boron nitride islands on iridium. Sci Rep 2019; 9:19553. [PMID: 31863003 PMCID: PMC6925269 DOI: 10.1038/s41598-019-56000-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/02/2019] [Indexed: 12/03/2022] Open
Abstract
Large, high-quality layers of hexagonal boron nitride (hBN) are a prerequisite for further advancement in scientific investigation and technological utilization of this exceptional 2D material. Here we address this demand by investigating chemical vapor deposition synthesis of hBN on an Ir(111) substrate, and focus on the substrate morphology, more specifically mono-atomic steps that are always present on all catalytic surfaces of practical use. From low-energy electron microscopy and atomic force microscopy data, we are able to set up an extended Wulff construction scheme and provide a clear elaboration of different interactions governing the equilibrium shapes of the growing hBN islands that deviate from the idealistic triangular form. Most importantly, intrinsic hBN edge energy and interaction with the iridium step edges are examined separately, revealing in such way the importance of substrate step morphology for the island structure and the overall quality of 2D materials.
Collapse
Affiliation(s)
- Marin Petrović
- Faculty of Physics and CENIDE, University of Duisburg-Essen, Lotharstr. 1, D-47057, Duisburg, Germany. .,Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička cesta 46, HR-10000, Zagreb, Croatia.
| | - Michael Horn-von Hoegen
- Faculty of Physics and CENIDE, University of Duisburg-Essen, Lotharstr. 1, D-47057, Duisburg, Germany
| | | |
Collapse
|
27
|
Stagi L, Ren J, Innocenzi P. From 2-D to 0-D Boron Nitride Materials, The Next Challenge. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3905. [PMID: 31779207 PMCID: PMC6926581 DOI: 10.3390/ma12233905] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/18/2019] [Accepted: 11/22/2019] [Indexed: 12/04/2022]
Abstract
The discovery of graphene has paved the way for intense research into 2D materials which is expected to have a tremendous impact on our knowledge of material properties in small dimensions. Among other materials, boron nitride (BN) nanomaterials have shown remarkable features with the possibility of being used in a large variety of devices. Photonics, aerospace, and medicine are just some of the possible fields where BN has been successfully employed. Poor scalability represents, however, a primary limit of boron nitride. Techniques to limit the number of defects, obtaining large area sheets and the production of significant amounts of homogenous 2D materials are still at an early stage. In most cases, the synthesis process governs defect formation. It is of utmost importance, therefore, to achieve a deep understanding of the mechanism behind the creation of these defects. We reviewed some of the most recent studies on 2D and 0D boron nitride materials. Starting with the theoretical works which describe the correlations between structure and defects, we critically described the main BN synthesis routes and the properties of the final materials. The main results are summarized to present a general outlook on the current state of the art in this field.
Collapse
Affiliation(s)
| | | | - Plinio Innocenzi
- Laboratorio di Scienza dei Materiali e Nanotecnologie, CR-INSTM, Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, 07100 Sassari, Italy; (L.S.); (J.R.)
| |
Collapse
|
28
|
Hemmi A, Cun H, Tocci G, Epprecht A, Stel B, Lingenfelder M, de Lima LH, Muntwiler M, Osterwalder J, Iannuzzi M, Greber T. Catalyst Proximity-Induced Functionalization of h-BN with Quat Derivatives. NANO LETTERS 2019; 19:5998-6004. [PMID: 31408608 DOI: 10.1021/acs.nanolett.9b01792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inert single-layer boron nitride (h-BN) grown on a catalytic metal may be functionalized with quaternary ammonium compounds (quats) that are widely used as nonreactive electrolytes. We observe that the quat treatment, which facilitates the electrochemical transfer of two-dimensional materials, involves a decomposition of quat ions and leads to covalently bound quat derivatives on top of the 2D layer. Applying tetraoctylammonium and h-BN on rhodium, the reaction product is top-alkylized h-BN as identified with high-resolution X-ray photoelectron spectroscopy. The alkyl chains are homogeneously distributed across the surface, and the properties thereof are well-tunable by the choice of different quats. The functionalization further weakens the 2D material-substrate interaction and promotes easy transfer. Therefore, the functionalization scheme that is presented enables the design of 2D materials with tailored properties and with the freedom to position and orient them as required. The mechanism of this functionalization route is investigated with density functional theory calculations, and we identify the proximity of the catalytic metal substrate to alter the chemical reactivity of otherwise inert h-BN layers.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Luis Henrique de Lima
