1
|
Richter-Bisson ZW, Nie HY, Hedberg YS. Serum protein albumin and chromium: Mechanistic insights into the interaction between ions, nanoparticles, and protein. Int J Biol Macromol 2024; 278:134845. [PMID: 39159799 DOI: 10.1016/j.ijbiomac.2024.134845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
The interaction of human proteins and metal species, both ions and nanoparticles, is poorly understood despite their growing importance. These materials are the by-products of corrosion processes and are of relevance for food and drug manufacturing, nanomedicine, and biomedical implant corrosion. Here, we study the interaction of Cr(III) ions and chromium oxide nanoparticles with bovine serum albumin in physiological conditions. This study combined electrophoretic mobility measurements, spectroscopy, and time-of-flight secondary ion mass spectrometry with principal component analysis. It was determined that neither metal species resulted in global albumin unfolding. The Cr(III) ions interacted strongly with amino acids found in previously discovered metal binding sites, but also were most strongly implicated in the interaction with negatively charged acid residues, suggesting an electrostatic interaction. Bovine serum albumin (BSA) was found to bind to the Cr2O3 nanoparticles in a preferential orientation, due to electrostatic interactions between the positive amino acid residues and the negative chromium oxide nanoparticle surface. These findings ameliorate our understanding of the interaction between trivalent chromium ions and nanoparticles, and biological macromolecules.
Collapse
Affiliation(s)
| | - Heng-Yong Nie
- Surface Science Western, Western University, London, ON N6G 0J3, Canada; Department of Physics and Astronomy, Western University, London, ON N6A 3K7, Canada
| | - Yolanda Susanne Hedberg
- Department of Chemistry, Western University, London, ON N6A 5B7, Canada; Surface Science Western, Western University, London, ON N6G 0J3, Canada; Lawson Health Research Institute, London, ON N6C 2R5, Canada.
| |
Collapse
|
2
|
Ferrara V, Vandenabeele C, Cossement D, Snyders R, Satriano C. Enhanced plasmonic processes in amino-rich plasma polymer films for applications at the biointerface. Phys Chem Chem Phys 2021; 23:27365-27376. [PMID: 34854856 DOI: 10.1039/d1cp02271g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new plasmonic biosensor was developed in a planar chip-based format by coupling the plasmonic properties of gold nanoparticles (Au NPs) with the mechanical and bioadhesive features of unconventional organic thin films deposited from plasma, namely primary amine-based plasma polymer films (PPFs). A self-assembled layer of spherical Au NPs, 12 nm in diameter, was electrostatically immobilized onto optically transparent silanised glass. In the next step, the Au NP layer was coated with an 18 nm polymeric thick PPF layer via the simultaneous polymerization/deposition of a cyclopropylamine (CPA) precursor performed by radio frequency discharge, both in pulsed and in continuous wave modes. The CPA PFF surface plays the dual role of an adsorbent towards negatively charged chemical species as well as an enhancer of plasmonic signals. The biosensor was tested in a proof-of-concept series of experiments of human serum albumin physisorption, and chosen as a model system for blood serum. The peculiar surface features of CPA PPF, before and after the exposure to buffered solution of fluorescein isothiocyanate-labelled human serum albumin (FITC-HSA), were investigated by a multi-technique approach, including UV-visible and X-ray photoelectron spectroscopies, atomic force microscopy, scanning electron microscopy, contact angle and surface free energy measurements. The results showed the very promising potentialities from both bioanalytical and physicochemical points of view in scrutinizing the macromolecule behavior at the biointerface.
Collapse
Affiliation(s)
- Vittorio Ferrara
- Department of Chemical Sciences, University of Catania, viale Andrea Doria 6, 95125 Catania, Italy.
| | | | - Damien Cossement
- Materia Nova Research Center, avenue N. Copernic 1, 7000 Mons, Belgium
| | - Rony Snyders
- ChIPS, Université de Mons, Place du Parc 23, 7000 Mons, Belgium. .,Materia Nova Research Center, avenue N. Copernic 1, 7000 Mons, Belgium
| | - Cristina Satriano
- Department of Chemical Sciences, University of Catania, viale Andrea Doria 6, 95125 Catania, Italy.
