1
|
Spencer RKW, Santos-Pérez I, Shnyrova AV, Müller M. Fission of double-membrane tubes under tension. Biophys J 2024; 123:3977-3996. [PMID: 39410713 PMCID: PMC11617631 DOI: 10.1016/j.bpj.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/12/2024] [Accepted: 10/11/2024] [Indexed: 11/04/2024] Open
Abstract
The division of a cellular compartment culminates with the scission of a highly constricted membrane neck. Scission requires lipid rearrangements, topology changes, and transient formation of nonbilayer intermediate structures driven by curvature stress. Often, a side effect of this stress is pore-formation, which may lead to content leakage and thus breaching of the membrane barrier function. In single-membrane systems, leakage is avoided through the formation of a hemifusion (HF) intermediate, whose structure is still a subject of debate. The consequences of curvature stress have not been explored in double-membrane systems, such as the mitochondrion. Here, we combine experimental and theoretical approaches to study neck constriction and scission driven by tension in biomimetic lipid systems, namely single- and double-membrane nanotubes (sNTs and dNTs), respectively. In sNTs, constriction by high tension gives rise to a metastable HF intermediate (seen as stalk or worm-like micelle), whereas poration is universally slower in a simple neck. In dNTs, high membrane tension causes sequential rupture of each membrane. In contrast, low tension leads to the HF of both membranes, which may lead to a leaky fusion pathway, or may progress to further fusion of the two membranes along a number of transformation pathways. These findings provide a new mechanistic basis for fundamental cellular processes.
Collapse
Affiliation(s)
- Russell K W Spencer
- Institute for Theoretical Physics, Georg-August University, Göttingen, Germany.
| | - Isaac Santos-Pérez
- Electron Microscopy and Crystallography, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park, Derio, Spain
| | - Anna V Shnyrova
- Instituto Biofisika (CSIC, UPV/EHU), Leioa, Spain; Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain.
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August University, Göttingen, Germany.
| |
Collapse
|
2
|
Spencer RKW, Smirnova YG, Soleimani A, Müller M. Transient pores in hemifusion diaphragms. Biophys J 2024; 123:2455-2475. [PMID: 38867448 PMCID: PMC11365115 DOI: 10.1016/j.bpj.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/07/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024] Open
Abstract
Exchange of material across two membranes, as in the case of synaptic neurotransmitter release from a vesicle, involves the formation and poration of a hemifusion diaphragm (HD). The nontrivial geometry of the HD leads to environment-dependent control, regarding the stability and dynamics of the pores required for this kind of exocytosis. This work combines particle simulations, field-based calculations, and phenomenological modeling to explore the factors influencing the stability, dynamics, and possible control mechanisms of pores in HDs. We find that pores preferentially form at the HD rim, and that their stability is sensitive to a number of factors, including the three line tensions, membrane tension, HD size, and the ability of lipids to "flip-flop" across leaflets. Along with a detailed analysis of these factors, we discuss ways that vesicles or cells may use them to open and close pores and thereby quickly and efficiently transport material.
Collapse
Affiliation(s)
- Russell K W Spencer
- Institute for Theoretical Physics, Georg-August University, Göttingen, Germany.
| | - Yuliya G Smirnova
- Institute for Theoretical Physics, Georg-August University, Göttingen, Germany; Technische Universität Dortmund, Dortmund, Germany
| | - Alireza Soleimani
- Institute for Theoretical Physics, Georg-August University, Göttingen, Germany
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August University, Göttingen, Germany.
| |
Collapse
|
3
|
Sirch MM, Kamenac A, Neidinger SV, Wixforth A, Westerhausen C. Phase-State-Dependent Silica Nanoparticle Uptake of Giant Unilamellar Vesicles. J Phys Chem B 2024; 128:7172-7179. [PMID: 38995207 DOI: 10.1021/acs.jpcb.4c02383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
We quantify endocytosis-like nanoparticle (NP) uptake of model membranes as a function of temperature and, therefore, phase state. As model membranes, we use giant unilamellar vesicles (GUV) consisting of 1,2-dipentadecanoyl-sn-glycero-3-phosphocholine (15:0 PC). Time-series micrographs of the vesicle shrinkage show uptake rates that are a highly nonlinear function of temperature. A global maximum appears close to the main structural phase transition at T = Tm + 3 K = 37 °C and a minor peak at the pretransition T = Tp = 22 °C. The quality of linear fits to the shrinkage, and thus uptake kinetics, reveals a deviation from the linear trend at the vesicle shrinkage peaks. Taking values for the bending modulus as a function of temperature from literature and Helfrich's model allows us to draw qualitative conclusions on the membrane tension and the adhesion of the NP to the membrane as a function of temperature. These findings provide valuable insights into the dynamic interplay between temperature, membrane phase transitions, and NP uptake, shedding light on the complex behavior of biological membranes.