- Swiss Light Source, Paul Scherrer Institut , 5232 Villigen PSI , Switzerland
- Centro de Ciências Naturais e Humanas , Universidade Federal do ABC , 09210-580 , Santo André , Brazil
| | - Matthias Muntwiler
- Swiss Light Source, Paul Scherrer Institut , 5232 Villigen PSI , Switzerland
| | | | | | | |
Collapse
|
29
|
Abstract
In this paper we demonstrate a metal organic chemical vapor deposition (MOCVD) process for growth of few layer hBN films on Ni(111) on sapphire substrates using triethylborane (TEB) and ammonia (NH3). Ni(111) was selected as a substrate due to its symmetry and close lattice matching to hBN. Using atomic force microscopy (AFM) we find hBN is well aligned to the Ni below with in plane alignment between the hBN zig zag edge and the <110> of Ni. We further investigate the growth process exploring interaction between precursors and the Ni(111) substrate. Under TEB pre-exposure Ni-B and graphitic compounds form which disrupts the formation of layered phase pure hBN; while NH3 pre-exposure results in high quality films. Tunnel transport of films was investigated by conductive-probe AFM demonstrating films to be highly resistive. These findings improve our understanding of the chemistry and mechanisms involved in hBN growth on metal surfaces by MOCVD.
Collapse
|
30
|
Halle J, Néel N, Kröger J. Tailoring Intercalant Assemblies at the Graphene-Metal Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2554-2560. [PMID: 30665296 DOI: 10.1021/acs.langmuir.8b03879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The influence of graphene on the assembly of intercalated material is studied using low-temperature scanning tunneling microscopy. Intercalation of Pt under monolayer graphene on Pt(111) induces a substrate reconstruction that is qualitatively different from the lattice rearrangement induced by metal deposition on Pt(111) and, specifically, the homoepitaxy of Pt. Alkali metals Cs and Li are used as intercalants for monolayer and bilayer graphene on Ru(0001). Atomically resolved topographic data reveal that at elevated alkali metal coverage (2 × 2)Cs and (1 × 1)Li intercalant structures form with respect to the graphene lattice.
Collapse
Affiliation(s)
- Johannes Halle
- Institut für Physik , Technische Universität Ilmenau , D-98693 Ilmenau , Germany
| | - Nicolas Néel
- Institut für Physik , Technische Universität Ilmenau , D-98693 Ilmenau , Germany
| | - Jörg Kröger
- Institut für Physik , Technische Universität Ilmenau , D-98693 Ilmenau , Germany
| |
Collapse
|
31
|
Mehler A, Néel N, Bocquet ML, Kröger J. Exciting vibrons in both frontier orbitals of a single hydrocarbon molecule on graphene. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:065001. [PMID: 30523960 DOI: 10.1088/1361-648x/aaf54c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Vibronic excitations in molecules are key to the fundamental understanding of the interaction between vibrational and electronic degrees of freedom. In order to probe the genuine vibronic properties of a molecule even after its adsorption on a surface appropriate buffer layers are of paramount importance. Here, vibrational progression in both molecular frontier orbitals is observed with submolecular resolution on a graphene-covered metal surface using scanning tunnelling spectroscopy. Accompanying calculations demonstrate that the vibrational modes that cause the orbital replica in the progression share the same symmetry as the electronic states they couple to. In addition, the vibrational progression is more pronounced for separated molecules than for molecules embedded in molecular assemblies. The entire vibronic spectra of these molecular species are moreover rigidly shifted with respect to each other. This work unravels intramolecular changes in the vibronic and electronic structure owing to the efficient reduction of the molecule-metal hybridization by graphene.
