1
|
|
2
|
Tian H, Shao J, Hu H, Wang L, Ding Y. Generation of Hierarchically Ordered Structures on a Polymer Film by Electrohydrodynamic Structure Formation. ACS APPLIED MATERIALS & INTERFACES 2016; 8:16419-16427. [PMID: 27268135 DOI: 10.1021/acsami.6b03406] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The extensive applications of hierarchical structures in optoelectronics, micro/nanofluidics, energy conservation, etc., have led to the development of a variety of approaches for their fabrication, which can be categorized as bottom-up or top-down strategies. Current bottom-up and top-down strategies bear a complementary relationship to each other due to their processing characteristics, i.e., the advantages of one method correspond to the disadvantages of the other, and vice versa. Here we propose a novel method based on electrohydrodynamic structure formation, aimed at combining the main advantages of the two strategies. The method allows the fabrication of a hierarchically ordered structure with well-defined geometry and high mechanical durability on a polymer film, through a simple and low-cost process also suitable for mass-production. In this approach, upon application of an electric field between a template and a substrate sandwiching an air gap and a polymer film, the polymer is pulled toward the template and further flows into the template cavities, resulting in a hierarchical structure with primary and secondary patterns determined by electrohydrodynamic instability and by the template features, respectively. In this work, the fabrication of a hierarchical structure by electrohydrodynamic structure formation is studied using numerical simulations and experimental tests. The proposed method is then employed for the one-step fabrication of a hierarchical structure exhibiting a gradual transition in the periodicity of the primary structure using a slant template and a flat polymer film, which presents an excellent performance on controllable wettability.
Collapse
Affiliation(s)
- Hongmiao Tian
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University , 28 Xianning Road, Xi'an, 710049, P. R. China
| | - Jinyou Shao
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University , 28 Xianning Road, Xi'an, 710049, P. R. China
| | - Hong Hu
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University , 28 Xianning Road, Xi'an, 710049, P. R. China
| | - Li Wang
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University , 28 Xianning Road, Xi'an, 710049, P. R. China
| | - Yucheng Ding
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University , 28 Xianning Road, Xi'an, 710049, P. R. China
| |
Collapse
|
3
|
Yang Q, Li BQ, Ding Y, Shao J. Steady State of Electrohydrodynamic Patterning of Micro/Nanostructures on Thin Polymer Films. Ind Eng Chem Res 2014. [DOI: 10.1021/ie502288a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Qingzhen Yang
- State
Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, People’s Republic of China
| | - Ben Q. Li
- Department
of Mechanical Engineering, University of Michigan, Dearborn, Michigan 48128, United States
| | - Yucheng Ding
- State
Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, People’s Republic of China
| | - Jinyou Shao
- State
Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, People’s Republic of China
| |
Collapse
|
4
|
Vécsei M, Dietzel M, Hardt S. Coupled self-organization: thermal interaction between two liquid films undergoing long-wavelength instabilities. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:053018. [PMID: 25353891 DOI: 10.1103/physreve.89.053018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Indexed: 06/04/2023]
Abstract
The effects of thermal coupling between two thin liquid layers separated by a gas layer are discussed. The liquid layers undergo long-wavelength instabilities driven by gravitational and thermocapillary stresses. To study the dynamics, both a linear stability analysis and a full numerical solution of the thin-film equations are performed. The results demonstrate that the stability properties of the combined system differs substantially from the case where both layers evolve independently from each other. Most prominently, oscillatory instabilities, not present in single-liquid layer configurations, may occur.