| |
Collapse
|
3
|
Controlling orientation, conformation, and biorecognition of proteins on silane monolayers, conjugate polymers, and thermo-responsive polymer brushes: investigations using TOF-SIMS and principal component analysis. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04711-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractControl over orientation and conformation of surface-immobilized proteins, determining their biological activity, plays a critical role in biointerface engineering. Specific protein state can be achieved with adjusted surface preparation and immobilization conditions through different types of protein-surface and protein-protein interactions, as outlined in this work. Time-of-flight secondary ion mass spectroscopy, combining surface sensitivity with excellent chemical specificity enhanced by multivariate data analysis, is the most suited surface analysis method to provide information about protein state. This work highlights recent applications of the multivariate principal component analysis of TOF-SIMS spectra to trace orientation and conformation changes of various proteins (antibody, bovine serum albumin, and streptavidin) immobilized by adsorption, specific binding, and covalent attachment on different surfaces, including self-assembled monolayers on silicon, solution-deposited polythiophenes, and thermo-responsive polymer brushes. Multivariate TOF-SIMS results correlate well with AFM data and binding assays for antibody-antigen and streptavidin-biotin recognition. Additionally, several novel extensions of the multivariate TOF-SIMS method are discussed.Graphical abstract
Collapse
|
4
|
Wei W, Plymale A, Zhu Z, Ma X, Liu F, Yu XY. In Vivo Molecular Insights into Syntrophic Geobacter Aggregates. Anal Chem 2020; 92:10402-10411. [PMID: 32614167 DOI: 10.1021/acs.analchem.0c00653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Direct interspecies electron transfer (DIET) has been considered as a novel and highly efficient strategy in both natural anaerobic environments and artificial microbial fuel cells. A syntrophic model consisting of Geobacter metallireducens and Geobacter sulfurreducens was studied in this work. We conducted in vivo molecular mapping of the outer surface of the syntrophic community as the interface of nutrients and energy exchange. System for Analysis at the Liquid Vacuum Interface combined with time-of-flight secondary ion mass spectrometry was employed to capture the molecular distribution of syntrophic Geobacter communities in the living and hydrated state. Principal component analysis with selected peaks revealed that syntrophic Geobacter aggregates were well differentiated from other control samples, including syntrophic planktonic cells, pure cultured planktonic cells, and single population biofilms. Our in vivo imaging indicated that a unique molecular surface was formed. Specifically, aromatic amino acids, phosphatidylethanolamine components, and large water clusters were identified as key components that favored the DIET of syntrophic Geobacter aggregates. Moreover, the molecular changes in depths of the Geobacter aggregates were captured using dynamic depth profiling. Our findings shed new light on the interface components supporting electron transfer in syntrophic communities based on in vivo molecular imaging.
Collapse
Affiliation(s)
- Wenchao Wei
- Key Laboratory of Coastal Biology and Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, P. R. China.,Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Andrew Plymale
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Zihua Zhu
- Environmental and Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Xiang Ma
- Department of Chemistry, Grand View University, Des Moines, Iowa 50316, United States
| | - Fanghua Liu
- Key Laboratory of Coastal Biology and Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, P. R. China
| | - Xiao-Ying Yu
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
5
|
Joyce P, Dening TJ, Meola TR, Schultz HB, Holm R, Thomas N, Prestidge CA. Solidification to improve the biopharmaceutical performance of SEDDS: Opportunities and challenges. Adv Drug Deliv Rev 2019; 142:102-117. [PMID: 30529138 DOI: 10.1016/j.addr.2018.11.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/21/2018] [Accepted: 11/27/2018] [Indexed: 01/28/2023]
Abstract
Self-emulsifying drug delivery systems (SEDDS) offer potential for overcoming the inherent slow dissolution and poor oral absorption of hydrophobic drugs by retaining them in a solubilised state during gastrointestinal transit. However, the promising biopharmaceutical benefits of liquid lipid formulations has not translated into widespread commercial success, due to their susceptibility to long term storage and in vivo precipitation issues. One strategy that has emerged to overcome such limitations, is to combine the solubilisation and dissolution enhancing properties of lipids with the stabilising effects of solid carrier materials. The development of intelligent hybrid drug formulations has presented new opportunities to harness the potential of emulsified lipids in optimising oral bioavailability for lipophilic therapeutics. Specific emphasis of this review is placed on the impact of solidification approaches and excipients on the biopharmaceutical performance of self-emulsifying lipids, with findings highlighting the key design considerations that should be implemented when developing hybrid lipid-based formulations.
Collapse
|
6
|
Sen-Britain S, Hicks WL, Hard R, Gardella JA. Differential orientation and conformation of surface-bound keratinocyte growth factor on (hydroxyethyl)methacrylate, (hydroxyethyl)methacrylate/methyl methacrylate, and (hydroxyethyl)methacrylate/methacrylic acid hydrogel copolymers. Biointerphases 2018; 13:06E406. [PMID: 30360629 PMCID: PMC6905655 DOI: 10.1116/1.5051655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/27/2018] [Accepted: 10/03/2018] [Indexed: 01/12/2023] Open
Abstract
The development of hydrogels for protein delivery requires protein-hydrogel interactions that cause minimal disruption of the protein's biological activity. Biological activity can be influenced by factors such as orientational accessibility for receptor binding and conformational changes, and these factors can be influenced by the hydrogel surface chemistry. (Hydroxyethyl)methacrylate (HEMA) hydrogels are of interest as drug delivery vehicles for keratinocyte growth factor (KGF) which is known to promote re-epithelialization in wound healing. The authors report here the surface characterization of three different HEMA hydrogel copolymers and their effects on the orientation and conformation of surface-bound KGF. In this work, they characterize two copolymers in addition to HEMA alone and report how protein orientation and conformation is affected. The first copolymer incorporates methyl methacrylate (MMA), which is known to promote the adsorption of protein to its surface due to its hydrophobicity. The second copolymer incorporates methacrylic acid (MAA), which is known to promote the diffusion of protein into its surface due to its hydrophilicity. They find that KGF at the surface of the HEMA/MMA copolymer appears to be more orientationally accessible and conformationally active than KGF at the surface of the HEMA/MAA copolymer. They also report that KGF at the surface of the HEMA/MAA copolymer becomes conformationally unfolded, likely due to hydrogen bonding. KGF at the surface of these copolymers can be differentiated by Fourier-transform infrared-attenuated total reflectance spectroscopy and time-of-flight secondary ion mass spectrometry in conjunction with principal component analysis. The differences in KGF orientation and conformation between these copolymers may result in different biological responses in future cell-based experiments.