Collapse
Affiliation(s)
- A Mehler
- Institut für Physik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany
| | | | | | | |
Collapse
|
32
|
Martínez-Galera AJ, Gómez-Rodríguez JM. Pseudo-ordered distribution of Ir nanocrystals on h-BN. NANOSCALE 2019; 11:2317-2325. [PMID: 30662984 DOI: 10.1039/c8nr08928k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A 2D material consisting of a pseudo-ordered distribution of Ir nanocrystals supported on a h-BN/Rh(111) surface is presented here. The particular spatial distribution of the Ir nanoparticles is achieved thanks to the existence of a large variety of adsorption positions within the pores of the h-BN/Rh(111) nanomesh template with hexagonal symmetry. The resulting deviations of nanoparticle positions with respect to a perfect hexagonal lattice, which make this material of special interest in the field of optics, can be tuned by the temperature and the amount of Ir. Upon annealing, this material undergoes slight structural changes in the temperature range of 370-570 K and much more drastic ones, due to cluster coalescence, between 670 and 770 K. This relatively high onset of coalescence is encouraging for using this 2D material as a catalyst for reactions such as the oxidation of carbon monoxide or of nitrogen monoxide, which are especially relevant in the field of environmental science. Finally, metal nanostructures exhibiting regular geometries have been created from this material using a scanning tunneling microscope tip. Because of the insulating character of h-BN, these nanostructures could be very promising to use in the design of conductive nanotracks.
Collapse
Affiliation(s)
- Antonio J Martínez-Galera
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
| | | |
Collapse
|
33
|
Achilli S, Cavaliere E, Nguyen TH, Cattelan M, Agnoli S. Growth and electronic structure of 2D hexagonal nanosheets on a corrugated rectangular substrate. NANOTECHNOLOGY 2018; 29:485201. [PMID: 30192742 DOI: 10.1088/1361-6528/aadfd2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Graphene and h-BN are grown by chemical vapor deposition in ultra high vacuum conditions on the Pt(110) surface. Scanning tunneling microscopy measurements and low-energy electron diffraction data indicate that graphene forms a variety of differently oriented incommensurate domains although with a strong preference to align its [Formula: see text] direction with the [Formula: see text] direction of Pt. Meanwhile, h-BN exhibits a c(8 × 10) commensurate superstructure, which presents a high level of defectivity that implies local variation of the periodicity (i.e. mixed c(8 × 10) and c(8 × 12) patches) and the introduction of local defects. The combination of advanced photoemission spectroscopy data (angle-resolved photoemission spectroscopy from the valence band) and ab initio calculations indicates that both 2D materials interact weakly with the substrate: graphene exhibits neutral doping and is morphologically flat, even if it nucleates on the relatively highly corrugated rectangular (110) surface. In the case of h-BN, the interaction is slightly stronger and is characterized by a small electron transfer from surface Pt atoms to nitrogen atoms. The (110) termination of Pt is therefore a quite interesting surface for the growth of 2D materials because given its low symmetry, it may favor the growth of selectively oriented domains but does not affect their pristine electronic properties.
Collapse
Affiliation(s)
- Simona Achilli
- Department of Physics, European Theoretical Spectroscopy Facility (ETSF), University of Milano, Via Celoria 16, 20133 Milano, Italy
| | | | | | | | | |
Collapse
|
34
|
Zhang Q, Yu J, Ebert P, Zhang C, Pan CR, Chou MY, Shih CK, Zeng C, Yuan S. Tuning Band Gap and Work Function Modulations in Monolayer hBN/Cu(111) Heterostructures with Moiré Patterns. ACS NANO 2018; 12:9355-9362. [PMID: 30107116 DOI: 10.1021/acsnano.8b04444] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The moiré pattern formed between a two-dimensional (2D) material and the substrate has played a crucial role in tuning the electronic structure of the 2D material. Here, by using scanning tunneling microscopy and spectroscopy, we found a moiré-pattern-dependent band gap and work function modulation in hexagonal boron nitride (hBN)/Cu(111) heterostructures, whose amplitudes increase with the moiré pattern wavelength. Moreover, the work function modulation shifts agree well with the conduction band edge shifts, indicating a spatially constant electron affinity for the hBN layer. Density functional theory calculations showed that these observations in hBN/Cu(111) heterostructures mainly originated from the hybridization of the N 3p z orbital and Cu 4s orbital in different atomic configurations. Our results show that the twist-angle dependence of moiré patterns in hBN/Cu(111) heterostructures can be used to tailor the electronic properties including band gap and work function.
