1
|
Bernal-Chávez SA, Romero-Montero A, Hernández-Parra H, Peña-Corona SI, Del Prado-Audelo ML, Alcalá-Alcalá S, Cortés H, Kiyekbayeva L, Sharifi-Rad J, Leyva-Gómez G. Enhancing chemical and physical stability of pharmaceuticals using freeze-thaw method: challenges and opportunities for process optimization through quality by design approach. J Biol Eng 2023; 17:35. [PMID: 37221599 DOI: 10.1186/s13036-023-00353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/15/2023] [Indexed: 05/25/2023] Open
Abstract
The freeze-thaw (F/T) method is commonly employed during the processing and handling of drug substances to enhance their chemical and physical stability and obtain pharmaceutical applications such as hydrogels, emulsions, and nanosystems (e.g., supramolecular complexes of cyclodextrins and liposomes). Using F/T in manufacturing hydrogels successfully prevents the need for toxic cross-linking agents; moreover, their use promotes a concentrated product and better stability in emulsions. However, the use of F/T in these applications is limited by their characteristics (e.g., porosity, flexibility, swelling capacity, drug loading, and drug release capacity), which depend on the optimization of process conditions and the kind and ratio of polymers, temperature, time, and the number of cycles that involve high physical stress that could change properties associated to quality attributes. Therefore, is necessary the optimization of F/T conditions and variables. The current research regarding F/T is focused on enhancing the formulations, the process, and the use of this method in pharmaceutical, clinical, and biological areas. The present review aims to discuss different studies related to the impact and effects of the F/T process on the physical, mechanical, and chemical properties (porosity, swelling capacity) of diverse pharmaceutical applications with an emphasis on their formulation properties, the method and variables used, as well as challenges and opportunities in developing. Finally, we review the experimental approach for choosing the standard variables studied in the F/T method applying the systematic methodology of quality by design.
Collapse
Affiliation(s)
- Sergio A Bernal-Chávez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Alejandra Romero-Montero
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Héctor Hernández-Parra
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - María L Del Prado-Audelo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Ciudad de México, Ciudad de México, Mexico
| | - Sergio Alcalá-Alcalá
- Laboratorio de Tecnología Farmacéutica, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, 62209, México
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de Mexico, Mexico
| | - Lashyn Kiyekbayeva
- Department of Pharmaceutical Technology, Pharmaceutical School, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
- Faculties of Pharmacy, Kazakh-Russian Medical University, Public Health and Nursing, Almaty, Kazakhstan
| | | | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
| |
Collapse
|
2
|
Analysis of Freeze-Thaw Behavior of Double (W1/O/W2) Emulsions by Differential Scanning Calorimetry: Effects of Inner Salt Concentration and Solid Fat Content. FOOD BIOPHYS 2020. [DOI: 10.1007/s11483-020-09653-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
3
|
Soft multiple emulsions demonstrating reversible freeze-thawing capacity and enhanced skin permeability of diclofenac sodium. Colloid Polym Sci 2018. [DOI: 10.1007/s00396-018-4265-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Li J, Zhu Y, Teng C, Xiong K, Yang R, Li X. The effects of biomacromolecules on the physical stability of W/O/W emulsions. Journal of Food Science and Technology 2017; 54:469-480. [PMID: 28242946 DOI: 10.1007/s13197-017-2488-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/21/2016] [Accepted: 01/05/2017] [Indexed: 10/20/2022]
Abstract
The effect of bovine serum albumin (BSA), whey protein isolate (WPI), whey protein hydrolysate (WPH), sodium caseinate (SC), carboxymethylcellulose sodium (CMC), fish gelatin (FG), high methoxyl apple pectin (HMAP), low methoxyl apple pectin (LMAP), gum Arabic (GA), ι-carrageenan (CGN), and hydroxypropyl chitosan (HPCTS) on physical stability of internal or external aqueous phase of water-in-oil-in-water (W/O/W) emulsions was evaluated. WPI and CGN in the internal aqueous phase, and GA, HPCTS, and CMC in the external phase reduced the size of emulsion droplets. BSA, WPI, SC, FG, CGN, and HPCTS improved the dilution stability of W/O/W emulsions, but HMAP had a negative effect. BSA, WPI, SC, FG, LMAP, GA, CGN, HPCTS, or CMC significantly improved the thermal stability of W/O/W emulsions. Results also indicated that the addition of CGN (1.0%), HMAP (1.0%), WPH (1.0%), or HPCTS (1.0%) in internal aqueous phase significantly increased the viscosity of emulsions, however, addition to the external aqueous phase had insignificant effects. A protein-knockout experiment confirmed that proteins as biomacromolecules, were the key factor in improving physical stability of emulsions.
