1
|
Morimitsu Y, Browne CA, Liu Z, Severino PG, Gopinadhan M, Sirota EB, Altintas O, Edmond KV, Osuji CO. Spontaneous assembly of condensate networks during the demixing of structured fluids. Proc Natl Acad Sci U S A 2024; 121:e2407914121. [PMID: 39269770 PMCID: PMC11441503 DOI: 10.1073/pnas.2407914121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/16/2024] [Indexed: 09/15/2024] Open
Abstract
Liquid-liquid phase separation, whereby two liquids spontaneously demix, is ubiquitous in industrial, environmental, and biological processes. While isotropic fluids are known to condense into spherical droplets in the binodal region, these dynamics are poorly understood for structured fluids. Here, we report the unique observation of condensate networks, which spontaneously assemble during the demixing of a mesogen from a solvent. Condensing mesogens form rapidly elongating filaments, rather than spheres, to relieve distortion of an internal smectic mesophase. As filaments densify, they collapse into bulged discs, lowering the elastic free energy. Additional distortion is relieved by retraction of filaments into the discs, which are straightened under tension to form a ramified network. Understanding and controlling these dynamics may provide different avenues to direct pattern formation or template materials.
Collapse
Affiliation(s)
- Yuma Morimitsu
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA19104
| | - Christopher A. Browne
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA19104
| | - Zhe Liu
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA19104
| | - Paul G. Severino
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA19104
| | - Manesh Gopinadhan
- Research Division, ExxonMobil Technology and Engineering Company, Annandale, NJ08801
| | - Eric B. Sirota
- Research Division, ExxonMobil Technology and Engineering Company, Annandale, NJ08801
| | - Ozcan Altintas
- Research Division, ExxonMobil Technology and Engineering Company, Annandale, NJ08801
| | - Kazem V. Edmond
- Research Division, ExxonMobil Technology and Engineering Company, Annandale, NJ08801
| | - Chinedum O. Osuji
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
2
|
Ferreira J, Michiels J, Herregraven M, Korevaar PA. Myelin Surfactant Assemblies as Dynamic Pathways Guiding the Growth of Electrodeposited Copper Dendrites. J Am Chem Soc 2024; 146:19205-19217. [PMID: 38959136 PMCID: PMC11258786 DOI: 10.1021/jacs.4c04346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Self-organization of inorganic matter enables bottom-up construction of materials with target shapes suited to their function. Positioning the building blocks in the growth process involves a well-balanced interplay of the reaction and diffusion. Whereas (supra)molecular structures have been used to template such growth processes, we reasoned that molecular assemblies can be employed to actively create concentration gradients that guide the deposition of solid, wire-like structures. The core of our approach comprises the interaction between myelin assemblies that deliver copper(II) ions to the tips of copper dendrites, which in turn grow along the Cu2+ gradient upon electrodeposition. First, we successfully include Cu2+ ions among amphiphile bilayers in myelin filaments, which grow from tri(ethylene glycol) monododecyl ether (C12E3) source droplets over air-water interfaces. Second, we characterize the growth of dendritic copper structures upon electrodeposition from a negative electrode at the sub-mM Cu2+ concentrations that are anticipated upon release from copper(II)-loaded myelins. Third, we assess the intricate growth of copper dendrites upon electrodeposition, when combined with copper(II)-loaded myelins. The myelins deliver Cu2+ at a negative electrode, feeding copper dendrite growth upon electrodeposition. Intriguingly, the copper dendrites follow the Cu2+ gradient toward the myelins and grow along them toward the source droplet. We demonstrate the growth of dynamic connections among electrodes and surfactant droplets in reconfigurable setups─featuring a unique interplay between molecular assemblies and inorganic, solid structures.