Collapse
Affiliation(s)
- Qiang Zhang
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
- CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
- Department of Physics , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Jin Yu
- Beijing Computational Science Research Center , Beijing 100084 , China
- Theory of Condensed Matter , Radboud University , Nijmegen 6525 , AJ , The Netherlands
| | - Philipp Ebert
- Peter Grünberg Institut , Forschungszentrum Jülich GmbH , 52425 Jülich , Germany
| | - Chendong Zhang
- Department of Physics , University of Texas at Austin , Austin , Texas 78712 , United States
- School of Physics and Technology , Wuhan University , Wuhan 430072 , China
| | - Chi-Ruei Pan
- School of Physics , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Mei-Yin Chou
- School of Physics , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
- Institute of Atomic and Molecular Sciences , Academia Sinica , Taipei 10617 , Taiwan
| | - Chih-Kang Shih
- Department of Physics , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Changgan Zeng
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
- CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Shengjun Yuan
- Beijing Computational Science Research Center , Beijing 100084 , China
- School of Physics and Technology , Wuhan University , Wuhan 430072 , China
| |
Collapse
|
35
|
Kim KK, Lee HS, Lee YH. Synthesis of hexagonal boron nitride heterostructures for 2D van der Waals electronics. Chem Soc Rev 2018; 47:6342-6369. [PMID: 30043784 DOI: 10.1039/c8cs00450a] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Among two dimensional (2D) van der Waals (vdW) layered materials such as graphene, which is used like a metal, and transition metal chalcogenides (TMdCs), which are used as semiconductors and metals, hexagonal boron nitride (hBN), which is used as an insulator, is ubiquitous as a building block to construct 2D vdW electronics for versatile tunneling devices. Monolayer and few-layer hBN films have been prepared with flake sizes of a few hundred micrometer via mechanical exfoliation and transfer methods. Another approach used to synthesize hBN films on a large scale is chemical vapor deposition (CVD). Although the single-crystal film growth of hBN on the wafer scale is the key to realizing realistic electronic applications, the various functionalities of hBN for 2D electronics are mostly limited to the microscale. Here, we review the recent progress for the large-area synthesis of hBN and other related vdW heterostructures via CVD, and the artificial construction of vdW heterostructures and 2D vdW electronics based on hBN, in terms of charge fluctuations, passivation, gate dielectrics, tunneling, Coulombic interactions, and contact resistances. The challenges and future perspectives for practical applications are also addressed.
Collapse
Affiliation(s)
- Ki Kang Kim
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04320, Republic of Korea.
| | | | | |
Collapse
|
36
|
Rosely CVS, Nagendra B, Sivaprasad VP, Gowd EB. Influence of Boron Nitride Nanosheets on the Crystallization and Polymorphism of Poly(l-lactide). J Phys Chem B 2018; 122:6442-6451. [DOI: 10.1021/acs.jpcb.8b03211] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- C. V. Sijla Rosely
- Materials Science and Technology Division, CSIR−National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110 001, India
| | - Baku Nagendra
- Materials Science and Technology Division, CSIR−National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110 001, India
| | - Vijayan Pillai Sivaprasad
- Materials Science and Technology Division, CSIR−National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India
| | - E. Bhoje Gowd
- Materials Science and Technology Division, CSIR−National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110 001, India
| |
Collapse
|
37
|
Pope T, Du S, Gao HJ, Hofer WA. Electronic effects and fundamental physics studied in molecular interfaces. Chem Commun (Camb) 2018; 54:5508-5517. [PMID: 29726883 DOI: 10.1039/c8cc02191k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Scanning probe instruments in conjunction with a very low temperature environment have revolutionized the ability of building, functionalizing, and analysing two dimensional interfaces in the last twenty years. In addition, the availability of fast, reliable, and increasingly sophisticated methods to simulate the structure and dynamics of these interfaces allow us to capture even very small effects at the atomic and molecular level. In this review we shall focus largely on metal surfaces and organic molecular compounds and show that building systems from the bottom up and controlling the physical properties of such systems is no longer within the realm of the desirable, but has become day to day reality in our best laboratories.
