1
|
Alouk I, Lv W, Chen W, Miao S, Chen C, Wang Y, Xu D. Encapsulation of Monascus pigments in gel in oil in water (G/O/W) double emulsion system based on sodium caseinate and guar gum. Int J Biol Macromol 2024; 285:138232. [PMID: 39626818 DOI: 10.1016/j.ijbiomac.2024.138232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/11/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024]
Abstract
In this study, a gel in oil in water (G/O/W) double emulsion system was developed with the objective of effectively encapsulating Monascus pigments and enhancing its stability. To this end, various formulations were prepared using guar gum co-dissolved with Monascus pigments in the internal phase and sodium caseinate as an outer phase surfactant. Different parameters were examined, including emulsion stability, encapsulation efficiency, rheological and tribological properties, as well as the light and thermal stability of the encapsulated Monascus pigments. The results demonstrated that Monascus pigments were effectively encapsulated in the G/O/W, with an encapsulation efficiency exceeding 90 %. The formulated system exhibited a relatively small particle size, which decreased with increasing guar gum and the external emulsifier contents. This resulted in an increase in viscosity accompanied by the formation of a gel-like structure and improved tribological properties, thereby enhancing the system's stability. The system with 1-1.25 % guar gum and 2.5 % sodium caseinate exhibited the highest stability for Monascus pigments, making them more resistant to heat and light. These findings have the potential to expand applications of Monascus pigments by providing a stable and effective encapsulation and delivery system that can also be utilized in the development of healthier food products.
Collapse
Affiliation(s)
- Ikram Alouk
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Wenwen Lv
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Wei Chen
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61C996, Ireland
| | - Chao Chen
- Tianmeijian Biotechnology (Beijing) Co. Ltd, Beijing 100101, China
| | - Yanbo Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Duoxia Xu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
2
|
Sobti B, Kamal-Eldin A, Rasul S, Alnuaimi MSK, Alnuaimi KJJ, Alhassani AAK, Almheiri MMA, Nazir A. Encapsulation Properties of Mentha piperita Leaf Extracts Prepared Using an Ultrasound-Assisted Double Emulsion Method. Foods 2023; 12:1838. [PMID: 37174375 PMCID: PMC10178374 DOI: 10.3390/foods12091838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 05/15/2023] Open
Abstract
Double emulsions (W1/O/W2) have long been used in the food and pharmaceutical industries to encapsulate hydrophobic and hydrophilic drugs and bioactive compounds. This study investigated the effect of different types of emulsifiers (plant- vs. animal-based proteins) on the encapsulation properties of Mentha piperita leaf extract (MLE) prepared using the double emulsion method. Using response surface methodology, the effect of ultrasound-assisted extraction conditions (amplitude 20-50%; time 10-30 min; ethanol concentration 70-90%) on the total phenolic content (TPC) and antioxidant activity (percent inhibition) of the MLE was studied. MLE under optimized conditions (ethanol concentration 76%; amplitude 39%; time 30 min) had a TPC of 62.83 mg GA equivalents/g and an antioxidant activity of 23.49%. The optimized MLE was encapsulated using soy, pea, and whey protein isolates in two emulsifying conditions: 4065× g/min and 4065× g/30 s. The droplet size, optical images, rheology, and encapsulation efficiency (EE%) of the different encapsulated MLEs were compared. The W1/O/W2 produced at 4065× g/min exhibited a smaller droplet size and higher EE% and viscosity than that prepared at 4065× g/30 s. The higher EE% of soy and pea protein isolates indicated their potential as an effective alternative for bioactive compound encapsulation.