Collapse
Affiliation(s)
- José Ferreira
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Jeroen Michiels
- TechnoCentre,
Faculty of Science, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Marty Herregraven
- TechnoCentre,
Faculty of Science, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Peter A. Korevaar
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| |
Collapse
|
3
|
Nguindjel AD, Franssen SCM, Korevaar PA. Reconfigurable Droplet-Droplet Communication Mediated by Photochemical Marangoni Flows. J Am Chem Soc 2024; 146:6006-6015. [PMID: 38391388 PMCID: PMC10921405 DOI: 10.1021/jacs.3c12882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/19/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Droplets are attractive building blocks for dynamic matter that organizes into adaptive structures. Communication among collectively operating droplets opens untapped potential in settings that vary from sensing, optics, protocells, computing, or adaptive matter. Inspired by the transmission of signals among decentralized units in slime mold Physarum polycephalum, we introduce a combination of surfactants, self-assembly, and photochemistry to establish chemical signal transfer among droplets. To connect droplets that float at an air-water interface, surfactant triethylene glycol monododecylether (C12E3) is used for its ability to self-assemble into wires called myelins. We show how the trajectory of these myelins can be directed toward selected photoactive droplets upon UV exposure. To this end, we developed a strategy for photocontrolled Marangoni flow, which comprises (1) the liquid crystalline coating formed at the surface of an oleic acid/sodium oleate (OA/NaO) droplet when in contact with water, (2) a photoacid generator that protonates sodium oleate upon UV exposure and therefore disintegrates the coating, and (3) the surface tension gradient that is generated upon depletion of the surfactant from the air-water interface by the uncoated droplet. Therefore, localized UV exposure of selected OA/NaO droplets results in attraction of the myelins such that they establish reconfigurable connections that self-organize among the C12E3 and OA/NaO droplets. As an example of communication, we demonstrate how the myelins transfer fluorescent dyes, which are selectively delivered in the droplet interior upon photochemical regulation of the liquid crystalline coating.
Collapse
Affiliation(s)
- Anne-Déborah
C. Nguindjel
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Stan C. M. Franssen
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Peter A. Korevaar
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| |
Collapse
|
4
|
Bhatia T. Stability of multilamellar lipid tubules in excess water. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:749-756. [PMID: 37882815 DOI: 10.1007/s00249-023-01686-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 08/26/2023] [Accepted: 09/23/2023] [Indexed: 10/27/2023]
Abstract
In the lyotropic phase of lipids with excess water, multilamellar tubules (MLTs) grow from defects. A phenomenological model for the stability of MLTs is developed that is universal and independent of the underlying growth mechanisms of MLTs. The stability of MLTs implies that they are in hydrostatic equilibrium and stable as elastic objects that have compression and bending elasticity. The results show that even with solvent pressure differences of 0.1 atm, the density profile is not significantly altered, so suggesting the stability is due to the trapped solvent. The results are of sufficient value in relation to lamellar stability models and may have implications beyond the described MLT models, especially in other models of membrane systems.
Collapse
Affiliation(s)
- Tripta Bhatia
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, Manauli, SAS Nagar, Mohali, Punjab, 140306, India.
| |
Collapse
|
5
|
Winkens M, Korevaar PA. Self-Organization Emerging from Marangoni and Elastocapillary Effects Directed by Amphiphile Filament Connections. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10799-10809. [PMID: 36005886 PMCID: PMC9454263 DOI: 10.1021/acs.langmuir.2c01241] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/06/2022] [Indexed: 05/29/2023]
Abstract
Self-organization of meso- and macroscale structures is a highly active research field that exploits a wide variety of physicochemical phenomena, including surface tension, Marangoni flow, and (elasto)capillary effects. The release of surface-active compounds generates Marangoni flows that cause repulsion, whereas capillary forces attract floating particles via the Cheerios effect. Typically, the interactions resulting from these effects are nonselective because the gradients involved are uniform. In this work, we unravel the mechanisms involved in the self-organization of amphiphile filaments that connect and attract droplets floating at the air-water interface, and we demonstrate their potential for directional gradient formation and thereby selective interaction. We simulate Marangoni flow patterns resulting from the release and depletion of amphiphile molecules by source and drain droplets, respectively, and we predict that these flow patterns direct the growth of filaments from the source droplets toward specific drain droplets, based on their amphiphile depletion rate. The interaction between such droplets is then investigated experimentally by charting the flow patterns in their surroundings, while the role of filaments in source-drain attraction is studied using microscopy. Based on these observations, we attribute attraction of drain droplets and even solid objects toward the source to elastocapillary effects. Finally, the insights from our simulations and experiments are combined to construct a droplet-based system in which the composition of drain droplets regulates their ability to attract filaments and as a consequence be attracted toward the source. Thereby, we provide a novel method through which directional attraction can be established in synthetic self-organizing systems and advance our understanding of how complexity arises from simple building blocks.