Collapse
Affiliation(s)
- Thomas Pope
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| | | | | | | |
Collapse
|
38
|
Metal Clusters Dispersed on Oxide Supports: Preparation Methods and Metal-Support Interactions. Top Catal 2018. [DOI: 10.1007/s11244-018-0957-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
39
|
Zou J, Tang LM, Chen K, Feng Y. Contrasting properties of hydrogenated and protonated single-layer h-BN from first-principles. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:065001. [PMID: 29256870 DOI: 10.1088/1361-648x/aaa2d7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hydrogenation is an efficient approach to tune the electronic, magnetic and chemical properties of single-layer hexagon boron nitride (h-BN). The relative stabilities and electronic properties of hydrogenated and protonated h-BN sheets are studied by means of density functional theory calculations. H and [Formula: see text] show very contrasting behaviors in chemisorption and clustering on h-BN, in which a single H atom prefers to adsorb on the top site of the boron (B) atom, and more H atoms tend to cluster on both sides of the h-BN layers in an alternating manner; while single [Formula: see text] prefers to stay on the nitrogen (N) atom, and protons are more likely to separate from each other on h-BN. The collective [Formula: see text] bonding feature of H-decorated h-BN lattice plays a key role in stabilizing the H clusters on the h-BN sheet. The non-magnetic H clusters with an even number of H atoms ([Formula: see text]) are energetically favored, compared with those with odd [Formula: see text]. Both the binding energy and band gap width vary in an oscillatory way as a function of [Formula: see text].
Collapse
Affiliation(s)
- Juan Zou
- School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | | | | | | |
Collapse
|
40
|
McLean B, Eveleens CA, Mitchell I, Webber GB, Page AJ. Catalytic CVD synthesis of boron nitride and carbon nanomaterials - synergies between experiment and theory. Phys Chem Chem Phys 2018; 19:26466-26494. [PMID: 28849841 DOI: 10.1039/c7cp03835f] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Low-dimensional carbon and boron nitride nanomaterials - hexagonal boron nitride, graphene, boron nitride nanotubes and carbon nanotubes - remain at the forefront of advanced materials research. Catalytic chemical vapour deposition has become an invaluable technique for reliably and cost-effectively synthesising these materials. In this review, we will emphasise how a synergy between experimental and theoretical methods has enhanced the understanding and optimisation of this synthetic technique. This review examines recent advances in the application of CVD to synthesising boron nitride and carbon nanomaterials and highlights where, in many cases, molecular simulations and quantum chemistry have provided key insights complementary to experimental investigation. This synergy is particularly prominent in the field of carbon nanotube and graphene CVD synthesis, and we propose here it will be the key to future advances in optimisation of CVD synthesis of boron nitride nanomaterials, boron nitride - carbon composite materials, and other nanomaterials generally.
Collapse
Affiliation(s)
- Ben McLean
- School of Environmental & Life Sciences, The University of Newcastle, Callaghan NSW 2308, Australia.
| | | | | | | | | |
Collapse
|
41
|
Gubó R, Vári G, Kiss J, Farkas AP, Palotás K, Óvári L, Berkó A, Kónya Z. Tailoring the hexagonal boron nitride nanomesh on Rh(111) with gold. Phys Chem Chem Phys 2018; 20:15473-15485. [PMID: 29799587 DOI: 10.1039/c8cp00790j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The pore diameter (depth) of the periodically corrugated h-BN monolayer (“nanomesh”) can be tuned allyoing Au into the Rh(111) surface.