Collapse
Affiliation(s)
- Manuel M Sirch
- Institute of Theoretical Medicine, Physiology, University of Augsburg, Augsburg 86159, Germany
- Institute of Physics, University of Augsburg, Augsburg 86159, Germany
| | - Andrej Kamenac
- Institute of Theoretical Medicine, Physiology, University of Augsburg, Augsburg 86159, Germany
- Institute of Physics, University of Augsburg, Augsburg 86159, Germany
| | - Simon V Neidinger
- Institute of Theoretical Medicine, Physiology, University of Augsburg, Augsburg 86159, Germany
- Institute of Physics, University of Augsburg, Augsburg 86159, Germany
| | - Achim Wixforth
- Institute of Physics, University of Augsburg, Augsburg 86159, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität Munich, Munich 80799, Germany
| | - Christoph Westerhausen
- Institute of Theoretical Medicine, Physiology, University of Augsburg, Augsburg 86159, Germany
- Institute of Physics, University of Augsburg, Augsburg 86159, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität Munich, Munich 80799, Germany
| |
Collapse
|
4
|
Jeon G, Fagnoni J, Wan H, Santore MM, Grason GM. Shape equilibria of vesicles with rigid planar inclusions. SOFT MATTER 2024; 20:5754-5768. [PMID: 38984409 DOI: 10.1039/d4sm00439f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Motivated by recent studies of two-phase lipid vesicles possessing 2D solid domains integrated within a fluid bilayer phase, we study the shape equilibria of closed vesicles possessing a single planar, circular inclusion. While 2D solid elasticity tends to expel Gaussian curvature, topology requires closed vesicles to maintain an average, non-zero Gaussian curvature leading to an elementary mechanism of shape frustration that increases with inclusion size. We study elastic ground states of the Helfrich model of the fluid-planar composite vesicles, analytically and computationally, as a function of planar fraction and reduced volume. Notably, we show that incorporation of a planar inclusion of only a few percent dramatically shifts the ground state shapes of vesicles from predominantly prolate to oblate, and moreover, shifts the optimal surface-to-volume ratio far from spherical shapes. We show that for sufficiently small planar inclusions, the elastic ground states break symmetry via a complex variety of asymmetric oblate, prolate, and triaxial shapes, while inclusion sizes above about 8% drive composite vesicles to adopt axisymmetric oblate shapes. These predictions cast useful light on the emergent shape and mechanical responses of fluid-solid composite vesicles.
Collapse
Affiliation(s)
- Geunwoong Jeon
- Department of Physics, University of Massachusetts, Amherst, MA 01003, USA
| | - Justin Fagnoni
- Department of Physics, University of Massachusetts, Amherst, MA 01003, USA
| | - Hao Wan
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003, USA.
| | - Maria M Santore
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003, USA.
| | - Gregory M Grason
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
5
|
Fessler F, Wittmann M, Simmchen J, Stocco A. Autonomous engulfment of active colloids by giant lipid vesicles. SOFT MATTER 2024. [PMID: 38938147 DOI: 10.1039/d4sm00337c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Our ability to design artificial micro/nanomachines able to perform sophisticated tasks crucially depends on our understanding of their interaction with biosystems and their compatibility with the biological environment. Here, we design Janus colloids fuelled only by glucose and light, which can autonomously interact with cell-like compartments and trigger endocytosis. We evidence the crucial role played by the far-field hydrodynamic interaction arising from the puller/pusher swimming mode and adhesion. We show that a large contact time between the active particle and the lipid membrane is required to observe the engulfment of a particle inside a floppy giant lipid vesicle. Active Janus colloids showing relatively small velocities and a puller type swimming mode are able to target giant vesicles, deform their membranes and subsequently get stably engulfed. An instability arising from the unbound membrane segment is responsible for the transition between partial and complete stable engulfment. These experiments shed light on the physical criteria required for autonomous active particle engulfment in giant vesicles, which can serve as general principles in disciplines ranging from drug delivery and microbial infection to nanomedicine.
Collapse
Affiliation(s)
- Florent Fessler
- Institut Charles Sadron, CNRS UPR-22, 23 rue du Loess, Strasbourg, France.
| | - Martin Wittmann
- Physical Chemistry, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany
| | - Juliane Simmchen
- Pure and Applied Chemistry, University of Strathclyde, Cathedral Street, Glasgow, UK
| | - Antonio Stocco
- Institut Charles Sadron, CNRS UPR-22, 23 rue du Loess, Strasbourg, France.
| |
Collapse
|
6
|
Spencer RKW, Santos-Pérez I, Rodríguez-Renovales I, Martinez Galvez JM, Shnyrova AV, Müller M. Membrane fission via transmembrane contact. Nat Commun 2024; 15:2793. [PMID: 38555357 PMCID: PMC10981662 DOI: 10.1038/s41467-024-47122-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
Division of intracellular organelles often correlates with additional membrane wrapping, e.g., by the endoplasmic reticulum or the outer mitochondrial membrane. Such wrapping plays a vital role in proteome and lipidome organization. However, how an extra membrane impacts the mechanics of the division has not been investigated. Here we combine fluorescence and cryo-electron microscopy experiments with self-consistent field theory to explore the stress-induced instabilities imposed by membrane wrapping in a simple double-membrane tubular system. We find that, at physiologically relevant conditions, the outer membrane facilitates an alternative pathway for the inner-tube fission through the formation of a transient contact (hemi-fusion) between both membranes. A detailed molecular theory of the fission pathways in the double membrane system reveals the topological complexity of the process, resulting both in leaky and leakless intermediates, with energies and topologies predicting physiological events.
Collapse
Affiliation(s)
- Russell K W Spencer
- Institute for Theoretical Physics, Georg-August University, Göttingen, Germany.
| | - Isaac Santos-Pérez
- Electron Microscopy and Crystallography Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Derio, Spain
| | - Izaro Rodríguez-Renovales
- BREM Basque Resource for Electron Microscopy, Leioa, Spain
- Instituto Biofisika (CSIC, UPV/EHU), Barrio Sarriena, Leioa, Spain
| | - Juan Manuel Martinez Galvez
- Instituto Biofisika (CSIC, UPV/EHU), Barrio Sarriena, Leioa, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Anna V Shnyrova
- Instituto Biofisika (CSIC, UPV/EHU), Barrio Sarriena, Leioa, Spain.