Collapse
Affiliation(s)
- Bhawna Sobti
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Impact of polyelectrolyte complex layer on the stability of palm oil multiple emulsions encapsulating a water-soluble compound during heating, cooling, and storage processes. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Influence of β-cyclodextrin concentration on the physicochemical properties and skin permeation behavior of vitamin C-loaded Pickering water-in-oil-in-water (W1/O/W2) double emulsions. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Yang J, Zhou Q, Huang Z, Gu Z, Cheng L, Qiu L, Hong Y. Mechanisms of in vitro controlled release of astaxanthin from starch-based double emulsion carriers. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106837] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
6
|
Encapsulation of Magnesium with Lentil Flour by Using Double Emulsion to Produce Magnesium Enriched Cakes. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02672-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Herzi S, Essafi W. Impact of the encapsulated salt characteristics on its release from multiple W/O/W emulsions. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sameh Herzi
- Laboratoire Matériaux, Traitement et Analyse Institut National de Recherche et d'Analyse Physico‐Chimique, Pôle Technologique de Sidi Thabet Sidi Thabet Tunisia
- Institut National Agronomique de Tunisie Tunis Mahrajène Tunisia
| | - Wafa Essafi
- Laboratoire Matériaux, Traitement et Analyse Institut National de Recherche et d'Analyse Physico‐Chimique, Pôle Technologique de Sidi Thabet Sidi Thabet Tunisia
| |
Collapse
|
8
|
Huang Y, Lin J, Tang X, Wang Z, Yu S. Grape seed proanthocyanidin-loaded gel-like W/O/W emulsion stabilized by genipin-crosslinked alkaline soluble polysaccharides-whey protein isolate conjugates: Fabrication, stability, and in vitro digestion. Int J Biol Macromol 2021; 186:759-769. [PMID: 34271051 DOI: 10.1016/j.ijbiomac.2021.07.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/25/2021] [Accepted: 07/11/2021] [Indexed: 11/19/2022]
Abstract
The present work aims to fabricate the genipin-crosslinked alkaline soluble polysaccharides-whey protein isolate conjugates (G-AWC) to stabilize W/O/W emulsions for encapsulation and delivery of grape seed proanthocyanidins (GSP). After crosslinking reaction, the molecular weight was increased and surface hydrophobicity was decreased. Then, the G-AWC and polyglycerol polyricinoleate (PGPR, a lipophilic emulsifier) were employed to prepare a GSP-loaded W/O/W emulsion with the addition of gelatin and sucrose in W1 phase via a two-step procedure. Creamed emulsion could be fabricated at W1/O volume fraction (Φ) of 10%-70% and further increased Φ to 75% or even up to 90% could obtain gel-like emulsion with notably elastic behaviors. In the W1/O/W2 emulsion with Φ of 80%, the encapsulation efficiency (EE) of GSP reached up to 95.86%, and decreased by ca. 10% after a week of storage. Moreover, the encapsulated GSP in the emulsion showed a remarkably higher bioaccessibility (40.72%) compared to free GSP (13.11%) in the simulated gastrointestinal digestion. These results indicated that G-AWC-stabilized W/O/W emulsions could be an effective carrier to encapsulate water-soluble bioactive compounds with enhanced stability and bioaccessibility.
Collapse
Affiliation(s)
- Yaocheng Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jiawei Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiangyi Tang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhiming Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shujuan Yu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China.
| |
Collapse
|
9
|
Fang B, Isobe K, Handa A, Nakagawa K. Microstructure change in whole egg protein aggregates upon freezing: Effects of freezing time and sucrose addition. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
10
|
Herzi S, Essafi W. Magnesium release behavior from W/O/W emulsions incorporated into yogurt: Application to food supplementation. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Sameh Herzi
- Laboratoire Matériaux, Traitement et Analyse Pôle Technologique de Sidi Thabet Institut National de Recherche et d’Analyse Physico‐Chimique Sidi Thabet Tunisia