Collapse
Affiliation(s)
- Jinlong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048 People's Republic of China.,Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing, 100048 People's Republic of China
| | - Yunping Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048 People's Republic of China.,Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing, 100048 People's Republic of China
| | - Chao Teng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048 People's Republic of China.,Beijing Key Laboratory of Flavor Chemistry, Beijing, 100048 People's Republic of China
| | - Ke Xiong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048 People's Republic of China.,Beijing Key Laboratory of Flavor Chemistry, Beijing, 100048 People's Republic of China
| | - Ran Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048 People's Republic of China.,Beijing Key Laboratory of Flavor Chemistry, Beijing, 100048 People's Republic of China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048 People's Republic of China.,Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing, 100048 People's Republic of China
| |
Collapse
|
5
|
Li J, Shi Y, Zhu Y, Teng C, Li X. Effects of Several Natural Macromolecules on the Stability and Controlled Release Properties of Water-in-Oil-in-Water Emulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3873-3880. [PMID: 27137850 DOI: 10.1021/acs.jafc.6b00956] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Water-in-oil-in-water (W/O/W) emulsions are effective vehicles for embedding application of active compounds but limited by their thermodynamic instability and rapid release properties. The present study added bovine serum albumin, whey protein isolate, whey protein hydrolysate, sodium caseinate, carboxymethylcellulose sodium, fish gelatin, apple pectin, gum arabic, ι-carrageenan, and hydroxypropyl chitosan separately to the internal or external aqueous phase to investigate their effects on the physical stabilities and controlled release properties of W/O/W emulsions. The effects of the natural macromolecules in the internal and external aqueous phases were different and depended upon the macromolecule structure and its mass fraction. The addition of the natural macromolecule strengthened the interfaces of emulsions, which improved the physical stability. The natural macromolecules that improved the stability often did not improve controlled release. Therefore, the balance between these properties needs to be considered when adding natural macromolecules to a W/O/W emulsion.
Collapse
Affiliation(s)
- Jinlong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University , Beijing 100048, People's Republic of China
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients , Beijing 100048, People's Republic of China
| | - Yiheng Shi
- College of Food Science and Engineering, Northwest Agricultural and Forestry University , Yangling, Shanxi 712100, People's Republic of China
| | - Yunping Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University , Beijing 100048, People's Republic of China
- Beijing Key Laboratory of Flavor Chemistry , Beijing 100048, People's Republic of China
| | - Chao Teng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University , Beijing 100048, People's Republic of China
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients , Beijing 100048, People's Republic of China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University , Beijing 100048, People's Republic of China
- Beijing Key Laboratory of Flavor Chemistry , Beijing 100048, People's Republic of China
| |
Collapse
|
6
|
Kadri HEL, Gun R, Overton TW, Bakalis S, Gkatzionis K. Modulating the release of Escherichia coli in double W1/O/W2 emulsion globules under hypo-osmotic pressure. RSC Adv 2016. [DOI: 10.1039/c6ra17091a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bacterial release from double W1/O/W2 emulsion globules under hypo-osmotic pressure is described for the first time.
Collapse
Affiliation(s)
| | | | - Tim W. Overton
- School of Chemical Engineering
- UK
- Institute of Microbiology & Infection
- University of Birmingham
- UK
| | | | - Konstantinos Gkatzionis
- School of Chemical Engineering
- UK
- Institute of Microbiology & Infection
- University of Birmingham
- UK
| |
Collapse
|
7
|
Stability and rheology of W/Si/W multiple emulsions with polydimethylsiloxane. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
He P, Liu H, Tang Z, Deng M, Yang Y, Pang X, Chen X. Poly(ester amide) blend microspheres for oral insulin delivery. Int J Pharm 2013; 455:259-66. [DOI: 10.1016/j.ijpharm.2013.07.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/13/2013] [Accepted: 07/07/2013] [Indexed: 10/26/2022]
|
9
|
Jaimes-Lizcano YA, Wang Q, Rojas EC, Papadopoulos KD. Evaporative destabilization of double emulsions for effective triggering of release. Colloids Surf A Physicochem Eng Asp 2013. [DOI: 10.1016/j.colsurfa.2013.01.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Corkidi G, Rojas A, Pimentel A, Galindo E. Visualization of compound drops formation in multiphase processes for the identification of factors influencing bubble and water droplet inclusions in oil drops. Chem Eng Res Des 2012. [DOI: 10.1016/j.cherd.2012.03.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Wang Q, Rojas EC, Papadopoulos KD. Cationic liposomes in double emulsions for controlled release. J Colloid Interface Sci 2012; 383:89-95. [DOI: 10.1016/j.jcis.2012.06.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/14/2012] [Accepted: 06/15/2012] [Indexed: 10/28/2022]
|
12
|
Zhao Y, Shum HC, Adams LLA, Sun B, Holtze C, Gu Z, Weitz DA. Enhanced encapsulation of actives in self-sealing microcapsules by precipitation in capsule shells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:13988-13991. [PMID: 22004475 DOI: 10.1021/la2034774] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Microcapsules with core-shell structures are excellent vehicles for the encapsulation of active ingredients; however, the actives often leak out of these structures over time, without observable damage to them. We present a novel approach to enhancing the encapsulation of active ingredients inside microcapsules. We use two components that can form solid precipitates upon mixing and add one each to the microcapsule core and to the continuous phase. The components diffuse through the shell in the same manner as the actives, but upon meeting, they precipitate to form solid particles within the shell; this significantly reduces leakage through the shell of the microcapsules. We show that the reduction in the leakage of actives is due to the blockage of channels or pores that exist in the shell of the capsules by the solid precipitates.