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain.
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August University, Göttingen, Germany.
| |
Collapse
|
7
|
Zamaletdinov MF, Miettinen MS, Lipowsky R. Probing the elastic response of lipid bilayers and nanovesicles to leaflet tensions via volume per lipid. SOFT MATTER 2023; 19:6929-6944. [PMID: 37664906 DOI: 10.1039/d3sm00351e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Biological and biomimetic membranes are based on lipid bilayers, consisting of two monolayers or leaflets. One important but challenging physical parameter of these membranes is their tension. For a long time, this tension was explicitly or implicitly taken to be the bilayer tension, acting on the whole bilayer membrane. More recently, it has been realized that it is useful to decompose the bilayer tension into two leaflet tensions and that these tensions are accessible to molecular dynamics simulations. To divide the bilayer up into two leaflets, it is necessary to introduce a midsurface that defines the spatial extent of the two leaflets. In previous studies, this midsurface was obtained from the density profiles across the bilayer and was then used to compute the molecular area per lipid. Here, we develop an alternative approach based on three-dimensional Voronoi tessellation and molecular volume per lipid. Using this volume-based approach, we determine the reference states with tensionless leaflets as well as the optimal volumes and areas per lipid. The optimal lipid volumes have practically the same value in both leaflets, irrespective of the size and curvature of the nanovesicles, whereas the optimal lipid areas are different for the two leaflets and depend on the vesicle size. In addition, we introduce lateral volume compressibilities to describe the elastic response of the lipid volume to the leaflet tensions. We show that the outer leaflet of a nanovesicle is more densely packed and less compressible than the inner leaflet and that this difference becomes more pronounced for smaller vesicles.
Collapse
Affiliation(s)
- Miftakh F Zamaletdinov
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany.
| | - Markus S Miettinen
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany.
- University of Bergen, Department of Chemistry, 5007 Bergen, Norway
- Computational Biology Unit, Department of Informatics, 5008 Bergen, Norway.
| | - Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany.
| |
Collapse
|
8
|
Fessler F, Sharma V, Muller P, Stocco A. Entry of microparticles into giant lipid vesicles by optical tweezers. Phys Rev E 2023; 107:L052601. [PMID: 37328973 DOI: 10.1103/physreve.107.l052601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/20/2023] [Indexed: 06/18/2023]
Abstract
Entry of micro- or nanosized objects into cells or vesicles made of lipid membranes occurs in many processes such as entry of viruses into host cells, microplastics pollution, drug delivery, or biomedical imaging. Here we investigate the microparticle crossing of lipid membranes in giant unilamellar vesicles in the absence of strong binding interactions (e.g., streptavidin-biotin binding). In these conditions, we observe that organic and inorganic particles can always penetrate inside the vesicles provided an external piconewton force is applied and for relatively low membrane tensions. In the limit of vanishing adhesion, we identify the role of the membrane area reservoir and show that a force minimum exists when the particle size is comparable to the bendocapillary length.
Collapse
Affiliation(s)
- Florent Fessler
- Institut Charles Sadron, UPR No. 22, CNRS, 23 Rue du Loess, 67200 Strasbourg, France
| | - Vaibhav Sharma
- Institut Charles Sadron, UPR No. 22, CNRS, 23 Rue du Loess, 67200 Strasbourg, France
| | - Pierre Muller
- Institut Charles Sadron, UPR No. 22, CNRS, 23 Rue du Loess, 67200 Strasbourg, France
| | - Antonio Stocco
- Institut Charles Sadron, UPR No. 22, CNRS, 23 Rue du Loess, 67200 Strasbourg, France
| |
Collapse
|
9
|
Zhang Y, Obuchi H, Toyota T. A Practical Guide to Preparation and Applications of Giant Unilamellar Vesicles Formed via Centrifugation of Water-in-Oil Emulsion Droplets. MEMBRANES 2023; 13:440. [PMID: 37103867 PMCID: PMC10144487 DOI: 10.3390/membranes13040440] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 06/19/2023]
Abstract
Giant vesicles (GVs), which are closed lipid bilayer membranes with a diameter of more than 1 μm, have attracted attention not only as model cell membranes but also for the construction of artificial cells. For encapsulating water-soluble materials and/or water-dispersible particles or functionalizing membrane proteins and/or other synthesized amphiphiles, giant unilamellar vesicles (GUVs) have been applied in various fields, such as supramolecular chemistry, soft matter physics, life sciences, and bioengineering. In this review, we focus on a preparation technique for GUVs that encapsulate water-soluble materials and/or water-dispersible particles. It is based on the centrifugation of a water-in-oil emulsion layered on water and does not require special equipment other than a centrifuge, which makes it the first choice for laboratory use. Furthermore, we review recent studies on GUV-based artificial cells prepared using this technique and discuss their future applications.