Collapse
Affiliation(s)
- Mitch Winkens
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Peter A. Korevaar
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
6
|
Speer D, Ho JCS, Parikh AN. Surfactant-Mediated Solubilization of Myelin Figures: A Multistep Morphological Cascade. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8805-8816. [PMID: 35816731 PMCID: PMC9979658 DOI: 10.1021/acs.langmuir.2c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lamellar mesophases of insoluble lipids are readily solubilized by the micellar mesophases of soluble surfactants. This simple process underscores a broad array of biochemical methodologies, including purification, reconstitution, and crystallization of membrane proteins, as well as the isolation of detergent-resistant membrane fractions. Although much is now known about the thermodynamic driving forces of membrane solubilization, the kinetic pathways by which the surfactant alters vesicular mesophases are only beginning to be appreciated. Little is known about how these interactions affect the solubilization of more complex, multilamellar mesophases. Here, we investigate how a common zwitterionic detergent affects the solubilization of a smectic, multilamellar, cylindrical mesophase of lipids, called the myelin figure. Our results reveal that myelin solubilization occurs in a multistep manner, producing a well-defined sequence of morphologically distinct intermediates en route to complete solubilization. The kinetic processes producing these intermediates include (1) coiling, which encompasses the formation, propagation, and tightening of extended helices; (2) thinning, which reflects the unbinding of lamellae in the smectic stacks; and (3) detachment or retraction, which either dissociates the myelinic protrusion from the source lipid mass or returns the myelinic protrusion to the source lipid mass─all in transit toward complete solubilization. These occasionally overlapping steps are most pronounced in single-lipid component myelins, while compositionally graded multicomponent myelins inhibit the coiling step and detach more frequently. Taken together, the appearance of these intermediates during the solubilization of myelins suggests a complex free-energy landscape characterizing myelin solubilization populated by metastable, morphological intermediates correlated with locally minimized changes in energy dependent upon the mesophase's composition. This then predicts the accessibility of structurally distinct, kinetic intermediates─such as loose and tight coiled helices, peeled myelins, retracted tubes, and detached protrusions─before reaching the stable ground state corresponding to a dissolved suspension of mixed surfactant-lipid micelles.
Collapse
Affiliation(s)
- Daniel
J. Speer
- Chemistry
Graduate Group, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
| | - James C. S. Ho
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Atul N. Parikh
- Chemistry
Graduate Group, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Department
of Biomedical Engineering, University of
California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
7
|
Ho JCS, Su WC, Chun Wang X, Parikh AN, Liedberg B. Nonequilibrium Self-Organization of Lipids into Hierarchically Ordered and Compositionally Graded Cylindrical Smectics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1045-1056. [PMID: 35020400 DOI: 10.1021/acs.langmuir.1c02576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
When a dry mass of certain amphiphiles encounters water, a spectacular interfacial instability ensues: It gives rise to the formation of ensembles of fingerlike tubular protrusions called myelin figures─tens of micrometers wide and tens to hundreds of micrometers long─representing a novel class of nonequilibrium higher-order self-organization. Here, we report that when phase-separating mixtures of unsaturated lipid, cholesterol, and sphingomyelin are hydrated, the resulting myelins break symmetry and couple their compositional degrees of freedom with the extended myelinic morphology: They produce complementary, interlamellar radial gradients of concentrations of cholesterol (and sphingomyelin) and unsaturated lipid, which stands in stark contrast to interlamellar, lateral phase separation in equilibrated morphologies. Furthermore, the corresponding gradients of molecule-specific chemistries (i.e., cholesterol extraction by methyl-β-cyclodextrin and GM1 binding by cholera toxin) produce unusual morphologies comprising compositionally graded vesicles and buckled tubes. We propose that kinetic differences in the information processing of hydration characteristics of individual molecules while expending energy dictate this novel behavior of lipid mixtures undergoing hydration.