Collapse
Affiliation(s)
- Yuanjin Zhao
- School of Engineering and Applied Sciences and Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Wang Q, Jaimes‐Lizcano YA, Lawson LB, John VT, Papadopoulos KD. Improved dermal delivery of FITC–BSA using a combination of passive and active methods. J Pharm Sci 2011; 100:4804-14. [DOI: 10.1002/jps.22687] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 03/24/2011] [Accepted: 06/09/2011] [Indexed: 11/11/2022]
|
14
|
Jaimes-Lizcano YA, Lawson LB, Papadopoulos KD. Oil-Frozen W1/O/W2 Double Emulsions for Dermal Biomacromolecular Delivery Containing Ethanol as Chemical Penetration Enhancer. J Pharm Sci 2011; 100:1398-406. [DOI: 10.1002/jps.22362] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 08/27/2010] [Accepted: 09/06/2010] [Indexed: 01/15/2023]
|
15
|
|
16
|
Wang Q, Tan G, Lawson LB, John VT, Papadopoulos KD. Liposomes in double-emulsion globules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:3225-31. [PMID: 19958007 PMCID: PMC2841964 DOI: 10.1021/la9032157] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Tubular liposomes containing a hydrophilic model compound (fluorescein sodium salt, FSS) were entrapped inside the internal aqueous phase (W(1)) of water-in-oil-in-water (W(1)/O/W(2)) double-emulsion globules. Our hypothesis was that the oil membrane of double emulsions can function as a layer of protection to liposomes and their contents and thus better control their release. Liposomes were prepared in bulk, and their release was observed microscopically from individual double-emulsion globules. The liposomes containing FSS were released through external coalescence, and the behavior of this system was monitored visually by capillary video microscopy. Double-emulsion globules were stabilized with Tween 80 as the water-soluble surfactant, with Span 80 as the oil-soluble surfactant, while the oil phase (O) was n-hexadecane. The lipids in the tubular liposomes consist of L-alpha-phosphatidylcholine and Ceramide-VI. Variations of Tween 80 concentration in the external aqueous phase (W(2)) and Span 80 concentration in the O phase controlled the release of liposomes from the W(1) phase to the W(2) phase. The major finding of this work is that the sheer presence of liposomes in the W(1) phase is by itself a stabilizing factor for double-emulsion globules.
Collapse
Affiliation(s)
- Qing Wang
- Department of Chemical & Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118
| | - Grace Tan
- Department of Chemical & Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118
| | - Louise B. Lawson
- Department of Microbiology & Immunology, Tulane University Health Sciences Center, New Orleans, Louisiana 70112
| | - Vijay T. John
- Department of Chemical & Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118
| | - Kyriakos D. Papadopoulos
- Department of Chemical & Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118
| |
Collapse
|
17
|
Destribats M, Schmitt V, Backov R. Thermostimulable wax@SiO2 core-shell particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:1734-1742. [PMID: 20099917 DOI: 10.1021/la902828q] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We propose a new synthesis pathway without any sacrificial template to prepare original monodisperse thermoresponsive capsules made of a wax core surrounded by a silica shell. Under heating, the inner wax expands and the shell breaks, leading to the liquid oil release. Such capsules that allow triggered deliverance provoked by an external stimulus belong to the class of smart materials. The process is based on the elaboration of size-controlled emulsions stabilized by particles (Pickering emulsions) exploiting the limited coalescence phenomenon. Then the emulsions are cooled down and the obtained suspensions are mineralized by the hydrolysis and condensation of a monomer at the wax-water interface, leading to the formation of capsules. The shell break and the liquid oil release are provoked by heating above the wax melting temperature. We characterize the obtained materials and examine the effect of processing parameters and heating history. By an appropriate choice of the wax, the temperature of release can easily be tuned.