Collapse
Affiliation(s)
- Yiting Zhang
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Haruto Obuchi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Taro Toyota
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
- Universal Biology Institute, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
10
|
Khosravanizadeh A, Sens P, Mohammad-Rafiee F. Role of particle local curvature in cellular wrapping. J R Soc Interface 2022; 19:20220462. [PMID: 36321371 PMCID: PMC9627444 DOI: 10.1098/rsif.2022.0462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/06/2022] [Indexed: 12/14/2022] Open
Abstract
Cellular uptake through membranes plays an important role in adsorbing nutrients and fighting infection and can be used for nanomedicine developments. Endocytosis is one of the pathways of cellular uptake which associate with elastic deformation of the membrane wrapping around the foreign particle. The deformability of the membrane is strongly regulated by the presence of a cortical cytoskeleton placed underneath the membrane. It is shown that shape and orientation of the particles influence on their internalization. Here, we study the role of particle local curvature in cellular uptake by investigating the wrapping of an elastic membrane around a long cylindrical object with an elliptical cross-section. The membrane itself is adhered to a substrate mimicking the cytoskeleton. Membrane wrapping proceeds differently whether the initial contact occurs at the target's highly curved part (vertical) or along its long side (horizontal). We obtain a wrapping phase diagram as a function of the membrane-cytoskeleton and the membrane-target adhesion energy, which includes three distinct regimes (unwrapped, partially wrapped and fully wrapped), separated by two phase transitions. We also provide analytical expressions for the boundaries between the different regimes which confirm that the transitions strongly depend on the orientation and aspect ratio of the nanowire.
Collapse
Affiliation(s)
- Amir Khosravanizadeh
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris 75013, France
| | - Pierre Sens
- Institut Curie, PSL Research University, CNRS UMR 168, Paris, 75005 France
| | - Farshid Mohammad-Rafiee
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- Research Center for Basic Sciences and Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
11
|
Maan R, Loiseau E, Bausch AR. Adhesion of Active Cytoskeletal Vesicles. Biophys J 2018; 115:2395-2402. [PMID: 30455042 PMCID: PMC6301914 DOI: 10.1016/j.bpj.2018.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 10/08/2018] [Accepted: 10/12/2018] [Indexed: 11/08/2022] Open
Abstract
Regulation of adhesion is a ubiquitous feature of living cells, observed during processes such as motility, antigen recognition, or rigidity sensing. At the molecular scale, a myriad of mechanisms are necessary to recruit and activate the essential proteins, whereas at the cellular scale, efficient regulation of adhesion relies on the cell's ability to adapt its global shape. To understand the role of shape remodeling during adhesion, we use a synthetic biology approach to design a minimal experimental model, starting with a limited number of building blocks. We assemble cytoskeletal vesicles whose size, reduced volume, and cytoskeletal contractility can be independently tuned. We show that these cytoskeletal vesicles can sustain strong adhesion to solid substrates only if the actin cortex is actively remodeled significantly. When the cytoskeletal vesicles are deformed under hypertonic osmotic pressure, they develop a crumpled geometry with deformations. In the presence of molecular motors, these deformations are dynamic in nature, and the excess membrane area generated thereby can be used to gain adhesion energy. The cytoskeletal vesicles are able to attach to the rigid glass surfaces even under strong adhesive forces just like the cortex-free vesicles. The balance of deformability and adhesion strength is identified to be key to enable cytoskeletal vesicles to adhere to solid substrates.
Collapse
Affiliation(s)
- Renu Maan
- Lehrstuhl für Biophysik E27, Physik-Department, Technische Universität München, Garching, Germany; Department of Bionanoscience, Kavli Institute of NanoScience, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
| | - Etienne Loiseau
- Lehrstuhl für Biophysik E27, Physik-Department, Technische Universität München, Garching, Germany; Aix-Marseille Université, CNRS, CINAM, Marseille, France
| | - Andreas R Bausch
- Lehrstuhl für Biophysik E27, Physik-Department, Technische Universität München, Garching, Germany.
| |
Collapse
|
12
|
Dasgupta S, Auth T, Gompper G. Nano- and microparticles at fluid and biological interfaces. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:373003. [PMID: 28608781 PMCID: PMC7104866 DOI: 10.1088/1361-648x/aa7933] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/12/2017] [Accepted: 06/13/2017] [Indexed: 05/05/2023]
Abstract
Systems with interfaces are abundant in both technological applications and biology. While a fluid interface separates two fluids, membranes separate the inside of vesicles from the outside, the interior of biological cells from the environment, and compartmentalize cells into organelles. The physical properties of interfaces are characterized by interface tension, those of membranes are characterized by bending and stretching elasticity. Amphiphilic molecules like surfactants that are added to a system with two immiscible fluids decrease the interface tension and induce a bending rigidity. Lipid bilayer membranes of vesicles can be stretched or compressed by osmotic pressure; in biological cells, also the presence of a cytoskeleton can induce membrane tension. If the thickness of the interface or the membrane is small compared with its lateral extension, both can be described using two-dimensional mathematical surfaces embedded in three-dimensional space. We review recent work on the interaction of particles with interfaces and membranes. This can be micrometer-sized particles at interfaces that stabilise emulsions or form colloidosomes, as well as typically nanometer-sized particles at membranes, such as viruses, parasites, and engineered drug delivery systems. In both cases, we first discuss the interaction of single particles with interfaces and membranes, e.g. particles in external fields, non-spherical particles, and particles at curved interfaces, followed by interface-mediated interaction between two particles, many-particle interactions, interface and membrane curvature-induced phenomena, and applications.