Collapse
Affiliation(s)
- Shohini Sen-Britain
- Department of Chemistry, State University of New York at Buffalo, 475 Natural Sciences Complex, Buffalo, New York 14221
| | - Wesley L Hicks
- Department of Head and Neck/Plastic and Reconstructive Surgery, Roswell Comprehensive Cancer Center, 665 Elm Street, Buffalo, New York 14203
| | - Robert Hard
- Department of Pathological and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 955 Main St, Buffalo, New York 14203
| | - Joseph A Gardella
- Department of Chemistry, State University of New York at Buffalo, 475 Natural Sciences Complex, Buffalo, New York 14221
| |
Collapse
|
7
|
Tip-enhanced Raman spectroscopy: principles, practice, and applications to nanospectroscopic imaging of 2D materials. Anal Bioanal Chem 2018; 411:37-61. [DOI: 10.1007/s00216-018-1392-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022]
|
8
|
Ferhan AR, Jackman JA, Sut TN, Cho NJ. Quantitative Comparison of Protein Adsorption and Conformational Changes on Dielectric-Coated Nanoplasmonic Sensing Arrays. SENSORS 2018; 18:s18041283. [PMID: 29690554 PMCID: PMC5948918 DOI: 10.3390/s18041283] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 12/22/2022]
Abstract
Nanoplasmonic sensors are a popular, surface-sensitive measurement tool to investigate biomacromolecular interactions at solid-liquid interfaces, opening the door to a wide range of applications. In addition to high surface sensitivity, nanoplasmonic sensors have versatile surface chemistry options as plasmonic metal nanoparticles can be coated with thin dielectric layers. Within this scope, nanoplasmonic sensors have demonstrated promise for tracking protein adsorption and substrate-induced conformational changes on oxide film-coated arrays, although existing studies have been limited to single substrates. Herein, we investigated human serum albumin (HSA) adsorption onto silica- and titania-coated arrays of plasmonic gold nanodisks by localized surface plasmon resonance (LSPR) measurements and established an analytical framework to compare responses across multiple substrates with different sensitivities. While similar responses were recorded on the two substrates for HSA adsorption under physiologically-relevant ionic strength conditions, distinct substrate-specific behavior was observed at lower ionic strength conditions. With decreasing ionic strength, larger measurement responses occurred for HSA adsorption onto silica surfaces, whereas HSA adsorption onto titania surfaces occurred independently of ionic strength condition. Complementary quartz crystal microbalance-dissipation (QCM-D) measurements were also performed, and the trend in adsorption behavior was similar. Of note, the magnitudes of the ionic strength-dependent LSPR and QCM-D measurement responses varied, and are discussed with respect to the measurement principle and surface sensitivity of each technique. Taken together, our findings demonstrate how the high surface sensitivity of nanoplasmonic sensors can be applied to quantitatively characterize protein adsorption across multiple surfaces, and outline broadly-applicable measurement strategies for biointerfacial science applications.
Collapse
Affiliation(s)
- Abdul Rahim Ferhan
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive 637553, Singapore.
| | - Joshua A Jackman
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive 637553, Singapore.
| | - Tun Naw Sut
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive 637553, Singapore.
| | - Nam-Joon Cho
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive 637553, Singapore.
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive 637459, Singapore.
| |
Collapse
|
9
|
|
10
|
Kıvrak EG, Yurt KK, Kaplan AA, Alkan I, Altun G. Effects of electromagnetic fields exposure on the antioxidant defense system. J Microsc Ultrastruct 2017; 5:167-176. [PMID: 30023251 PMCID: PMC6025786 DOI: 10.1016/j.jmau.2017.07.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/19/2017] [Accepted: 07/26/2017] [Indexed: 11/28/2022] Open
Abstract
Technological devices have become essential components of daily life. However, their deleterious effects on the body, particularly on the nervous system, are well known. Electromagnetic fields (EMF) have various chemical effects, including causing deterioration in large molecules in cells and imbalance in ionic equilibrium. Despite being essential for life, oxygen molecules can lead to the generation of hazardous by-products, known as reactive oxygen species (ROS), during biological reactions. These reactive oxygen species can damage cellular components such as proteins, lipids and DNA. Antioxidant defense systems exist in order to keep free radical formation under control and to prevent their harmful effects on the biological system. Free radical formation can take place in various ways, including ultraviolet light, drugs, lipid oxidation, immunological reactions, radiation, stress, smoking, alcohol and biochemical redox reactions. Oxidative stress occurs if the antioxidant defense system is unable to prevent the harmful effects of free radicals. Several studies have reported that exposure to EMF results in oxidative stress in many tissues of the body. Exposure to EMF is known to increase free radical concentrations and traceability and can affect the radical couple recombination. The purpose of this review was to highlight the impact of oxidative stress on antioxidant systems. Abbreviations: EMF, electromagnetic fields; RF, radiofrequency; ROS, reactive oxygen species; GSH, glutathione; GPx, glutathione peroxidase; GR, glutathione reductase; GST, glutathione S-transferase; CAT, catalase; SOD, superoxide dismutase; HSP, heat shock protein; EMF/RFR, electromagnetic frequency and radiofrequency exposures; ELF-EMFs, exposure to extremely low frequency; MEL, melatonin; FA, folic acid; MDA, malondialdehyde.