Collapse
Affiliation(s)
- R. Gubó
- Extreme Light Infrastructure-ALPS
- ELI-HU Non-profit Ltd
- H-6720 Szeged
- Hungary
- Department of Applied and Environmental Chemistry, University of Szeged
| | - G. Vári
- Department of Applied and Environmental Chemistry, University of Szeged
- H-6720 Szeged
- Hungary
| | - J. Kiss
- MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group
- H-6720 Szeged
- Hungary
| | - A. P. Farkas
- Extreme Light Infrastructure-ALPS
- ELI-HU Non-profit Ltd
- H-6720 Szeged
- Hungary
- MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group
| | - K. Palotás
- MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group
- H-6720 Szeged
- Hungary
- Institute of Physics
- Slovak Academy of Sciences
| | - L. Óvári
- Extreme Light Infrastructure-ALPS
- ELI-HU Non-profit Ltd
- H-6720 Szeged
- Hungary
- MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group
| | - A. Berkó
- MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group
- H-6720 Szeged
- Hungary
| | - Z. Kónya
- Department of Applied and Environmental Chemistry, University of Szeged
- H-6720 Szeged
- Hungary
- MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group
- H-6720 Szeged
| |
Collapse
|
42
|
Berseneva N, Komsa HP, Vierimaa V, Björkman T, Fan Z, Harju A, Todorović M, Krasheninnikov AV, Nieminen RM. Substitutional carbon doping of free-standing and Ru-supported BN sheets: a first-principles study. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:415301. [PMID: 28718771 DOI: 10.1088/1361-648x/aa807c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The development of spatially homogeneous mixed structures with boron (B), nitrogen (N) and carbon (C) atoms arranged in a honeycomb lattice is highly desirable, as they open the possibility of creating stable two-dimensional materials with tunable band gaps. However, at least in the free-standing form, the mixed BCN system is energetically driven towards phase segregation to graphene and hexagonal BN. It is possible to overcome the segregation when BCN material is grown on a particular metal substrate, for example Ru(0 0 0 1), but the stabilization mechanism is still unknown. With the use of density-functional theory we study the energetics of BN/Ru slabs, with different types of configurations of C substitutional defects introduced to the h-BN overlayer. The results are compared to the energetics of free-standing BCN materials. We found that the substrate facilitates the C substitution process in the h-BN overlayer. Thus, more homogeneous BCN material can be grown, overcoming the segregation into graphene and h-BN. In addition, we investigate the electronic and transport gaps in free-standing BCN structures, and assess their mechanical properties and stability. The band gap in mixed BCN free-standing material depends on the concentration of the constituent elements and ranges from zero in pristine graphene to nearly 5 eV in free-standing h-BN. This makes BCN attractive for application in modern electronics.
Collapse
Affiliation(s)
- N Berseneva
- Department of Applied Physics, Aalto University, PO Box 14100, 00076 Aalto, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Tian T, Shih CJ. Molecular Epitaxy on Two-Dimensional Materials: The Interplay between Interactions. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b02669] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tian Tian
- Institute for Chemical and
Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
| | - Chih-Jen Shih
- Institute for Chemical and
Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
| |
Collapse
|
44
|
Template Effect of the Graphene Moiré Lattice on Phthalocyanine Assembly. Molecules 2017; 22:molecules22050731. [PMID: 28467367 PMCID: PMC6154495 DOI: 10.3390/molecules22050731] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 11/17/2022] Open
Abstract
Superstructures of metal-free phthalocyanine (2H-Pc) molecules on graphene-covered Ir(111) have been explored by scanning tunnelling microscopy. Depending on the sub-monolayer coverage different molecular assemblies form at the surface. They reflect the transition from a graphene template effect on the 2H-Pc arrangement to molecular superstructures that are mainly governed by the intermolecular coupling.
Collapse
|
45
|
Meng J, Zhang X, Wang Y, Yin Z, Liu H, Xia J, Wang H, You J, Jin P, Wang D, Meng XM. Aligned Growth of Millimeter-Size Hexagonal Boron Nitride Single-Crystal Domains on Epitaxial Nickel Thin Film. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1604179. [PMID: 28266795 DOI: 10.1002/smll.201604179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 01/09/2017] [Indexed: 06/06/2023]
Abstract
Atomically thin hexagonal boron nitride (h-BN) is gaining significant attention for many applications such as a dielectric layer or substrate for graphene-based devices. For these applications, synthesis of high-quality and large-area h-BN layers with few defects is strongly desirable. In this work, the aligned growth of millimeter-size single-crystal h-BN domains on epitaxial Ni (111)/sapphire substrates by ion beam sputtering deposition is demonstrated. Under the optimized growth conditions, single-crystal h-BN domains up to 0.6 mm in edge length are obtained, the largest reported to date. The formation of large-size h-BN domains results mainly from the reduced Ni-grain boundaries and the improved crystallinity of Ni film. Furthermore, the h-BN domains show well-aligned orientation and excellent dielectric properties. In addition, the sapphire substrates can be repeatedly used with almost no limit. This work provides an effective approach for synthesizing large-scale high-quality h-BN layers for electronic applications.