Collapse
Affiliation(s)
- S Dasgupta
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Institut Curie, CNRS, UMR 168, 75005 Paris, France
- Present address: Department of Physics, University of Toronto, Toronto, Ontario M5S1A7, Canada
| | - T Auth
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - G Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
13
|
Irajizad E, Agrawal A. Vesicle adhesion reveals novel universal relationships for biophysical characterization. Biomech Model Mechanobiol 2017; 17:103-109. [DOI: 10.1007/s10237-017-0947-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 07/29/2017] [Indexed: 10/19/2022]
|
14
|
Steinkühler J, Agudo-Canalejo J, Lipowsky R, Dimova R. Modulating Vesicle Adhesion by Electric Fields. Biophys J 2017; 111:1454-1464. [PMID: 27705768 PMCID: PMC5052469 DOI: 10.1016/j.bpj.2016.08.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 07/27/2016] [Accepted: 08/22/2016] [Indexed: 01/14/2023] Open
Abstract
We introduce an experimental setup for modulating adhesion of giant unilamellar vesicles to a planar substrate. Adhesion is induced by the application of an external potential to a transparent indium tin oxide-coated electrode (the substrate), which enables single-vesicle studies. We demonstrate tunable and reversible adhesion of negatively charged vesicles. The adhesion energy at different potentials is calculated from the vesicle shape assessed with confocal microscopy. Two approaches for these estimates are employed: one based on the whole contour of the vesicle and a second based on the contact curvature of the membrane in the vicinity of the substrate. Both approaches agree well with each other and show that the adhering vesicles are in the weak adhesion regime for the range of explored external potentials. Using fluorescence quenching assays, we detect that, in the adhering membrane segment, only the outer bilayer leaflet of the vesicle is depleted of negatively charged fluorescent lipids, while the inner leaflet remains unaffected. We show that depletion of negatively charged lipids is consistent Poisson-Boltzmann theory, taking into account charge regulation from lipid mobility. Finally, we also show that lipid diffusion is not significantly affected in the adhering membrane segment. We believe that the approaches introduced here for modulating and assessing vesicle adhesion have many potential applications in the field of single-vesicle studies and research on membrane adhesion.
Collapse
Affiliation(s)
- Jan Steinkühler
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam, Germany
| | - Jaime Agudo-Canalejo
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam, Germany
| | - Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam, Germany
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam, Germany.
| |
Collapse
|
15
|
A stochastic model of active zone material mediated synaptic vesicle docking and priming at resting active zones. Sci Rep 2017; 7:278. [PMID: 28325932 PMCID: PMC5428245 DOI: 10.1038/s41598-017-00360-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/21/2017] [Indexed: 11/09/2022] Open
Abstract
Synaptic vesicles (SVs) fuse with the presynaptic membrane (PM) at specialized regions called active zones for synaptic transmission. SVs are associated with dense aggregates of macromolecules called active zone material (AZM) that has been thought to be involved in SV release. However, its role has recently begun to be elucidated. Several morphological studies proposed distinctively different AZM mediated SV docking and priming models: sequential and concurrent SV docking/priming. To explore ways to reconcile the contradictory models we develop a stochastic AZM mediated SV docking and priming model. We assume that the position of each connection site of the AZM macromolecules on their SV, directly linking the SV with the PM, varies by random shortening and lengthening of the macromolecules at resting active zones. We also perform computer simulations of SVs near the PM at resting active zones, and the results show that the distribution of the AZM connection sites can significantly affect the SV's docking efficiency and distribution of its contact area with the PM, thus priming and that the area correlates with the shape of the SVs providing a way to account for seemingly irreconcilable observations reported about the spatial relationship of SVs with the PM at active zones.
Collapse
|
16
|
Gleisner M, Kroppen B, Fricke C, Teske N, Kliesch TT, Janshoff A, Meinecke M, Steinem C. Epsin N-terminal Homology Domain (ENTH) Activity as a Function of Membrane Tension. J Biol Chem 2016; 291:19953-61. [PMID: 27466364 DOI: 10.1074/jbc.m116.731612] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Indexed: 12/18/2022] Open
Abstract
The epsin N-terminal homology domain (ENTH) is a major player in clathrin-mediated endocytosis. To investigate the influence of initial membrane tension on ENTH binding and activity, we established a bilayer system based on adhered giant unilamellar vesicles (GUVs) to be able to control and adjust the membrane tension σ covering a broad regime. The shape of each individual adhered GUV as well as its adhesion area was monitored by spinning disc confocal laser microscopy. Control of σ in a range of 0.08-1.02 mN/m was achieved by altering the Mg(2+) concentration in solution, which changes the surface adhesion energy per unit area of the GUVs. Specific binding of ENTH to phosphatidylinositol 4,5-bisphosphate leads to a substantial increase in adhesion area of the sessile GUV. At low tension (<0.1 mN/m) binding of ENTH can induce tubular structures, whereas at higher membrane tension the ENTH interaction deflates the sessile GUV and thereby increases the adhesion area. The increase in adhesion area is mainly attributed to a decrease in the area compressibility modulus KA We propose that the insertion of the ENTH helix-0 into the membrane is largely responsible for the observed decrease in KA, which is supported by the observation that the mutant ENTH L6E shows a reduced increase in adhesion area. These results demonstrate that even in the absence of tubule formation, the area compressibility modulus and, as such, the bending rigidity of the membrane is considerably reduced upon ENTH binding. This renders membrane bending and tubule formation energetically less costly.