Collapse
Affiliation(s)
- Elfide Gizem Kıvrak
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Kıymet Kübra Yurt
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Arife Ahsen Kaplan
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Işınsu Alkan
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Gamze Altun
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
11
|
Surface immobilized antibody orientation determined using ToF-SIMS and multivariate analysis. Acta Biomater 2017; 55:172-182. [PMID: 28359858 DOI: 10.1016/j.actbio.2017.03.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 01/06/2023]
Abstract
Antibody orientation at solid phase interfaces plays a critical role in the sensitive detection of biomolecules during immunoassays. Correctly oriented antibodies with solution-facing antigen binding regions have improved antigen capture as compared to their randomly oriented counterparts. Direct characterization of oriented proteins with surface analysis methods still remains a challenge however surface sensitive techniques such as Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) provide information-rich data that can be used to probe antibody orientation. Diethylene glycol dimethyl ether plasma polymers (DGpp) functionalized with chromium (DGpp+Cr) have improved immunoassay performance that is indicative of preferential antibody orientation. Herein, ToF-SIMS data from proteolytic fragments of anti-EGFR antibody bound to DGpp and DGpp+Cr are used to construct artificial neural network (ANN) and principal component analysis (PCA) models indicative of correctly oriented systems. Whole antibody samples (IgG) test against each of the models indicated preferential antibody orientation on DGpp+Cr. Cross-reference between ANN and PCA models yield 20 mass fragments associated with F(ab')2 region representing correct orientation, and 23 mass fragments associated with the Fc region representing incorrect orientation. Mass fragments were then compared to amino acid fragments and amino acid composition in F(ab')2 and Fc regions. A ratio of the sum of the ToF-SIMS ion intensities from the F(ab')2 fragments to the Fc fragments demonstrated a 50% increase in intensity for IgG on DGpp+Cr as compared to DGpp. The systematic data analysis methodology employed herein offers a new approach for the investigation of antibody orientation applicable to a range of substrates. STATEMENT OF SIGNIFICANCE Controlled orientation of antibodies at solid phases is critical for maximizing antigen detection in biosensors and immunoassays. Surface-sensitive techniques (such as ToF-SIMS), capable of direct characterization of surface immobilized and oriented antibodies, are under-utilized in current practice. Selection of a small number of mass fragments for analysis, typically pertaining to amino acids, is commonplace in literature, leaving the majority of the information-rich spectra unanalyzed. The novelty of this work is the utilization of a comprehensive, unbiased mass fragment list and the employment of principal component analysis (PCA) and artificial neural network (ANN) models in a unique methodology to prove antibody orientation. This methodology is of significant and broad interest to the scientific community as it is applicable to a range of substrates and allows for direct, label-free characterization of surface bound proteins.
Collapse
|
12
|
Welch NG, Madiona RMT, Scoble JA, Muir BW, Pigram PJ. ToF-SIMS and Principal Component Analysis Investigation of Denatured, Surface-Adsorbed Antibodies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10824-10834. [PMID: 27715065 DOI: 10.1021/acs.langmuir.6b02754] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Antibody denaturation at solid-liquid interfaces plays an important role in the sensitivity of protein assays such as enzyme-linked immunosorbent assays (ELISAs). Surface immobilized antibodies must maintain their native state, with their antigen binding (Fab) region intact, to capture antigens from biological samples and permit disease detection. In this work, two identical sample sets were prepared with whole antibody IgG, F(ab')2 and Fc fragments, immobilized to either a silicon wafer or a diethylene glycol dimethyl ether plasma polymer surface. Analysis was conducted on one sample set at day 0, and the second sample set after 14 days in vacuum, with time-of-flight secondary ion mass spectrometry (ToF-SIMS) for molecular species representative of denaturation. A 1003 mass fragment peak list was compiled from ToF-SIMS data and compared to a 35 amino acid mass fragment peak list using principal component analysis. Several ToF-SIMS secondary ions, pertaining to disulfide and thiol species, were identified in the 14 day (presumably denatured) samples. A substrate and primary ion independent marker for denaturation (aging) was then produced using a ratio of mass peak intensities according to denaturation ratio: [I61.9534 + I62.9846 + I122.9547 + I84.9609 + I120.9461]/[I30.9979 + I42.9991 + I73.0660 + I147.0780]. The ratio successfully identifies denaturation on both the silicon and plasma polymer substrates and for spectra generated with Mn+, Bi+, and Bi3+ primary ions. We believe this ratio could be employed to as a marker of denaturation of antibodies on a plethora of substrates.