Collapse
Affiliation(s)
- James C S Ho
- Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, 637553 Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | | | - Xuan Chun Wang
- Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, 637553 Singapore
| | - Atul N Parikh
- Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, 637553 Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Bo Liedberg
- Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, 637553 Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| |
Collapse
|
8
|
Khodaparast S, Sharratt WN, Dalgliesh RM, Cabral JT. Growth of Myelin Figures from Parent Multilamellar Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12512-12517. [PMID: 34647752 DOI: 10.1021/acs.langmuir.1c02464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We examine the formation and growth of isolated myelin figures and microscale multilamellar tubules from isotropic micellar solutions of an anionic surfactant. Upon cooling, surfactant micelles transform into multilamellar vesicles (MLVs) whose contact is found to trigger the unidirectional growth of myelins. While the MLV diameter grows as dMLV ∝ t1/2, myelins grow linearly in time as LM ∝ t1, with a fixed diameter. Combining time-resolved small-angle neutron scattering (SANS) and optical microscopy, we demonstrate that the microscopic growth of spherical MLVs and cylindrical myelins stems from the same nanoscale molecular mechanism, namely, the surfactant exchange from micelles into curved lamellar structures at a constant volumetric rate. This mechanism successfully describes the growth rate of (nonequilibrium) myelin figures based on a population balance at thermodynamic equilibrium.
Collapse
Affiliation(s)
- Sepideh Khodaparast
- Leeds Institute of Fluid Dynamics (LIFD), School of Mechanical Engineering, University of Leeds, LS2 9JT Leeds, U.K
| | - William N Sharratt
- Department of Chemical Engineering, Imperial College London, SW7 2AZ London, U.K
| | - Robert M Dalgliesh
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, OX11 0QX Didcot, U.K
| | - João T Cabral
- Department of Chemical Engineering, Imperial College London, SW7 2AZ London, U.K
| |
Collapse
|
9
|
Bhatia T. Tubules, beads, discs and junctions - Morphologies and dynamics of dispersed multilamellar lipid phases in excess water. J Colloid Interface Sci 2021; 584:706-713. [PMID: 33317711 DOI: 10.1016/j.jcis.2020.08.126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 11/17/2022]
Abstract
In this paper, experimental results on the swelling, dispersion and disintegration of the lamellae composed of the lipid, 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) in contact with excess water are described. Multilamellar structures nucleate and grow at the interface between the pure solvent and the lipid. The system evolves slowly via flow and coalescence of lamellae through a variety of non-equilibrium morphologies demonstrating that their dynamics is complex and non-universal, with no unique kinetic pathway. The tubular structures disintegrate slowly into the bulk water phase, inside the sealed sample chamber.
Collapse
Affiliation(s)
- T Bhatia
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science-Park, Golm, 14424 Potsdam.
| |
Collapse
|
10
|
Benkowska-Biernacka D, Smalyukh II, Matczyszyn K. Morphology of Lyotropic Myelin Figures Stained with a Fluorescent Dye. J Phys Chem B 2020; 124:11974-11979. [PMID: 33347307 PMCID: PMC7872420 DOI: 10.1021/acs.jpcb.0c08907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/17/2020] [Indexed: 11/29/2022]
Abstract
Lyotropic myelin figures (MFs), i.e., long cylindrical structures formed by certain surfactants, owe their name to their resemblance to the biological membrane that covers nerve fibers. Herein, we used a strong bilayer-forming zwitterionic phospholipid stained by the Nile Red dye to study lamellar mesophases. Polarized optical microscopy and fluorescence confocal microscopy allowed us to investigate the morphology of myelin structures and determine the orientational order of amphiphilic molecules. The cross-sectional views reveal significant differences in the configurations of MFs within the liquid crystalline cell, as well as the details of a spontaneous and stimulated formation of branched lipid tubes. Our results provide insights into small-scale morphology and out-of-equilibrium structural changes in the multilamellar structures.
Collapse
Affiliation(s)
- Dominika Benkowska-Biernacka
- Advanced
Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Ivan I. Smalyukh
- Department
of Physics and Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Katarzyna Matczyszyn
- Advanced
Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
11
|
Allah Panahi M, Tahmasebi Z, Abbasian V, Amiri M, Moradi AR. Role of pH level on the morphology and growth rate of myelin figures. BIOMEDICAL OPTICS EXPRESS 2020; 11:5565-5574. [PMID: 33149971 PMCID: PMC7587248 DOI: 10.1364/boe.401834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
The myelin figure (MF) is one of the basic structures of lipids, and the study of their formation and the effect of various parameters on their growth is useful in understanding several biological processes. In this paper, we address the influence of the pH degree of the surrounding medium on MF dynamics. We introduce a tunable shearing digital holographic microscopy arrangement to obtain quantitative and volumetric information about the complex growth of MFs. Our results show that (1) the time evolution of relative length and volume changes of MFs follows a power-law, (2) the acidity facilitates the growth rate, and (3) the acidic environment causes the formation of thicker MFs.