Collapse
Affiliation(s)
- Miklós Vécsei
- Center of Smart Interfaces, TU Darmstadt, Darmstadt, Germany
| | - Mathias Dietzel
- Center of Smart Interfaces, TU Darmstadt, Darmstadt, Germany
| | - Steffen Hardt
- Center of Smart Interfaces, TU Darmstadt, Darmstadt, Germany
| |
Collapse
|
5
|
Dey M, Bandyopadhyay D, Sharma A, Qian S, Joo SW. Charge Leakage Mediated Pattern Miniaturization in the Electric Field Induced Instabilities of an Elastic Membrane. Ind Eng Chem Res 2014. [DOI: 10.1021/ie500378k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mohar Dey
- School
of Mechanical Engineering, Yeungnam University, Gyeongsan 712749, South Korea
| | - Dipankar Bandyopadhyay
- Department
of Chemical Engineering, Indian Institute of Technology Guwahati, 781039, Assam, India
- Centre
for Nanotechnology, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Ashutosh Sharma
- Department
of Chemical Engineering, Indian Institute of Technology Kanpur, UP 208016, India
| | - Shizhi Qian
- Department
of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Sang Woo Joo
- School
of Mechanical Engineering, Yeungnam University, Gyeongsan 712749, South Korea
| |
Collapse
|
6
|
Mondal K, Kumar P, Bandyopadhyay D. Electric field induced instabilities of thin leaky bilayers: Pathways to unique morphologies and miniaturization. J Chem Phys 2013; 138:024705. [DOI: 10.1063/1.4773857] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
7
|
Dey M, Bandyopadhyay D, Sharma A, Qian S, Joo SW. Electric-field-induced interfacial instabilities of a soft elastic membrane confined between viscous layers. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:041602. [PMID: 23214594 DOI: 10.1103/physreve.86.041602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Indexed: 06/01/2023]
Abstract
We explore the electric-field-induced interfacial instabilities of a trilayer composed of a thin elastic film confined between two viscous layers. A linear stability analysis (LSA) is performed to uncover the growth rate and length scale of the different unstable modes. Application of a normal external electric field on such a configuration can deform the two coupled elastic-viscous interfaces either by an in-phase bending or an antiphase squeezing mode. The bending mode has a long-wave nature, and is present even at a vanishingly small destabilizing field. In contrast, the squeezing mode has finite wave-number characteristics and originates only beyond a threshold strength of the electric field. This is in contrast to the instabilities of the viscous films with multiple interfaces where both modes are found to possess long-wave characteristics. The elastic film is unstable by bending mode when the stabilizing forces due to the in-plane curvature and the elastic stiffness are strong and the destabilizing electric field is relatively weak. In comparison, as the electric field increases, a subdominant squeezing mode can also appear beyond a threshold destabilizing field. A dominant squeezing mode is observed when the destabilizing field is significantly strong and the elastic films are relatively softer with lower elastic modulus. In the absence of liquid layers, a free elastic film is also found to be unstable by long-wave bending and finite wave-number squeezing modes. The LSA asymptotically recovers the results obtained by the previous formulations where the membrane bending elasticity is approximately incorporated as a correction term in the normal stress boundary condition. Interestingly, the presence of a very weak stabilizing influence due to a smaller interfacial tension at the elastic-viscous interfaces opens up the possibility of fabricating submicron patterns exploiting the instabilities of a trilayer.
Collapse
Affiliation(s)
- Mohar Dey
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749, South Korea
| | | | | | | | | |
Collapse
|
8
|
Verma A, Sharma A, Kulkarni GU. Ultrafast large-area micropattern generation in nonabsorbing polymer thin films by pulsed laser diffraction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:758-765. [PMID: 21290600 DOI: 10.1002/smll.201001939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 12/22/2010] [Indexed: 05/28/2023]
Abstract
An ultrafast, parallel, and beyond-the-master micropatterning technique for ultrathin (30-400 nm) nonabsorbing polymer films by diffraction of laser light through a 2D periodic aperture is reported. The redistribution of laser energy absorbed by the substrate causes self-organization of polymer thin films in the form of wrinklelike surface relief structures caused by localized melting and freezing of the thin film. Unlike conventional laser ablation and laser writing processes, low laser fluence is employed to only passively swell the polymer as a pre-ablative process without loss of material, and without absorption/reaction with incident radiation. Self-organization in the thin polymer film, aided by the diffraction pattern, produces microstructures made up of thin raised lines. These regular microstructures have far more complex morphologies than the mask geometry and very narrow line widths that can be an order of magnitude smaller than the openings in the mask. The microstructure morphology is easily modulated by changing the film thickness, aperture size, and geometry, and by changing the diffraction pattern.
Collapse
Affiliation(s)
- Ankur Verma
- Department of Chemical Engineering and DST Unit on Nanoscience, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | | | | |
Collapse
|