Collapse
Affiliation(s)
- Nicholas G Welch
- Centre for Materials and Surface Science and Department of Chemistry and Physics, School of Molecular Sciences, La Trobe University , Melbourne, VIC 3086, Australia
- CSIRO Manufacturing , Clayton, VIC 3168, Australia
| | - Robert M T Madiona
- Centre for Materials and Surface Science and Department of Chemistry and Physics, School of Molecular Sciences, La Trobe University , Melbourne, VIC 3086, Australia
- CSIRO Manufacturing , Clayton, VIC 3168, Australia
| | | | | | - Paul J Pigram
- Centre for Materials and Surface Science and Department of Chemistry and Physics, School of Molecular Sciences, La Trobe University , Melbourne, VIC 3086, Australia
| |
Collapse
|
13
|
Joyce P, Kempson I, Prestidge CA. Orientating lipase molecules through surface chemical control for enhanced activity: A QCM-D and ToF-SIMS investigation. Colloids Surf B Biointerfaces 2016; 142:173-181. [DOI: 10.1016/j.colsurfb.2016.02.059] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 11/16/2022]
|
14
|
Joyce P, Kempson I, Prestidge CA. QCM-D and ToF-SIMS Investigation to Deconvolute the Relationship between Lipid Adsorption and Orientation on Lipase Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:10198-10207. [PMID: 26340506 DOI: 10.1021/acs.langmuir.5b02476] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Quartz crystal microbalance with dissipation (QCM-D) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were used to provide insights into the relationship between lipid adsorption kinetics and molecular behavior in porous silica particles of varying hydrophobicities on lipase activity. Lipase (an interfacial enzyme that cleaves ester bonds to break down lipids to fatty acids and monoglycerides) activity was controlled by loading triglycerides at different surface coverages in hydrophilic and hydrophobic porous silica particles. The rate of lipid adsorption increased 2-fold for the hydrophobic surface compared to the hydrophilic surface. However, for submonolayer lipid coverage, the hydrophilic surface enhanced lipase activity 4-fold, whereas the hydrophobic surface inhibited lipase activity 16-fold, compared to lipid droplets in water. A difference in lipid orientation for low surface coverage, evidenced by ToF-SIMS, indicated that lipid adsorbs to hydrophilic silica in a conformation promoting hydrolysis. Multilayer coverage on hydrophobic and hydrophilic surfaces was indistinguishable with ToF-SIMS analysis. Increased lipid adsorption for both substrates facilitated digestion kinetics comparable to a conventional emulsion. Improved understanding of the interfacial adsorption and orientation of lipid and its digestibility in porous silica has implications in improving the uptake of pharmaceuticals and nutrients from lipid-based delivery systems.
Collapse
Affiliation(s)
- Paul Joyce
- School of Pharmacy and Medical Sciences, University of South Australia , Playford Building P4-04, City East Campus, Adelaide, South Australia 5001, Australia
| | - Ivan Kempson
- Future Industries Institute, University of South Australia , Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| | - Clive A Prestidge
- School of Pharmacy and Medical Sciences, University of South Australia , Playford Building P4-04, City East Campus, Adelaide, South Australia 5001, Australia
| |
Collapse
|
15
|
Kim YP, Shon HK, Shin SK, Lee TG. Probing nanoparticles and nanoparticle-conjugated biomolecules using time-of-flight secondary ion mass spectrometry. MASS SPECTROMETRY REVIEWS 2015; 34:237-247. [PMID: 24890130 DOI: 10.1002/mas.21437] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 12/04/2013] [Accepted: 03/26/2014] [Indexed: 06/03/2023]
Abstract
Bio-conjugated nanoparticles have emerged as novel molecular probes in nano-biotechnology and nanomedicine and chemical analyses of their surfaces have become challenges. The time-of-flight (TOF) secondary ion mass spectrometry (SIMS) has been one of the most powerful surface characterization techniques for both nanoparticles and biomolecules. When combined with various nanoparticle-based signal enhancing strategies, TOF-SIMS can probe the functionalization of nanoparticles as well as their locations and interactions in biological systems. Especially, nanoparticle-based SIMS is an attractive approach for label-free drug screening because signal-enhancing nanoparticles can be designed to directly measure the enzyme activity. The chemical-specific imaging analysis using SIMS is also well suited to screen nanoparticles and nanoparticle-biomolecule conjugates in complex environments. This review presents some recent applications of nanoparticle-based TOF-SIMS to the chemical analysis of complex biological systems.
Collapse
Affiliation(s)
- Young-Pil Kim
- Department of Life Science, Institute of Nano Science and Technology, and Research Institute for Natural Sciences, Hanyang University, Seoul, 133-791, Republic of Korea
| | | | | | | |
Collapse
|
16
|
Yu L, Zhang L, Sun Y. Protein behavior at surfaces: Orientation, conformational transitions and transport. J Chromatogr A 2015; 1382:118-34. [DOI: 10.1016/j.chroma.2014.12.087] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 12/26/2014] [Accepted: 12/31/2014] [Indexed: 12/18/2022]
|
17
|
Lindén JB, Larsson M, Kaur S, Skinner WM, Miklavcic SJ, Nann T, Kempson IM, Nydén M. Polyethyleneimine for copper absorption II: kinetics, selectivity and efficiency from seawater. RSC Adv 2015. [DOI: 10.1039/c5ra08029k] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nano-thin coatings of glutaraldehyde cross-linked polyethyleneimine effectively and selectively accumulated copper from natural seawater.