Collapse
Affiliation(s)
- Marzieh Allah Panahi
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- These authors contributed equally to this work
| | - Zahra Tahmasebi
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- These authors contributed equally to this work
| | - Vahid Abbasian
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
- These authors contributed equally to this work
| | - Mohammad Amiri
- Department of Physics, Bu-Ali Sina University (BASU), Hamedan 65175-4161, Iran
| | - Ali-Reza Moradi
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
| |
Collapse
|
12
|
van der Weijden A, Winkens M, Schoenmakers SMC, Huck WTS, Korevaar PA. Autonomous mesoscale positioning emerging from myelin filament self-organization and Marangoni flows. Nat Commun 2020; 11:4800. [PMID: 32968072 PMCID: PMC7511956 DOI: 10.1038/s41467-020-18555-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/25/2020] [Indexed: 11/09/2022] Open
Abstract
Out-of-equilibrium molecular systems hold great promise as dynamic, reconfigurable matter that executes complex tasks autonomously. However, translating molecular scale dynamics into spatiotemporally controlled phenomena emerging at mesoscopic scale remains a challenge-especially if one aims at a design where the system itself maintains gradients that are required to establish spatial differentiation. Here, we demonstrate how surface tension gradients, facilitated by a linear amphiphile molecule, generate Marangoni flows that coordinate the positioning of amphiphile source and drain droplets floating at air-water interfaces. Importantly, at the same time, this amphiphile leads, via buckling instabilities in lamellar systems of said amphiphile, to the assembly of millimeter long filaments that grow from the source droplets and get absorbed at the drain droplets. Thereby, the Marangoni flows and filament organization together sustain the autonomous positioning of interconnected droplet-filament networks at the mesoscale. Our concepts provide potential for the development of non-equilibrium matter with spatiotemporal programmability.
Collapse
Affiliation(s)
- Arno van der Weijden
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Mitch Winkens
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Sandra M C Schoenmakers
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Peter A Korevaar
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands.
| |
Collapse
|
13
|
Truong-Cong T, Millart E, Tran LTC, Amenitsch H, Frebourg G, Lesieur S, Faivre V. A scalable process to produce lipid-based compartmented Janus nanoparticles with pharmaceutically approved excipients. NANOSCALE 2018; 10:3654-3662. [PMID: 29431806 DOI: 10.1039/c7nr08488a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the field of nanotechnologies, theranostic approaches and fixed-dose combination products require the development of innovative carriers able to co-encapsulate several entities of interest. This communication describes the preparation and characterization of lipid-based Janus compartmented nanoparticles. They were successfully prepared using a scalable process with pharmaceutically approved excipients. The analysis of the microscopic structure and supramolecular organization demonstrated the formation of two physico-chemically different compartments enabling the co-administration at once of both liposoluble and hydrosoluble active pharmaceutical ingredients.
Collapse
Affiliation(s)
- Tri Truong-Cong
- Institut Galien Paris-Sud, Université Paris-Saclay, Univ. Paris-Sud, Labex LERMIT, 5 rue Jean-Baptiste Clément, Châtenay-Malabry 92296, France.
| | | | | | | | | | | | | |
Collapse
|
14
|
Choi H, Kim JJ, Mo YH, Reddy BM, Park SE. Novelty of Dynamic Process in the Synthesis of Biocompatible Silica Nanotubes by Biomimetic Glycyldodecylamide as a Soft Template. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:10707-10714. [PMID: 28920442 DOI: 10.1021/acs.langmuir.7b02881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A dynamic process in the synthesis of silica nanotubes (SNTs) by utilizing glycyldodecylamide (GDA) as a soft template was thoroughly investigated. The morphological evolution from GDA to SNTs was deeply explored to elucidate the formation mechanism for optimizing the synthesis procedure. Various analytical tools, namely, XRD, FTIR, SEM, TEM, Z-potential, and N2 adsorption/desorption isotherms, were employed during the synthesis procedure. The interactive structure of GDA was also investigated using TEM-EDX as a function of aging time. These studies revealed the stepwise morphology of nanograin, nanofiber, curved plate, and nanotube in the ethanol/water solution when aged at room temperature. The supramolecular GDA molded the vesicle type nanostructure which was surrounded by silica and facilitated the formation of uniform SNTs. The stimulus for GDA to be curved into a vesicle was the intermolecular hydrogen bonding between adjacent amide groups of the template molecules. This was illustrated by FTIR spectra of GDA-silica intermediate by detecting the transition of amide I peak from 1678 to 1635 cm-1. The effect of hydrogen bonding became stronger when the sample was aged.