Collapse
Affiliation(s)
- Junhua Meng
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xingwang Zhang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ye Wang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhigang Yin
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Heng Liu
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jing Xia
- Key Lab of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Haolin Wang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jingbi You
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Peng Jin
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Denggui Wang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiang-Min Meng
- Key Lab of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
46
|
Beniwal S, Hooper J, Miller DP, Costa PS, Chen G, Liu SY, Dowben PA, Sykes ECH, Zurek E, Enders A. Graphene-like Boron-Carbon-Nitrogen Monolayers. ACS NANO 2017; 11:2486-2493. [PMID: 28165713 DOI: 10.1021/acsnano.6b08136] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A strategy to synthesize a 2D graphenic but ternary monolayer containing atoms of carbon, nitrogen, and boron, h-BCN, is presented. The synthesis utilizes bis-BN cyclohexane, B2N2C2H12, as a precursor molecule and relies on thermally induced dehydrogenation of the precursor molecules and the formation of an epitaxial monolayer on Ir(111) through covalent bond formation. The lattice mismatch between the film and substrate causes a strain-driven periodic buckling of the film. The structure of the film and its corrugated morphology is discussed based on comprehensive data from molecular-resolved scanning tunneling microscopy imaging, X-ray photoelectron spectroscopy, low-energy electron diffraction, and density functional theory. First-principles calculations further predict a direct electronic band gap that is intermediate between gapless graphene and insulating h-BN.
Collapse
Affiliation(s)
- Sumit Beniwal
- Department of Physics & Astronomy, University of Nebraska , Lincoln, Nebraska 68588-0299, United States
| | - James Hooper
- Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University , Krakow, Poland 30-060
| | - Daniel P Miller
- Department of Chemistry, State University of New York at Buffalo , Buffalo, New York 14260-3000, United States
| | - Paulo S Costa
- Department of Physics & Astronomy, University of Nebraska , Lincoln, Nebraska 68588-0299, United States
| | - Gang Chen
- Department of Chemistry, Boston College , Chestnut Hill, Massachusetts 02467-3860, United States
| | - Shih-Yuan Liu
- Department of Chemistry, Boston College , Chestnut Hill, Massachusetts 02467-3860, United States
| | - Peter A Dowben
- Department of Physics & Astronomy, University of Nebraska , Lincoln, Nebraska 68588-0299, United States
| | - E Charles H Sykes
- Department of Chemistry, Tufts University , Medford, Massachusetts 02155, United States
| | - Eva Zurek
- Department of Chemistry, State University of New York at Buffalo , Buffalo, New York 14260-3000, United States
| | - Axel Enders
- Department of Physics & Astronomy, University of Nebraska , Lincoln, Nebraska 68588-0299, United States
- Physikalisches Institut, Universität Bayreuth , 95440 Bayreuth, Germany
| |
Collapse
|
47
|
Zhao R, Zhao X, Liu Z, Ding F, Liu Z. Controlling the orientations of h-BN during growth on transition metals by chemical vapor deposition. NANOSCALE 2017; 9:3561-3567. [PMID: 28244523 DOI: 10.1039/c6nr09368j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Hexagonal boron nitride (h-BN) is crucial for many applications, and its synthesis over a large area with high quality is strongly desired. A promising approach to synthesize h-BN is chemical vapor deposition on transition metal catalysts, in which the alignments of BN clusters in the initial growth determine both the types and the amounts of defects in h-BN. In the search for a better catalyst, we systematically studied the interactions between h-BN clusters and various metal surfaces. Our results show that the clusters on nearly all catalyst surfaces, no matter whether the (111) facets of face-centered cubic (FCC) metals or the (0001) facets of hexagonal close packed (HCP) metals, have two local minima with opposite orientations. During the initial growth, h-BN clusters adopt the energy-favored sites, whose registry is well preserved upon further growth owing to the strong interaction between the edge atoms of h-BN and the underlying substrates. On FCC(111), the h-BN domains are always aligned in parallel orientations, while on HCP(0001) they are parallel on the same terrace and anti-parallel on neighboring terraces. Beyond this, on the (111) surfaces of Ir and Rh, the BhNt configuration is much more energy favorable than BfNt, where, the subscripts h, t, and f represent the adsorption sites, hcp, top and fcc, respectively. Thus, Ir(111) and Rh(111) might promote the growth of h-BN domains with the same alignments, which will greatly improve the quality of h-BN by reducing the possibility of formation of grain boundaries.