Collapse
Affiliation(s)
- Johan B. Lindén
- Ian Wark Research Institute
- University of South Australia
- Mawson Lakes
- Australia
| | - Mikael Larsson
- Ian Wark Research Institute
- University of South Australia
- Mawson Lakes
- Australia
| | - Simarpreet Kaur
- Ian Wark Research Institute
- University of South Australia
- Mawson Lakes
- Australia
| | - William M. Skinner
- Ian Wark Research Institute
- University of South Australia
- Mawson Lakes
- Australia
| | - Stanley J. Miklavcic
- Phenomics and Bioinformatics Research Centre
- University of South Australia
- Mawson Lakes
- Australia
| | - Thomas Nann
- Ian Wark Research Institute
- University of South Australia
- Mawson Lakes
- Australia
| | - Ivan M. Kempson
- Ian Wark Research Institute
- University of South Australia
- Mawson Lakes
- Australia
| | - Magnus Nydén
- Ian Wark Research Institute
- University of South Australia
- Mawson Lakes
- Australia
| |
Collapse
|
18
|
Awsiuk K, Budkowski A, Marzec MM, Petrou P, Rysz J, Bernasik A. Effects of polythiophene surface structure on adsorption and conformation of bovine serum albumin: a multivariate and multitechnique study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:13925-13933. [PMID: 25347041 DOI: 10.1021/la502646w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Protein interactions with surfaces of promising conducting polymers are critical for development of bioapplications. Surfaces of spin-cast and postbaked poly(3-alkylthiophenes), regiorandom P3BT, and regioregular RP3HT are examined prior to and after adsorption of model protein, bovine serum albumin, with time-of-flight secondary ion mass spectrometry, atomic force microscopy, and X-ray photoelectron spectroscopy. The multivariate method of principal component analysis applied to ToF-SIMS data maximizes information on subtle differences in surface chemistry: PCA reveals alkyl side chains and conjugated backbones, exposed for RP3HT and P3BT, respectively. Phase imaging AFM shows semicrystalline microstructure of RP3HT and amorphous morphology of P3BT films. A cellular-like pattern of proteins adsorbed on RP3HT develops with coverage to more uniform overlayer, observed always on P3BT. The amount of adsorbed protein, determined by XPS as a function of BSA concentration (up to 10 mg/mL), is ∼21% lower for RP3HT than P3BT (up to 1.1 mg/m(2)). Although PCA differentiates protein from polythiophene, relative protein surface composition evaluated from ToF-SIMS saturates rather than increases with amount of adsorbed BSA from XPS. This reflects ToF-SIMS sensitivity to outermost layer of proteins, enabling multivariate analysis of protein conformation or orientation. PCA distinguishes between amino acids characteristic for external regions of BSA adsorbed to P3BT and RP3HT. These amino acids are identified for P3BT and RP3HT as hydrophilic and hydrophobic, respectively, by relative hydrophobicity of amino acid side chains. Alternative identification with BSA domains fails, pointing to substrate-induced changes in conformation and degree of denaturation rather than orientation of adsorbed protein.
Collapse
Affiliation(s)
- K Awsiuk
- M. Smoluchowski Institute of Physics, Jagiellonian University , Kraków, Poland
| | | | | | | | | | | |
Collapse
|
19
|
Kempson IM, Chang P, Bremmell K, Prestidge CA. Low temperature thermal dependent Filgrastim adsorption behavior detected with ToF-SIMS. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:15573-15578. [PMID: 24274767 DOI: 10.1021/la403607m] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Time-of-flight secondary ion mass spectrometry (ToF-SIMS) detected changes in Filgrastim (granulocyte colony stimulating growth factor, G-CSF) adsorption behavior at a solid interface when exposed to temperatures as low as 35 °C, i.e., before thermal denaturation, was detected by circular dichroism (CD) or dynamic light scattering (DLS). Biopharmaceuticals rely on maintaining sufficient conformation to impart correct biological function in vivo. Stability of such molecules is critical during synthesis, storage, transport, and administration. CD analysis indicated loss of structure at temperatures greater than ~60 °C, while DLS detected aggregation at ~42 °C. Furthermore, we demonstrate the nature of G-CSF interaction with a surface was altered rapidly and at relatively low temperatures. Specifically, after 10 min thermal treatment, changes in adsorption behavior occurred at 35 °C indicated by principal component analysis of spectra as primarily due to increasing yields of methionine fragments. This was likely to be due to either altering the preferential protein orientation upon adsorption or greater denaturation exposing the hydrophobic core. This investigation demonstrates the sensitivity of ToF-SIMS in studying biopharmaceutical adsorption and conformational change and can assist with studies into promoting their stability.
Collapse
Affiliation(s)
- Ivan M Kempson
- Ian Wark Research Institute, University of South Australia , Mawson Lakes, S.A. 5095, Australia
| | | | | | | |
Collapse
|
20
|
Graham DJ, Castner DG. Image and Spectral Processing for ToF-SIMS Analysis of Biological Materials. Mass Spectrom (Tokyo) 2013; 2:S0014. [PMID: 24349933 DOI: 10.5702/massspectrometry.s0014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 10/23/2012] [Indexed: 12/14/2022] Open
Abstract
Time-of-flight secondary ion mass spectrometry (ToF-SIMS) instruments can rapidly produce large complex data sets. Within each spectrum, there can be hundreds of peaks. A typical 256×256 pixel image contains 65,536 spectra. If this is extended to a 3D image, the number of spectra in a given data set can reach the millions. The challenge becomes how to process these large data sets while taking into account the changes and differences between all the peaks in the spectra. This is particularly challenging for biological materials that all contain the same types of proteins and lipids, just in varying concentrations and spatial distributions. This data analysis challenge is further complicated by the limitations in the ion yield of higher mass, more chemically specific species, and potentially by the processing power of typical computers. Herein we briefly discuss analysis methodologies including univariate analysis, multivariate analysis (MVA) methods, and some of the limitations of ToF-SIMS analysis of biological materials.