Collapse
Affiliation(s)
- Hyejung Choi
- Laboratory of Nano-Green Catalysis & Nano-center for Fine Chemicals Fusion Technology, Department of Chemistry, Inha University , Incheon 402-751, Republic of Korea
| | - Joong-Jo Kim
- Laboratory of Nano-Green Catalysis & Nano-center for Fine Chemicals Fusion Technology, Department of Chemistry, Inha University , Incheon 402-751, Republic of Korea
| | - Yong-Hwan Mo
- Laboratory of Nano-Green Catalysis & Nano-center for Fine Chemicals Fusion Technology, Department of Chemistry, Inha University , Incheon 402-751, Republic of Korea
| | - Benjaram M Reddy
- Laboratory of Nano-Green Catalysis & Nano-center for Fine Chemicals Fusion Technology, Department of Chemistry, Inha University , Incheon 402-751, Republic of Korea
- Inorganic and Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology , Uppal Road, Hyderabad-500 007, India
| | - Sang-Eon Park
- Laboratory of Nano-Green Catalysis & Nano-center for Fine Chemicals Fusion Technology, Department of Chemistry, Inha University , Incheon 402-751, Republic of Korea
| |
Collapse
|
15
|
Gonzalez-Gronow M, Fiedler JL, Farias Gomez C, Wang F, Ray R, Ferrell PD, Pizzo SV. Myelin basic protein stimulates plasminogen activation via tissue plasminogen activator following binding to independent l-lysine-containing domains. Biochem Biophys Res Commun 2017. [PMID: 28648598 DOI: 10.1016/j.bbrc.2017.06.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Myelin basic protein (MBP) is a key component of myelin, the specialized lipid membrane that encases the axons of all neurons. Both plasminogen (Pg) and tissue-type plasminogen activator (t-PA) bind to MBP with high affinity. We investigated the kinetics and mechanisms involved in this process using immobilized MBP and found that Pg activation by t-PA is significantly stimulated by MBP. This mechanism involves the binding of t-PA via a lysine-dependent mechanism to the Lys91 residue of the MBP NH2-terminal region Asp82 -Pro99, and the binding of Pg via a lysine-dependent mechanism to the Lys122 residue of the MBP COOH-terminal region Leu109-Gly126. In this context, MBP mimics fibrin and because MBP is a plasmin substrate, our results suggest direct participation of the Pg activation system on MBP physiology.
Collapse
Affiliation(s)
- Mario Gonzalez-Gronow
- Department of Biological Sciences, Laboratory of Environmental Neurotoxicology, Faculty of Medicine, Universidad Católica del Norte, Coquimbo, Chile; Department of Pathology, Duke University Medical Center, Durham, NC, USA.
| | - Jenny L Fiedler
- Laboratory of Neuroplasticity and Neurogenetics, Department of Biochemistry and Molecular Biology, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Cristian Farias Gomez
- Department of Biological Sciences, Laboratory of Environmental Neurotoxicology, Faculty of Medicine, Universidad Católica del Norte, Coquimbo, Chile
| | - Fang Wang
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Rupa Ray
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Paul D Ferrell
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Salvatore V Pizzo
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
16
|
Poulos AS, Jones CS, Cabral JT. Dissolution of anionic surfactant mesophases. SOFT MATTER 2017; 13:5332-5340. [PMID: 28702657 DOI: 10.1039/c7sm01096f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Linear and circular solvent penetration experiments are used to study the dissolution of anionic SLE3S surfactant mesophases in water. We show that a lamellar (Lα) phase in contact with water will transit through a series of cubic, hexagonal, and micellar phase bands with sharp interfaces identified from their optical textures. In both linear and circular geometries, the kinetics of front propagation and eventual dissolution are well described by diffusive penetration of water, and a simple model applies to both geometries, with a different effective diffusion coefficient for water Df as the only fitting parameter. Finally, we show a surprising variation of dissolution rates with initial surfactant concentration that can be well explained by assuming that the driving force for solvent penetration is the osmotic pressure difference between neat water and the aqueous fraction of the mesophase that is highly concentrated in surfactant counterions.