Collapse
Affiliation(s)
- Ruiqi Zhao
- School of Materials Science and Engineering, Henan Polytechnic University, Henan 454003, China and Beijing Computational Science Research Center, Beijing 100084, China and College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Xiaolei Zhao
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Henan 454003, China
| | - Zhirong Liu
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Feng Ding
- Beijing Computational Science Research Center, Beijing 100084, China and Institute of Textiles and Clothing, Hong Kong Polytechnic University, Kowloon, Hong Kong, China.
| | - Zhongfan Liu
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
48
|
Kumar A, Banerjee K, Liljeroth P. Molecular assembly on two-dimensional materials. NANOTECHNOLOGY 2017; 28:082001. [PMID: 28045007 DOI: 10.1088/1361-6528/aa564f] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Molecular self-assembly is a well-known technique to create highly functional nanostructures on surfaces. Self-assembly on two-dimensional (2D) materials is a developing field driven by the interest in functionalization of 2D materials in order to tune their electronic properties. This has resulted in the discovery of several rich and interesting phenomena. Here, we review this progress with an emphasis on the electronic properties of the adsorbates and the substrate in well-defined systems, as unveiled by scanning tunneling microscopy. The review covers three aspects of the self-assembly. The first one focuses on non-covalent self-assembly dealing with site-selectivity due to inherent moiré pattern present on 2D materials grown on substrates. We also see that modification of intermolecular interactions and molecule-substrate interactions influences the assembly drastically and that 2D materials can also be used as a platform to carry out covalent and metal-coordinated assembly. The second part deals with the electronic properties of molecules adsorbed on 2D materials. By virtue of being inert and possessing low density of states near the Fermi level, 2D materials decouple molecules electronically from the underlying metal substrate and allow high-resolution spectroscopy and imaging of molecular orbitals. The moiré pattern on the 2D materials causes site-selective gating and charging of molecules in some cases. The last section covers the effects of self-assembled, acceptor and donor type, organic molecules on the electronic properties of graphene as revealed by spectroscopy and electrical transport measurements. Non-covalent functionalization of 2D materials has already been applied for their application as catalysts and sensors. With the current surge of activity on building van der Waals heterostructures from atomically thin crystals, molecular self-assembly has the potential to add an extra level of flexibility and functionality for applications ranging from flexible electronics and OLEDs to novel electronic devices and spintronics.
Collapse
Affiliation(s)
- Avijit Kumar
- Department of Applied Physics Aalto, University School of Science, PO Box 15100, FI-00076 Aalto, Finland
| | | | | |
Collapse
|
49
|
Wang J, Ma F, Sun M. Graphene, hexagonal boron nitride, and their heterostructures: properties and applications. RSC Adv 2017. [DOI: 10.1039/c7ra00260b] [Citation(s) in RCA: 370] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In recent years, two-dimensional atomic-level thickness crystal materials have attracted widespread interest such as graphene, hexagonal boron nitride (h-BN), silicene, germanium, black phosphorus (BP), transition metal sulfides and so on.
Collapse
Affiliation(s)
- Jingang Wang
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science
- School of Mathematics and Physics
- University of Science and Technology Beijing
- Beijing
- People's Republic of China
| | - Fengcai Ma
- Department of Chemistry and Physics
- Liaoning University
- Shenyang
- People's Republic of China
| | - Mengtao Sun
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science
- School of Mathematics and Physics
- University of Science and Technology Beijing
- Beijing
- People's Republic of China
| |
Collapse
|
50
|
Wu F, Huang D, Yue Y, Liu L. Template growth of Au, Ni and Ni–Au nanoclusters on hexagonal boron nitride/Rh(111): a combined STM, TPD and AES study. RSC Adv 2017. [DOI: 10.1039/c7ra08880a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The unique electronic structure of hexagonal boron nitride/Rh(111) promotes the template growth of Au, Ni, and Ni–Au bimetallic nanoclusters, as well as the formation of an unusual core–shell nanostructure.
Collapse
Affiliation(s)
- Fanglue Wu
- Department of Materials Science and Engineering
- Texas A&M University
- College Station
- USA
| | - Dali Huang
- Department of Materials Science and Engineering
- Texas A&M University
- College Station
- USA
| | - Yuan Yue
- Department of Materials Science and Engineering
- Texas A&M University
- College Station
- USA
| | - Li Liu
- Department of Materials Science and Engineering
- Texas A&M University
- College Station
- USA
| |
Collapse
|