Collapse
Affiliation(s)
- Daniel J Graham
- National ESCA and Surface Analysis Center for Biomedical Problems
| | - David G Castner
- National ESCA and Surface Analysis Center for Biomedical Problems ; Chemical Engineering University of Washington
| |
Collapse
|
21
|
|
22
|
Kempson IM, Skinner WM. A comparison of washing methods for hair mineral analysis: internal versus external effects. Biol Trace Elem Res 2012; 150:10-4. [PMID: 22639387 DOI: 10.1007/s12011-012-9456-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/14/2012] [Indexed: 11/25/2022]
Abstract
A major difficulty in hair elemental (mineral) analysis for biomonitoring is adequate understanding of the effectiveness of washing procedures. A review of washing protocols used in hair analysis publications showed little consensus with regard to solvents and surfactants used, washing times, and number of washing stages. Two washing approaches were subsequently used to compare their influence on internal and external surface elemental signals determined with time-of-flight secondary ion mass spectrometry. Na, K, Ca, Mg, and Fe were assessed with regard to their relative signal compared to carbon. Both washing methods had similar effect. All elements except for Fe appear to be removed from the surface of the hair as well as from inside the hair. Only the internal Fe content changed with washing and could indicate that external surface bound Fe may not be removed with most washing procedures. It is shown that washing procedures can have a significant effect on reducing the internal elemental signal levels in hair.
Collapse
Affiliation(s)
- Ivan M Kempson
- Institute of Physics, Academia Sinica, Nankang, Taipei, 11529, Taiwan.
| | | |
Collapse
|
23
|
Koegler P, Clayton A, Thissen H, Santos GNC, Kingshott P. The influence of nanostructured materials on biointerfacial interactions. Adv Drug Deliv Rev 2012; 64:1820-39. [PMID: 22705547 DOI: 10.1016/j.addr.2012.06.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 05/29/2012] [Accepted: 06/07/2012] [Indexed: 01/08/2023]
Abstract
Control over biointerfacial interactions in vitro and in vivo is the key to many biomedical applications: from cell culture and diagnostic tools to drug delivery, biomaterials and regenerative medicine. The increasing use of nanostructured materials is placing a greater demand on improving our understanding of how these new materials influence biointerfacial interactions, including protein adsorption and subsequent cellular responses. A range of nanoscale material properties influence these interactions, and material toxicity. The ability to manipulate both material nanochemistry and nanotopography remains challenging in its own right, however, a more in-depth knowledge of the subsequent biological responses to these new materials must occur simultaneously if they are ever to be affective in the clinic. We highlight some of the key technologies used for fabrication of nanostructured materials, examine how nanostructured materials influence the behavior of proteins and cells at surfaces and provide details of important analytical techniques used in this context.
Collapse
Affiliation(s)
- Peter Koegler
- Industrial Research Institute Swinburne, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | | | | | | | | |
Collapse
|
24
|
Graham DJ, Castner DG. Multivariate analysis of ToF-SIMS data from multicomponent systems: the why, when, and how. Biointerphases 2012; 7:49. [PMID: 22893234 PMCID: PMC3801192 DOI: 10.1007/s13758-012-0049-3] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 07/20/2012] [Indexed: 11/27/2022] Open
Abstract
The use of multivariate analysis (MVA) methods in the processing of time-of-flight secondary ion mass spectrometry (ToF-SIMS) data has become increasingly more common. MVA presents a powerful set of tools to aid the user in processing data from complex, multicomponent surfaces such as biological materials and biosensors. When properly used, MVA can help the user identify the major sources of differences within a sample or between samples, determine where certain compounds exist on a sample, or verify the presence of compounds that have been engineered into the surface. Of all the MVA methods, principal component analysis (PCA) is the most commonly used and forms an excellent starting point for the application of many of the other methods employed to process ToF-SIMS data. Herein we discuss the application of PCA and other MVA methods to multicomponent ToF-SIMS data and provide guidelines on their application and use.
Collapse
Affiliation(s)
- Daniel J Graham
- Department of Bioengineering, National ESCA and Surface Analysis for Biomedical Problems, University of Washington, Seattle, WA 98195-1653, USA.
| | | |
Collapse
|
25
|
Konicek AR, Lefman J, Szakal C. Automated correlation and classification of secondary ion mass spectrometry images using a k-means cluster method. Analyst 2012; 137:3479-87. [PMID: 22567660 DOI: 10.1039/c2an16122b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We present a novel method for correlating and classifying ion-specific time-of-flight secondary ion mass spectrometry (ToF-SIMS) images within a multispectral dataset by grouping images with similar pixel intensity distributions. Binary centroid images are created by employing a k-means-based custom algorithm. Centroid images are compared to grayscale SIMS images using a newly developed correlation method that assigns the SIMS images to classes that have similar spatial (rather than spectral) patterns. Image features of both large and small spatial extent are identified without the need for image pre-processing, such as normalization or fixed-range mass-binning. A subsequent classification step tracks the class assignment of SIMS images over multiple iterations of increasing n classes per iteration, providing information about groups of images that have similar chemistry. Details are discussed while presenting data acquired with ToF-SIMS on a model sample of laser-printed inks. This approach can lead to the identification of distinct ion-specific chemistries for mass spectral imaging by ToF-SIMS, as well as matrix-assisted laser desorption ionization (MALDI), and desorption electrospray ionization (DESI).