- Institut National Agronomique de Tunisie Tunis Mahrajène Tunisia
| | - Wafa Essafi
- Laboratoire Matériaux, Traitement et Analyse Pôle Technologique de Sidi Thabet Institut National de Recherche et d’Analyse Physico‐Chimique Sidi Thabet Tunisia
| |
Collapse
|
11
|
Zhang M, Sun R, Xia Q. An ascorbic acid delivery system based on (W1/O/W2) double emulsions encapsulated by Ca-alginate hydrogel beads. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Lin C, Debeli DK, Gan L, Deng J, Hu L, Shan G. Polyether-modified siloxane stabilized dispersion system on the physical stability and control release of double (W/O/W) emulsions. Food Chem 2020; 332:127381. [DOI: 10.1016/j.foodchem.2020.127381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 11/24/2022]
|
13
|
Chaudhary N, Sabikhi L, Hussain SA, Kumar R, Choudhary U. Emblicanin Rich
Emblica officinalis
Encapsulated Double Emulsion and its Antioxidant Stability during Storage. EUR J LIPID SCI TECH 2020. [DOI: 10.1002/ejlt.201900316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Neha Chaudhary
- Dairy Technology Division ICAR‐National Dairy Research Institute Karnal 132 001 Haryana India
| | - Latha Sabikhi
- Dairy Technology Division ICAR‐National Dairy Research Institute Karnal 132 001 Haryana India
| | - Shaik Abdul Hussain
- Dairy Technology Division ICAR‐National Dairy Research Institute Karnal 132 001 Haryana India
| | - Rajender Kumar
- Dairy Technology Division ICAR‐National Dairy Research Institute Karnal 132 001 Haryana India
| | - Urmila Choudhary
- Dairy Technology Division ICAR‐National Dairy Research Institute Karnal 132 001 Haryana India
| |
Collapse
|
14
|
Encapsulation of Iron within W1/O/W2 Emulsions Formulated Using a Natural Hydrophilic Surfactant (Saponin): Impact of Surfactant Level and Oil Phase Crystallization. FOOD BIOPHYS 2020. [DOI: 10.1007/s11483-020-09628-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Crystallizable W/O/W double emulsions made with milk fat: Formulation, stability and release properties. Food Res Int 2019; 116:145-156. [DOI: 10.1016/j.foodres.2018.08.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/03/2018] [Accepted: 08/07/2018] [Indexed: 02/03/2023]
|
16
|
Formation of Double (W1/O/W2) Emulsions as Carriers of Hydrophilic and Lipophilic Active Compounds. FOOD BIOPROCESS TECH 2018. [DOI: 10.1007/s11947-018-2221-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
17
|
Microencapsulation of active ingredients in functional foods: From research stage to commercial food products. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.05.025] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Chen X, McClements DJ, Wang J, Zou L, Deng S, Liu W, Yan C, Zhu Y, Cheng C, Liu C. Coencapsulation of (-)-Epigallocatechin-3-gallate and Quercetin in Particle-Stabilized W/O/W Emulsion Gels: Controlled Release and Bioaccessibility. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3691-3699. [PMID: 29578697 DOI: 10.1021/acs.jafc.7b05161] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Particle-stabilized W1/O/W2 emulsion gels were fabricated using a two-step procedure: ( i) a W1/O emulsion was formed containing saccharose (for osmotic stress balance) and gelatin (as a gelling agent) in the aqueous phase and polyglycerol polyricinoleate (a lipophilic surfactant) in the oil phase; ( ii) this W1/O emulsion was then homogenized with another water phase (W2) containing wheat gliadin nanoparticles (hydrophilic emulsifier). The gliadin nanoparticles in the external aqueous phase aggregated at pH 5.5, which led to the formation of particle-stabilized W1/O/W2 emulsion gels with good stability to phase separation. These emulsion gels were then used to coencapsulate a hydrophilic bioactive (epigallocatechin-3-gallate, EGCG) in the internal aqueous phase (encapsulation efficiency = 65.5%) and a hydrophobic bioactive (quercetin) in the oil phase (encapsulation efficiency = 97.2%). The emulsion gels improved EGCG chemical stability and quercetin solubility under simulated gastrointestinal conditions, which led to a 2- and 4-fold increase in their effective bioaccessibility, respectively.