Collapse
Affiliation(s)
- Mathieu Destribats
- Centre de Recherche Paul Pascal, Université Bordeaux 1, UPR 8641-CNRS, 115 Avenue du Dr Albert Schweitzer, 33600 Pessac, France
| | | | | |
Collapse
|
18
|
Han Y, Tian H, He P, Chen X, Jing X. Insulin nanoparticle preparation and encapsulation into poly(lactic-co-glycolic acid) microspheres by using an anhydrous system. Int J Pharm 2009; 378:159-66. [DOI: 10.1016/j.ijpharm.2009.05.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 05/12/2009] [Accepted: 05/14/2009] [Indexed: 10/20/2022]
|
19
|
Rojas EC, Staton JA, John VT, Papadopoulos KD. Temperature-induced protein release from water-in-oil-in-water double emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:7154-60. [PMID: 18543998 PMCID: PMC2692321 DOI: 10.1021/la703974n] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A model water-in-oil-in-water (W1/O/W2) double emulsion was prepared by a two-step emulsification procedure and subsequently subjected to temperature changes that caused the oil phase to freeze and thaw while the two aqueous phases remained liquid. Our previous work on individual double-emulsion globules1 demonstrated that crystallizing the oil phase (O) preserves stability, while subsequent thawing triggers coalescence of the droplets of the internal aqueous phase (W1) with the external aqueous phase (W2), termed external coalescence. Activation of this instability mechanism led to instant release of fluorescently tagged bovine serum albumin (fluorescein isothiocyanate (FITC)-BSA) from the W 1 droplets and into W2. These results motivated us to apply the proposed temperature-induced globule-breakage mechanism to bulk double emulsions. As expected, no phase separation of the emulsion occurred if stored at temperatures below 18 degrees C (freezing point of the model oil n-hexadecane), whereas oil thawing readily caused instability. Crucial variables were identified during experimentation, and found to greatly influence the behavior of bulk double emulsions following freeze-thaw cycling. Adjustment of these variables accounted for a more efficient release of the encapsulated protein.
Collapse
Affiliation(s)
- Edith C Rojas
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, USA
| | | | | | | |
Collapse
|
20
|
Han Y, Shi Q, Hu J, Du Q, Chen X, Jing X. Grafting BSA onto Poly[(L-lactide)-co-carbonate] Microspheres by Click Chemistry. Macromol Biosci 2008; 8:638-44. [DOI: 10.1002/mabi.200700306] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Lin C, He G, Dong C, Liu H, Xiao G, Liu Y. Effect of oil phase transition on freeze/thaw-induced demulsification of water-in-oil emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:5291-5298. [PMID: 18433153 DOI: 10.1021/la704079s] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Recently, there has been an increasing interest in the breakage of water-in-oil (W/O) emulsions by the freeze/thaw method. Most of the previous works focused on the phase transition of the water droplet phase. This paper emphasizes the effect of continuous oil phase transition. A series of oils with different freezing points were used as oil phases to produce model emulsions, which were then frozen and thawed. The emulsion whose oil phase froze before the water droplet phase did (OFBW) on cooling was readily demulsified with a dewatering ratio as high as over 80%, but the emulsion whose oil phase did not freeze when the water droplet phase did (NOFBW) was relatively hard to break. The difference in demulsification performance between them resulted from the distinction between their demulsification mechanisms via the analyses of the emulsion stability, emulsion crystallization/melting behaviors, oil phase physical properties, and wettability of the frozen oil phase, etc. For the OFBW emulsion, the first-frozen oil phase was ruptured by the volume expansion of the subsequently frozen droplet phase, and meanwhile, some liquid droplet phase was drawn into the fine gaps/crevices of the frozen oil phase to bridge droplets, which were considered to be essential to the emulsion breakage, whereas for the NOFBW emulsion, the demulsification was attributed to the collision mechanism proposed in our previous work. The findings may provide some criteria for selecting a proper oil phase in the emulsion liquid membrane (ELM) process and then offer an alternative approach to recycle the oil phase for continuous operation. This work may also be useful for emulsion stability against temperature cycling.
Collapse
Affiliation(s)
- Chang Lin
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian, Liaoning 116012, China
| | | | | | | | | | | |
Collapse
|