1
|
Abstract
In the last few years, researchers have focused their attention on the synthesis of new catalyst structures based on or inspired by nature. Biotemplating involves the transfer of biological structures to inorganic materials through artificial mineralization processes. This approach offers the main advantage of allowing morphological control of the product, as a template with the desired morphology can be pre-determined, as long as it is found in nature. This way, natural evolution through millions of years can provide us with new synthetic pathways to develop some novel functional materials with advantageous properties, such as sophistication, miniaturization, hybridization, hierarchical organization, resistance, and adaptability to the required need. The field of application of these materials is very wide, covering nanomedicine, energy capture and storage, sensors, biocompatible materials, adsorbents, and catalysis. In the latter case, bio-inspired materials can be applied as catalysts requiring different types of active sites (i.e., redox, acidic, basic sites, or a combination of them) to a wide range of processes, including conventional thermal catalysis, photocatalysis, or electrocatalysis, among others. This review aims to cover current experimental studies in the field of biotemplating materials synthesis and their characterization, focusing on their application in heterogeneous catalysis.
Collapse
|
2
|
Freeman A. Protein-Mediated Biotemplating on the Nanoscale. Biomimetics (Basel) 2017; 2:E14. [PMID: 31105177 PMCID: PMC6352702 DOI: 10.3390/biomimetics2030014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/18/2017] [Accepted: 08/01/2017] [Indexed: 12/26/2022] Open
Abstract
Purified proteins offer a homogeneous population of biological nanoparticles, equipped in many cases with specific binding sites enabling the directed self-assembly of envisaged one-, two- or three-dimensional arrays. These arrays may serve as nanoscale biotemplates for the preparation of novel functional composite materials, which exhibit potential applications, especially in the fields of nanoelectronics and optical devices. This review provides an overview of the field of protein-mediated biotemplating, focussing on achievements made throughout the past decade. It is comprised of seven sections designed according to the size and configuration of the protein-made biotemplate. Each section describes the design and size of the biotemplate, the resulting hybrid structures, the fabrication methodology, the analytical tools employed for the structural analysis of the hybrids obtained, and, finally, their claimed/intended applications and a feasibility demonstration (whenever available). In conclusion, a short assessment of the overall status of the achievements already made vs. the future challenges of this field is provided.
Collapse
Affiliation(s)
- Amihay Freeman
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
3
|
Zan G, Wu Q. Biomimetic and Bioinspired Synthesis of Nanomaterials/Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:2099-147. [PMID: 26729639 DOI: 10.1002/adma.201503215] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/09/2015] [Indexed: 05/13/2023]
Abstract
In recent years, due to its unparalleled advantages, the biomimetic and bioinspired synthesis of nanomaterials/nanostructures has drawn increasing interest and attention. Generally, biomimetic synthesis can be conducted either by mimicking the functions of natural materials/structures or by mimicking the biological processes that organisms employ to produce substances or materials. Biomimetic synthesis is therefore divided here into "functional biomimetic synthesis" and "process biomimetic synthesis". Process biomimetic synthesis is the focus of this review. First, the above two terms are defined and their relationship is discussed. Next different levels of biological processes that can be used for process biomimetic synthesis are compiled. Then the current progress of process biomimetic synthesis is systematically summarized and reviewed from the following five perspectives: i) elementary biomimetic system via biomass templates, ii) high-level biomimetic system via soft/hard-combined films, iii) intelligent biomimetic systems via liquid membranes, iv) living-organism biomimetic systems, and v) macromolecular bioinspired systems. Moreover, for these five biomimetic systems, the synthesis procedures, basic principles, and relationships are discussed, and the challenges that are encountered and directions for further development are considered.