Collapse
Affiliation(s)
- Xing Chen
- State Key Laboratory of Food Science and Technology , Nanchang University , No. 235 Nanjing East Road , Nanchang 330047 , Jiangxi , China
| | - David Julian McClements
- Biopolymers & Colloids Research Laboratory, Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Jian Wang
- State Key Laboratory of Food Science and Technology , Nanchang University , No. 235 Nanjing East Road , Nanchang 330047 , Jiangxi , China
| | - Liqiang Zou
- State Key Laboratory of Food Science and Technology , Nanchang University , No. 235 Nanjing East Road , Nanchang 330047 , Jiangxi , China
| | - Sumeng Deng
- State Key Laboratory of Food Science and Technology , Nanchang University , No. 235 Nanjing East Road , Nanchang 330047 , Jiangxi , China
| | - Wei Liu
- State Key Laboratory of Food Science and Technology , Nanchang University , No. 235 Nanjing East Road , Nanchang 330047 , Jiangxi , China
| | - Chi Yan
- State Key Laboratory of Food Science and Technology , Nanchang University , No. 235 Nanjing East Road , Nanchang 330047 , Jiangxi , China
| | - Yuqing Zhu
- State Key Laboratory of Food Science and Technology , Nanchang University , No. 235 Nanjing East Road , Nanchang 330047 , Jiangxi , China
| | - Ce Cheng
- State Key Laboratory of Food Science and Technology , Nanchang University , No. 235 Nanjing East Road , Nanchang 330047 , Jiangxi , China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology , Nanchang University , No. 235 Nanjing East Road , Nanchang 330047 , Jiangxi , China
| |
Collapse
|
19
|
Herzi S, Essafi W. Different magnesium release profiles from W/O/W emulsions based on crystallized oils. J Colloid Interface Sci 2017; 509:178-188. [PMID: 28898738 DOI: 10.1016/j.jcis.2017.08.089] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/16/2017] [Accepted: 08/28/2017] [Indexed: 11/30/2022]
Abstract
Water-in-oil-in-water (W/O/W) double emulsions based on crystallized oils were prepared and the release kinetics of magnesium ions from the internal to the external aqueous phase was investigated at T=4°C, for different crystallized lipophilic matrices. All the emulsions were formulated using the same surface-active species, namely polyglycerol polyricinoleate (oil-soluble) and sodium caseinate (water-soluble). The external aqueous phase was a lactose or glucose solution at approximately the same osmotic pressure as that of the inner droplets, in order to avoid osmotic water transfer phenomena. We investigated two types of crystallized lipophilic systems: one based on blends of cocoa butter and miglyol oil, exploring a solid fat content from 0 to 90% and the other system based on milk fat fractions for which the solid fat content varies between 54 and 86%. For double emulsions based on cocoa butter/miglyol oil, the rate of magnesium release was gradually lowered by increasing the % of fat crystals i.e. cocoa butter, in agreement with a diffusion/permeation mechanism. However for double emulsions based on milk fat fractions, the rate of magnesium release was independent of the % of fat crystals and remains the one at t=0. This difference in diffusion patterns, although the solid content is of the same order, suggests a different distribution of fat crystals within the double globules: a continuous fat network acting as a physical barrier for the diffusion of magnesium for double emulsions based on cocoa butter/miglyol oil and double globule/water interfacial distribution for milk fat fractions based double emulsions, through the formation of a crystalline shell allowing an effective protection of the double globules against diffusion of magnesium to the external aqueous phase.
Collapse
Affiliation(s)
- Sameh Herzi
- Institut National de Recherche et d'Analyse Physico-Chimique, Pôle Technologique de Sidi Thabet, 2020 Sidi Thabet, Tunisia; Institut National Agronomique de Tunisie, 43 Avenue Charles Nicolle 1082 Tunis-Mahrajène, Tunisia
| | - Wafa Essafi
- Laboratoire Matériaux, Traitement et Analyse, Institut National de Recherche et d'Analyse Physico-Chimique, Pôle Technologique de Sidi Thabet, 2020 Sidi Thabet, Tunisia.
| |
Collapse
|
20
|
Choi H, Kim SJ, Lee SY, Choi MJ. Effect of Abalone Hydrolysates Encapsulated by Double Emulsion on the Physicochemical and Sensorial Properties of Fresh Cheese. Korean J Food Sci Anim Resour 2017; 37:210-218. [PMID: 28515645 PMCID: PMC5434208 DOI: 10.5851/kosfa.2017.37.2.210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 11/06/2022] Open
Abstract
The intake of dietary salt through food now exceeds current nutritional recommendations and is thought to have negative effects on human health, such as the increasing prevalence of hypertension. This study was performed to investigate whether W1/O/W2 double emulsions can be used to enhance the saltiness of cheese without increasing the salt content (W1 is distilled water or 1% abalone hydrolysate, and W2 is 1% NaCl or 1% abalone hydrolysate + 1% NaCl solution). We also investigated the effect of adding abalone hydrolysate to the double emulsion as a saltiness enhancer. The cheeses were physico-chemically evaluated to determine curd yield, pH value, moisture content, color, texture, salt release rate, and sensory properties. No significant differences were observed in curd yield, pH value, moisture content, lightness, or redness between the cheeses made with and without the double emulsion. However, in the evaluation of salt release rate, fresh cheese made with double emulsion (W1 = distilled water, W2 = 1% NaCl + 1% abalone hydrolysate) was detected earlier than the control or the other treatments. In the sensory evaluation, fresh cheese made with the double emulsion showed higher scores for saltiness and overall preference than the control or the other treatments. We concluded that abalone hydrolysate encapsulated in a double emulsion (W1 is water and W2 is abalone hydrolysate and NaCl solution) could enhance the saltiness of fresh cheese while maintaining the same salt concentration, without altering its physical properties.