Collapse
Affiliation(s)
- Andrew R Konicek
- Surface and Microanalysis Science Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | | | | |
Collapse
|
26
|
Conference Report: AUS-CRS 2011: 5th Annual Meeting of the Australian Chapter of the Controlled Release Society. Ther Deliv 2012; 3:161-4. [DOI: 10.4155/tde.11.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AUS-CRS 2011, the 5th Annual Meeting of the Australian Chapter of the Controlled Release Society was held as a satellite meeting to the Australian Peptide Conference at Hamilton Island, Queensland, Australia in October 2011. The conference provides a forum for showcasing a range of research towards improving drug delivery across Australia and New Zealand, with international visitors from beyond also participating, this year from the UK and Sweden. This year’s meeting had an emphasis on peptide and protein delivery because of its association with the Australian Peptide Conference, although invited and contributed talks from a range of other fields of delivery research were also presented with excellent talks on lipid-based drug delivery, pulmonary delivery, anticancer drug delivery and drug development from a range of academic and industry speakers.
Collapse
|
27
|
Szott LM, Horbett TA. Protein interactions with surfaces: cellular responses, complement activation, and newer methods. Curr Opin Chem Biol 2011; 15:677-82. [DOI: 10.1016/j.cbpa.2011.04.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 04/07/2011] [Indexed: 10/18/2022]
|
28
|
Surface analysis for compositional, chemical and structural imaging in pharmaceutics with mass spectrometry: A ToF-SIMS perspective. Int J Pharm 2011; 417:61-9. [DOI: 10.1016/j.ijpharm.2011.01.043] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 01/13/2011] [Accepted: 01/19/2011] [Indexed: 11/22/2022]
|
29
|
Kempson IM, Lombi E. Hair analysis as a biomonitor for toxicology, disease and health status. Chem Soc Rev 2011; 40:3915-40. [PMID: 21468435 DOI: 10.1039/c1cs15021a] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hair analysis receives a large amount of academic and commercial interest for wide-ranging applications. However, in many instances, especially for elemental or 'mineral' analysis, the degree of success of analytical interpretation has been quite minimal with respect to the extent of such endeavors. In this critical review we address the questions surrounding hair analysis with specific intent of discovering what hair concentrations can actually relate to in a biogenic sense. This is done from a chemistry perspective to explain why and how elements are incorporated into hair and their meaning. This includes an overview of variables attributed to altering hair concentrations, such as age, gender, melanin content, and other less reported factors. Hair elemental concentrations are reviewed with regard to morbidity, with specific examples of disease related effects summarized. The application of hair analysis for epidemiology and etiology studies is enforced. A section is dedicated specifically to the area of population studies with regards to mercury, which highlights how endogenous and exogenous incorporation relies on species dependant metabolism and metabolic products. Many of the considerations are relevant to other areas of interest in hair analysis, such as for drug and isotopic analysis. Inclusion of a table of elemental concentrations in hair should act as a valuable reference (298 references).
Collapse
Affiliation(s)
- Ivan M Kempson
- Institute of Physics, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan.
| | | |
Collapse
|
30
|
Jarvis KL, Barnes TJ, Prestidge CA. Thermal oxidation for controlling protein interactions with porous silicon. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:14316-14322. [PMID: 20684558 DOI: 10.1021/la102367z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Thermal oxidation of porous silicon (pSi) has been used to control interactions with three proteins; lysozyme, papain, and human serum albumin (HSA) enabling the influences of protein structure, molecular weight, and charge to be elucidated. Adsorption behavior was assessed via adsorption isotherms while the structures of adsorbed proteins were investigated using a bioactivity assay, FTIR, and zeta potential. Time-of-flight secondary ion mass spectrometry was used to examine protein pore penetration. High protein adsorption onto unoxidized pSi (240-610 microg/m(2)) was attributed to predominately hydrophobic interactions which resulted in structural changes of the adsorbed proteins and significant loss of bioactivity. Thermal oxidation at 400 and 800 degrees C significantly reduced protein adsorption (80-485 microg/m(2)) by reducing hydrophobicity. Oxidation of pSi modified the protein adsorption mechanisms to solely electrostatic attraction for positively charged proteins and structural rearrangement for negatively charged proteins. Adsorption via electrostatic attraction preserved protein bioactivity and zeta potential, thus inferring a retention of their native structure. In contrast, the negative charge and globular structure of HSA resulted in a loss of structure. We have demonstrated that thermal oxidation of pSi can be used to control protein interactions, adsorbed structure, and bioactivity.
Collapse
Affiliation(s)
- Karyn L Jarvis
- Ian Wark Research Institute, Australian Research Council Special Research Centre for Particle and Material Interfaces, University of South Australia, Mawson Lakes SA 5095, Australia
| | | | | |
Collapse
|