Collapse
Affiliation(s)
- Guangtao Zan
- Department of Chemistry, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, P. R. China
- School of Materials Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Qingsheng Wu
- Department of Chemistry, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, P. R. China
- School of Materials Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
4
|
Plascencia-Villa G, Carreño-Fuentes L, Bahena D, José-Yacamán M, Palomares LA, Ramírez OT. Characterization of conductive nanobiomaterials derived from viral assemblies by low-voltage STEM imaging and Raman scattering. NANOTECHNOLOGY 2014; 25:385706. [PMID: 25180475 DOI: 10.1088/0957-4484/25/38/385706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
New technologies require the development of novel nanomaterials that need to be fully characterized to achieve their potential. High-resolution low-voltage scanning transmission electron microscopy (STEM) has proven to be a very powerful technique in nanotechnology, but its use for the characterization of nanobiomaterials has been limited. Rotavirus VP6 self-assembles into nanotubular assemblies that possess an intrinsic affinity for Au ions. This property was exploited to produce hybrid nanobiomaterials by the in situ functionalization of recombinant VP6 nanotubes with gold nanoparticles. In this work, Raman spectroscopy and advanced analytical electron microscopy imaging with spherical aberration-corrected (Cs) STEM and nanodiffraction at low-voltage doses were employed to characterize nanobiomaterials. STEM imaging revealed the precise structure and arrangement of the protein templates, as well as the nanostructure and atomic arrangement of gold nanoparticles with high spatial sub-Angstrom resolution and avoided radiation damage. The imaging was coupled with backscattered electron imaging, ultra-high resolution scanning electron microscopy and x-ray spectroscopy. The hybrid nanobiomaterials that were obtained showed unique properties as bioelectronic conductive devices and showed enhanced Raman scattering by their precise arrangement into superlattices, displaying the utility of viral assemblies as functional integrative self-assembled nanomaterials for novel applications.
Collapse
Affiliation(s)
- Germán Plascencia-Villa
- Department of Physics and Astronomy, The University of Texas at San Antonio (UTSA), San Antonio, Texas, USA
| | | | | | | | | | | |
Collapse
|
5
|
Shindel MM, Mumm DR, Wang SW. Manipulating energy landscapes to tune ordering in biotemplated nanoparticle arrays. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:7768-7775. [PMID: 21608977 DOI: 10.1021/la201088p] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Two-dimensional non-close-packed crystals of the protein streptavidin, grown on phospholipid membranes, can serve as nanoscale templates capable of directing the formation of ordered nanoparticle arrays through site-specific electrostatic adsorption. Here we examine the effects of both interparticle and nanoparticle/lipid membrane electrostatic interactions on the degree of structural order exhibited by the templated nanoparticle array. Interparticle electrostatic repulsion is shown to have only marginal influence on nanoparticle ordering. In contrast, the degree of order exhibited by the templated array can be tuned by controlling the charge on the lipid membrane. Analysis of the local and global structure of arrays generated with negatively charged gold nanoparticles (∼6 nm) indicate improved long-range order when the lipid membrane supporting the protein crystal is derived from cationic lipid molecules as opposed to zwitterionic phospholipids. Furthermore, as nanoparticle size is reduced (∼3 nm), the presence of a charged lipid membrane is found to be essential, as smaller particles do not adhere to streptavidin crystals grown on zwitterionic membranes. These findings demonstrate that the composition of the lipid support can influence the efficacy of directed-assembly processes which utilize protein templates and are important results toward enhancing control over bottom-up nanofabrication applications.
Collapse
Affiliation(s)
- Matthew M Shindel
- Department of Chemical Engineering and Materials Science, University of California, Irvine, California 92697-2575, USA
| | | | | |
Collapse
|
6
|
Jones MR, Osberg KD, Macfarlane RJ, Langille MR, Mirkin CA. Templated Techniques for the Synthesis and Assembly of Plasmonic Nanostructures. Chem Rev 2011; 111:3736-827. [DOI: 10.1021/cr1004452] [Citation(s) in RCA: 996] [Impact Index Per Article: 76.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Matthew R. Jones
- Department of Materials Science and Engineering, ‡Department of Chemistry, and §International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Kyle D. Osberg
- Department of Materials Science and Engineering, ‡Department of Chemistry, and §International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Robert J. Macfarlane
- Department of Materials Science and Engineering, ‡Department of Chemistry, and §International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Mark R. Langille
- Department of Materials Science and Engineering, ‡Department of Chemistry, and §International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Chad A. Mirkin
- Department of Materials Science and Engineering, ‡Department of Chemistry, and §International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|