Collapse
Affiliation(s)
- HeeJeong Choi
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Soo-Jin Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Sang-Yoon Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Mi-Jung Choi
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
21
|
Impact of the release rate of magnesium ions in multiple emulsions (water-in-oil-in-water) containing BSA on the resulting physical properties and microstructure of soy protein gel. Food Chem 2017; 220:452-459. [DOI: 10.1016/j.foodchem.2016.10.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/29/2016] [Accepted: 10/03/2016] [Indexed: 11/19/2022]
|
22
|
Muschiolik G, Dickinson E. Double Emulsions Relevant to Food Systems: Preparation, Stability, and Applications. Compr Rev Food Sci Food Saf 2017; 16:532-555. [DOI: 10.1111/1541-4337.12261] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 12/27/2022]
Affiliation(s)
| | - Eric Dickinson
- School of Food Science and Nutrition; Univ. of Leeds; LS2 9JT Leeds United Kingdom
| |
Collapse
|
23
|
Bian T, Zhang X, He G, Duan Z, Dong C, Li X, Guo N. Citric acid-loaded W1/O/W2 multiple emulsions efficiently remove colonic ammonia both in vitro and in vivo. J DISPER SCI TECHNOL 2016. [DOI: 10.1080/01932691.2015.1038750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Tengfei Bian
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian, China
| | - Xiujuan Zhang
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian, China
| | - Zhijun Duan
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chunxu Dong
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian, China
| | - Xiangcun Li
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian, China
| | - Nana Guo
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
24
|
Li J, Shi Y, Zhu Y, Teng C, Li X. Effects of Several Natural Macromolecules on the Stability and Controlled Release Properties of Water-in-Oil-in-Water Emulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3873-3880. [PMID: 27137850 DOI: 10.1021/acs.jafc.6b00956] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Water-in-oil-in-water (W/O/W) emulsions are effective vehicles for embedding application of active compounds but limited by their thermodynamic instability and rapid release properties. The present study added bovine serum albumin, whey protein isolate, whey protein hydrolysate, sodium caseinate, carboxymethylcellulose sodium, fish gelatin, apple pectin, gum arabic, ι-carrageenan, and hydroxypropyl chitosan separately to the internal or external aqueous phase to investigate their effects on the physical stabilities and controlled release properties of W/O/W emulsions. The effects of the natural macromolecules in the internal and external aqueous phases were different and depended upon the macromolecule structure and its mass fraction. The addition of the natural macromolecule strengthened the interfaces of emulsions, which improved the physical stability. The natural macromolecules that improved the stability often did not improve controlled release. Therefore, the balance between these properties needs to be considered when adding natural macromolecules to a W/O/W emulsion.