Collapse
Affiliation(s)
- Martin Gleisner
- From the Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| | - Benjamin Kroppen
- Department of Cellular Biochemistry, University of Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Christian Fricke
- From the Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| | - Nelli Teske
- From the Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| | - Torben-Tobias Kliesch
- Institute of Physical Chemistry, University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany, and
| | - Andreas Janshoff
- Institute of Physical Chemistry, University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany, and Göttingen Center for Molecular Biosciences, 37077 Göttingen, Germany
| | - Michael Meinecke
- Department of Cellular Biochemistry, University of Göttingen, Humboldtallee 23, 37073 Göttingen, Germany, European Neuroscience Institute, 37073 Göttingen, Germany,
| | - Claudia Steinem
- From the Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany, Göttingen Center for Molecular Biosciences, 37077 Göttingen, Germany
| |
Collapse
|
17
|
Agudo-Canalejo J, Lipowsky R. Critical particle sizes for the engulfment of nanoparticles by membranes and vesicles with bilayer asymmetry. ACS NANO 2015; 9:3704-20. [PMID: 25840649 DOI: 10.1021/acsnano.5b01285] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The adhesion and engulfment of nanoparticles by biomembranes is essential for many processes such as biomedical imaging, drug delivery, nanotoxicity, and viral infection. Many studies have shown that both surface chemistry, which determines the adhesive strength of the membrane-particle interactions, and particle size represent key parameters for these processes. Here, we show that the asymmetry between the two leaflets of a bilayer membrane provides another key parameter for the engulfment of nanoparticles. The asymmetric membrane prefers to curve in a certain manner as quantitatively described by its spontaneous curvature. We derive two general relationships between particle size, adhesive strength, and spontaneous curvature that determine the instabilities of (i) the nonadhering or free state and (ii) the completely engulfed state of the particle. For model membranes such as lipid or polymer bilayers with a uniform composition, the two relationships lead to two critical particle sizes that determine four distinct engulfment regimes, both for the endocytic and for the exocytic engulfment process. For strong adhesion, the critical particle sizes are on the order of 10 nm, while they are on the order of 1000 nm for weak or ultraweak adhesion. Our theoretical results are therefore accessible to both experimental studies and computer simulations of model membranes. In order to address the more complex process of receptor-mediated endocytosis, we take the adhesion-induced segregation of membrane components into account and consider bound and unbound membrane segments that differ in their spontaneous curvatures. To model protein coats as formed during clathrin-dependent endocytosis, we focus on the case in which the bound membrane segments have a large spontaneous curvature compared to the unbound ones. We derive explicit expressions for the engulfment rate and the uptake of nanoparticles, which both depend on the particle size in a nonmonotonic manner, and provide a quantitative fit to experimental data for clathrin-dependent endocytosis of gold nanoparticles.
Collapse
|
18
|
Geislinger TM, Franke T. Hydrodynamic lift of vesicles and red blood cells in flow--from Fåhræus & Lindqvist to microfluidic cell sorting. Adv Colloid Interface Sci 2014; 208:161-76. [PMID: 24674656 DOI: 10.1016/j.cis.2014.03.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 02/28/2014] [Accepted: 03/02/2014] [Indexed: 12/31/2022]
Abstract
Hydrodynamic lift forces acting on cells and particles in fluid flow receive ongoing attention from medicine, mathematics, physics and engineering. The early findings of Fåhræus & Lindqvist on the viscosity change of blood with the diameter of capillaries motivated extensive studies both experimentally and theoretically to illuminate the underlying physics. We review this historical development that led to the discovery of the inertial and non-inertial lift forces and elucidate the origins of these forces that are still not entirely clear. Exploiting microfluidic techniques induced a tremendous amount of new insights especially into the more complex interactions between the flow field and deformable objects like vesicles or red blood cells. We trace the way from the investigation of single cell dynamics to the recent developments of microfluidic techniques for particle and cell sorting using hydrodynamic forces. Such continuous and label-free on-chip cell sorting devices promise to revolutionize medical analyses for personalized point-of-care diagnosis. We present the state-of-the-art of different hydrodynamic lift-based techniques and discuss their advantages and limitations.
Collapse
|
19
|
Rouhiparkouhi T, Weikl TR, Discher DE, Lipowsky R. Adhesion-induced phase behavior of two-component membranes and vesicles. Int J Mol Sci 2013; 14:2203-29. [PMID: 23340655 PMCID: PMC3565373 DOI: 10.3390/ijms14012203] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 01/17/2013] [Accepted: 01/18/2013] [Indexed: 11/17/2022] Open
Abstract
The interplay of adhesion and phase separation is studied theoretically for two-component membranes that can phase separate into two fluid phases such as liquid-ordered and liquid-disordered phases. Many adhesion geometries provide two different environments for these membranes and then partition the membranes into two segments that differ in their composition. Examples are provided by adhering vesicles, by hole- or pore-spanning membranes, and by membranes supported by chemically patterned surfaces. Generalizing a lattice model for binary mixtures to these adhesion geometries, we show that the phase behavior of the adhering membranes depends, apart from composition and temperature, on two additional parameters, the area fraction of one membrane segment and the affinity contrast between the two segments. For the generic case of non-vanishing affinity contrast, the adhering membranes undergo two distinct phase transitions and the phase diagrams in the composition/temperature plane have a generic topology that consists of two two-phase coexistence regions separated by an intermediate one-phase region. As a consequence, phase separation and domain formation is predicted to occur separately in each of the two membrane segments but not in both segments simultaneously. Furthermore, adhesion is also predicted to suppress the phase separation process for certain regions of the phase diagrams. These generic features of the adhesion-induced phase behavior are accessible to experiment.
Collapse
Affiliation(s)
- Tahereh Rouhiparkouhi
- Theory & Bio-Systems, Max Planck Insitute of Colloids and Interfaces, Potsdam 14424, Germany; E-Mails: (T.R.); (T.R.W.)
| | - Thomas R. Weikl
- Theory & Bio-Systems, Max Planck Insitute of Colloids and Interfaces, Potsdam 14424, Germany; E-Mails: (T.R.); (T.R.W.)
| | - Dennis E. Discher
- Biophysical Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA; E-Mail:
| | - Reinhard Lipowsky
- Theory & Bio-Systems, Max Planck Insitute of Colloids and Interfaces, Potsdam 14424, Germany; E-Mails: (T.R.); (T.R.W.)
| |
Collapse
|
20
|
Reviakine I, Gallego M, Johannsmann D, Tellechea E. Adsorbed liposome deformation studied with quartz crystal microbalance. J Chem Phys 2012; 136:084702. [DOI: 10.1063/1.3687351] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
21
|
Dimova R. Membrane Electroporation in High Electric Fields. ADVANCES IN ELECTROCHEMICAL SCIENCES AND ENGINEERING 2011. [DOI: 10.1002/9783527644117.ch7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
22
|
Zupanc J, Drobne D, Ster B. Markov random field model for segmenting large populations of lipid vesicles from micrographs. J Liposome Res 2011; 21:315-23. [DOI: 10.3109/08982104.2011.573794] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Zupanc J, Dobnikar A, Drobne D, Valant J, Erdogmus D, Bas E. Biological reactivity of nanoparticles: mosaics from optical microscopy videos of giant lipid vesicles. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:026003. [PMID: 21361687 DOI: 10.1117/1.3533319] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Emerging fields such as nanomedicine and nanotoxicology, demand new information on the effects of nanoparticles on biological membranes and lipid vesicles are suitable as an experimental model for bio-nano interaction studies. This paper describes image processing algorithms which stitch video sequences into mosaics and recording the shapes of thousands of lipid vesicles, which were used to assess the effect of CoFe(2)O(4) nanoparticles on the population of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine lipid vesicles. The applicability of this methodology for assessing the potential of engineered nanoparticles to affect morphological properties of lipid membranes is discussed.
Collapse
Affiliation(s)
- Jernej Zupanc
- University of Ljubljana, Faculty of Computer and Information Science, Trzaska 25, SI-1000, Ljubljana, Slovenia.
| | | | | | | | | | | |
Collapse
|
24
|
Ramachandran A, Anderson TH, Leal LG, Israelachvili JN. Adhesive interactions between vesicles in the strong adhesion limit. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:59-73. [PMID: 21128653 PMCID: PMC3031253 DOI: 10.1021/la1023168] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We consider the adhesive interaction energy between a pair of vesicles in the strong adhesion limit, in which bending forces play a negligible role in determining vesicle shape compared to forces due to membrane stretching. Although force−distance or energy−distance relationships characterizing adhesive interactions between fluid bilayers are routinely measured using the surface forces apparatus, the atomic force microscope, and the biomembrane force probe, the interacting bilayers in these methods are supported on surfaces (e.g., mica sheet) and cannot be deformed. However, it is known that, in a suspension, vesicles composed of the same bilayer can deform by stretching or bending, and can also undergo changes in volume. Adhesively interacting vesicles can thus form flat regions in the contact zone, which will result in an enhanced interaction energy as compared to rigid vesicles. The focus of this paper is to examine the magnitude of the interaction energy between adhesively interacting, deformed vesicles relative to free, undeformed vesicles as a function of the intervesicle separation. The modification of the intervesicle interaction energy due to vesicle deformability can be calculated knowing the undeformed radius of the vesicles, R0, the bending modulus, k(b), the area expansion modulus, k(a), and the adhesive minimum, W(P)(0), and separation, D(P)(0), in the energy of interaction between two flat bilayers, which can be obtained from the force−distance measurements made using the above supported-bilayer methods. For vesicles with constant volumes, we show that adhesive potentials between nondeforming bilayers such as |W(P)(0)| 5 × 10(−4) mJ/m2, which are ordinarily considered weak in the colloidal physics literature, can result in significantly deep (>10×) energy minima due to increase in vesicle area and flattening in the contact region. If the osmotic expulsion of water across the vesicles driven by the tense, stretched membrane in the presence of an osmotically active solute is also taken into account, the vesicles can undergo additional deformation (flattening), which further enhances the adhesive interaction between them. Finally, equilibration of ions and solutes due to the concentration differences created by the osmotic exchange of water can lead to further enhancement of the adhesion energy. Our result of the progressively increasing adhesive interaction energy between vesicles in the above regimes could explain why suspensions of very weakly attractive vesicles may undergo flocculation and eventual instability due to separation of vesicles from the suspending fluid by gravity. The possibility of such an instability is an extremely important issue for concentrated vesicle-based products and applications such as fabric softeners, hair therapeutics and drug delivery.
Collapse
Affiliation(s)
- Arun Ramachandran
- University of California at Santa Barbara, Santa Barbara, California 93106, United States.
| | | | | | | |
Collapse
|
25
|
Domes S, Filiz V, Nitsche J, Frömsdorf A, Förster S. Covalent attachment of polymersomes to surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:6927-6931. [PMID: 20355708 DOI: 10.1021/la904175u] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We show that vesicles made of block copolymers with aldehyde end groups can be covalently attached to aminated and non-aminated, untreated glass surfaces. The attached vesicles were sufficiently stable to allow a detailed investigation of vesicle shapes by confocal laser scanning microscopy (CLSM) and AFM in aqueous solutions allowing reconstruction of 3D images of the vesicle structure. Covalently attached PCL-PEO, PLA-PEO, and PI-PEO block copolymer vesicles have different footprint areas and different shapes due to their differences in bilayer stiffness.