Collapse
Affiliation(s)
- Jinlong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University , Beijing 100048, People's Republic of China
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients , Beijing 100048, People's Republic of China
| | - Yiheng Shi
- College of Food Science and Engineering, Northwest Agricultural and Forestry University , Yangling, Shanxi 712100, People's Republic of China
| | - Yunping Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University , Beijing 100048, People's Republic of China
- Beijing Key Laboratory of Flavor Chemistry , Beijing 100048, People's Republic of China
| | - Chao Teng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University , Beijing 100048, People's Republic of China
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients , Beijing 100048, People's Republic of China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University , Beijing 100048, People's Republic of China
- Beijing Key Laboratory of Flavor Chemistry , Beijing 100048, People's Republic of China
| |
Collapse
|
25
|
Ilić JD, Nikolovski BG, Lončarević IS, Petrović JS, Bajac BM, Vučinić-Vasić M. Release Properties and Stability of Double W1/O/W2Emulsions Containing Pumpkin Seed Oil. J FOOD PROCESS ENG 2016. [DOI: 10.1111/jfpe.12349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jelena D. Ilić
- Faculty of Technology , University of Novi Sad, Novi Sad, R. Serbia
| | | | | | | | | | | |
Collapse
|
26
|
Polycaprolactone multicore-matrix particle for the simultaneous encapsulation of hydrophilic and hydrophobic compounds produced by membrane emulsification and solvent diffusion processes. Colloids Surf B Biointerfaces 2015; 135:116-125. [DOI: 10.1016/j.colsurfb.2015.06.071] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/04/2015] [Accepted: 06/23/2015] [Indexed: 10/23/2022]
|
27
|
Stability and rheology of W/Si/W multiple emulsions with polydimethylsiloxane. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
|
29
|
Herzi S, Essafi W, Bellagha S, Leal-Calderon F. Influence of the inner droplet fraction on the release rate profiles from multiple W/O/W emulsions. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2013.09.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Controlling W/O/W multiple emulsion microstructure by osmotic swelling and internal protein gelation. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.09.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Jiménez-Colmenero F. Potential applications of multiple emulsions in the development of healthy and functional foods. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.02.040] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
32
|
Sameh H, Wafa E, Sihem B, Fernando LC. Influence of diffusive transport on the structural evolution of W/O/W emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:17597-17608. [PMID: 23176152 DOI: 10.1021/la303469j] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Double emulsions of the W/O/W type are compartmented materials suitable for encapsulation and sustained release of hydrophilic compounds. Initially, the inner aqueous droplets contain an encapsulated compound (EC), and the external phase comprises an osmotic regulator (OR). Over time, water and the solutes dissolved in it tend to be transferred from one aqueous compartment to the other across the oil phase. Water transfer being by far the fastest process, osmotic equilibration of two compartments is permanently ensured. Since the transport of the EC and OR generally occurs at dissimilar rates, the osmotic regulation process provokes a continuous flux of water that modifies the inner and outer volumes. We fabricated W/O/W emulsions stabilized by a couple of amphiphilic polymers, and we measured the inward and outward diffusion kinetics of the solutes. The phenomenology was explored by varying the chemical nature of the OR while keeping the same EC or vice versa. Microscope observations revealed different evolution scenarios, depending on the relative rates of transfer of the EC and OR. Structural evolution was mainly determined by the permeation ratio between the EC and the OR, irrespective of their chemical nature. In particular, a regime leading to droplet emptying was identified. In all cases, evolution was due to diffusion/permeation phenomena and coalescence was marginal. Results were discussed within the frame of a simple mean-field model taking into account the diffusive transfer of the solutes.
Collapse
Affiliation(s)
- Herzi Sameh
- Institut National de Recherche et d'Analyse Physico-Chimique, Pôle Technologique de Sidi Thabet, 2020 Sidi Thabet, Tunisia
| | | | | | | |
Collapse
|
33
|
|
34
|
|
35
|
Bonnet M, Cansell M, Placin F, David-Briand E, Anton M, Leal-Calderon F. Influence of ionic complexation on release rate profiles from multiple water-in-oil-in-water (W/O/W) emulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:7762-7769. [PMID: 20545343 DOI: 10.1021/jf100917w] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Water-in-oil-in-water (W/O/W) double emulsions were prepared, and the kinetics of release of magnesium ions from the internal to the external water phase was followed. Different chelating agents (phosvitin and gluconate) were used to bind magnesium within the prospect of improving the ion retention in the internal aqueous droplets. Magnesium release was monitored for 1 month of storage, for each formulation, with and without chelation, at two storage temperatures (4 and 25 degrees C). Leakage occurred without film rupturing (coalescence) and was mainly due to entropically driven diffusion/permeation phenomena. The experimental results revealed a clear correlation between the effectiveness of chelating agents to delay the delivery and their binding capacity characterized by the equilibrium affinity constant. The kinetic data (percent released versus time curves) were interpreted within the framework of a kinetic model based on diffusion and taking into account magnesium chelation.
Collapse
Affiliation(s)
- Marie Bonnet
- Université Bordeaux 1, TREFLE UMR CNRS 8508, ENSCBP, 16 avenue Pey Berland, 33607 Pessac, France
| | | | | | | | | | | |
Collapse
|