Collapse
Affiliation(s)
- Stephanie Domes
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, D-20146 Hamburg, Germany
| | | | | | | | | |
Collapse
|
26
|
Franke T, Leirer C, Wixforth A, Schneider MF. Phase Transition Induced Adhesion of Giant Unilamellar Vesicles. Chemphyschem 2009; 10:2858-61. [DOI: 10.1002/cphc.200800555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Determination of the forces imposed by micro and nanopipettes during DOPC: DOPS liposome manipulation. Chem Phys Lipids 2009; 162:34-52. [PMID: 19665459 DOI: 10.1016/j.chemphyslip.2009.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 07/25/2009] [Accepted: 07/27/2009] [Indexed: 11/22/2022]
Abstract
Using micropipette-based probing methods and an image processing algorithm for measuring deformation, the bending energies of aspirated DOPC:DOPS liposomes were estimated both before and during manipulation with an injection pipette. We found that unlike cells, which are penetrable with pipettes as large as 2mum in diameter and at speeds as slow as 4mum/s, liposomes, without a cytoskeleton to resist deformation, are impenetrable with pipettes as small as 25nm in diameter and at speeds as great as 4000mum/s. Using energy calculations and the previously published mechanical properties of DOPC:DOPS liposomes, the forces that injection pipettes of various sizes can exert onto liposomes during probing were estimated. Forces ranged from approximately 1pN to 6pN, and the forces exerted onto these liposomes increased as pipette size diminished. The quantification of the amount of force exerted on liposomes or cells during manipulation can assist in minimizing the damage during single-liposome, single-cell, or single-organelle injections and surgeries.
Collapse
|
28
|
Tsargorodskaya A, Lishchuk S, Nabok A. The model of alkylphenol micelles bound to respective antibodies on the solid surface. Colloids Surf A Physicochem Eng Asp 2008. [DOI: 10.1016/j.colsurfa.2008.04.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Lorz BG, Smith AS, Gege C, Sackmann E. Adhesion of giant vesicles mediated by weak binding of sialyl-LewisX to E-selectin in the presence of repelling poly(ethylene glycol) molecules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:12293-12300. [PMID: 17918980 DOI: 10.1021/la701824q] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Prior to establishing tight contact with the endothelium, cells such as leukocytes or cancer cells use the recognition between sialyl-LewisX ligands and E-selectin receptors to establish weak, reversible adhesion and to roll along the vessel wall. We study the physical aspects of this process by constructing a mimetic system that consists of a giant fluid vesicle with incorporated lipid-anchored sialyl-LewisX molecules that bind to E-selectin that is immobilized on the flat substrate. The vesicles also carry a certain fraction of repelling PEG2000 molecules. We analyze the equilibrium state of adhesion in detail by means of reflection interference contrast microscopy and find that the adhesion process relies purely on the formation of one or more adhesion domains within the vesicle-substrate contact zone. We find that the content of ligands in the vesicle must be above 5 mol % to establish specific contacts. All concentrations of sialyl-LewisX above 8 mol % provide a very similar final state of adhesion. However, the size and shape of the adhesion domains strongly depend on both the concentrations of E-selectin (0-3500 molecules/microm2) and PEG2000 (0-5 mol %). At 3500 E-selectin molecules/microm2 and small concentrations of PEG2000, the vesicle-substrate contact is maximized and fully occupied by a single adhesion domain. At concentrations of 5 mol %, PEG2000 completely impedes the specific binding to any substrate. Lastly, an increase in the adhesion strength is observed in systems with identical compositions if the reduced volume of the vesicles is larger.
Collapse
Affiliation(s)
- Barbara G Lorz
- E22 Institut für Biophysik, Technische Universität München, D-85748 Garching, Germany
| | | | | | | |
Collapse
|
30
|
Linke GT, Lipowsky R, Gruhn T. Adhesion of fluid vesicles at chemically structured substrates. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2007; 24:217-227. [PMID: 18046505 DOI: 10.1140/epje/i2007-10232-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 10/16/2007] [Indexed: 05/25/2023]
Abstract
The adhesion of fluid vesicles at chemically structured substrates is studied theoretically via Monte Carlo simulations. The substrate surface is planar and repels the vesicle membrane apart from a single surface domain gamma , which strongly attracts this membrane. If the vesicle is larger than the attractive gamma domain, the spreading of the vesicle onto the substrate is restricted by the size of this surface domain. Once the contact line of the adhering vesicle has reached the boundaries of the gamma domain, further deflation of the vesicle leads to a regime of low membrane tension with pronounced shape fluctuations, which are now governed by the bending rigidity. For a circular gamma domain and a small bending rigidity, the membrane oscillates strongly around an average spherical cap shape. If such a vesicle is deflated, the contact area increases or decreases with increasing osmotic pressure, depending on the relative size of the vesicle and the circular gamma domain. The lateral localization of the vesicle's center of mass by such a domain is optimal for a certain domain radius, which is found to be rather independent of adhesion strength and bending rigidity. For vesicles adhering to stripe-shaped surface domains, the width of the contact area perpendicular to the stripe varies nonmonotonically with the adhesion strength.
Collapse
Affiliation(s)
- G T Linke
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, D-14424 Potsdam, Germany
| | | | | |
Collapse
|