Collapse
Affiliation(s)
- Andreas S Poulos
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK.
| | | | | |
Collapse
|
17
|
Fukamachi T, Endo T, Yabuki Y, Ogura T, Misono T, Torigoe K, Sakai K, Abe M, Sakai H. Synthesis of Silica Nanotube Using Myelin Figure as Template and their Formation Mechanism. J Oleo Sci 2016; 64:663-72. [PMID: 26028328 DOI: 10.5650/jos.ess15029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Silica nanotubes are synthesized through a sol-gel reaction of tetraethyl orthosilicate (TEOS) using myelin figures of Pluronic P123 as the structure-directing agent. The simultaneous progression of the formation of molecular assemblies that act as templates and the formation of silica frameworks though a sol-gel reaction of the silica precursor is a characteristic of this reaction system. The synthesized silica nanotubes were characterized using transmission electron microscopy (TEM), nitrogen adsorption/desorption measurements, and Fourier-transform infrared spectroscopy (FT-IR). The silica nanotubes were unilamellar with diameters of approximately 30 nm, membrane thicknesses of approximately 10 nm, and lengths exceeding a few hundred nanometers. The Brunauer-Emmett-Teller (BET) specific surface area was 589.46 m(2)/g. Silica nanotubes can also be obtained using other Pluronic surfactants that can form myelin figures. In this work, we also investigated the formation mechanism of the silica nanotubes. The typical diameter of a myelin figure is a few tens of micrometers. However, myelin figures with diameters of approximately 10 µm can form in systems with TEOS because bifurcation is induced by minute silica nuclei that form during the initial reaction between TEOS and water. Freeze fracture TEM (FF-TEM) observations revealed the existence of myelin figures with diameters of 20 to 30 nm, which are the same size and shape as the synthesized silica nanotubes. These results indicate that bifurcation of the myelin figures is induced by the silica nuclei that form via the initial reaction of TEOS, which result in the formation of bifurcated myelin figures with diameters of ~10 µm. Myelin figures with diameters of 20 to 30 nm form on the surface, and they become templates where the reaction of TEOS progresses to form silica nanotubes with diameters of approximately 30 nm.
Collapse
Affiliation(s)
- Takumi Fukamachi
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Épinat C, Trouillet-Fonti L, Jéol S, Long DR, Sotta P. Nucleation and Growth of Ordered Copolymer Structures at Reactive Interfaces between PA6 and MA- g-HDPE. ACS Macro Lett 2015; 4:488-491. [PMID: 35596299 DOI: 10.1021/acsmacrolett.5b00139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have studied the effect of the interfacial chemical reaction between PA6 and MA-g-HDPE in static conditions at a macroscopically flat interface. Interface destabilization and the growth of instabilities, somehow similar to myelin figures observed in surfactants put in the presence of water, are observed. For the first time in this system, it is shown that ordered microphase-separated copolymer domains, whose morphologies depend on the architecture of the copolymer, namely, essentially on the relative length of the blocks on each side of the interface, may nucleate and grow at a static interface between reactive polymers. We discuss the stability of the plane interface in the case of nonsymmetrical formed graft copolymers. The density of copolymers in the interface (coverage) can be estimated accurately from the long period of the formed structures. We confirm the predictions of Berezkin et al. This observation is very important since it confirms that nanometric domains are certainly generated during reactive extrusion, in addition to micrometric domains formed by rheological processes.
Collapse
Affiliation(s)
- Chloé Épinat
- Laboratoire
Polymères et Matériaux Avancés, CNRS/Rhodia-Solvay, UMR5268, 87 avenue des Frères Perret, Saint
Fons Cedex 69192, France
| | - Lise Trouillet-Fonti
- Laboratoire
Polymères et Matériaux Avancés, CNRS/Rhodia-Solvay, UMR5268, 87 avenue des Frères Perret, Saint
Fons Cedex 69192, France
| | - Stéphane Jéol
- Solvay R&I, 85 avenue des Frères Perret, Saint Fons Cedex 69192, France
| | - Didier R. Long
- Laboratoire
Polymères et Matériaux Avancés, CNRS/Rhodia-Solvay, UMR5268, 87 avenue des Frères Perret, Saint
Fons Cedex 69192, France
| | - Paul Sotta
- Laboratoire
Polymères et Matériaux Avancés, CNRS/Rhodia-Solvay, UMR5268, 87 avenue des Frères Perret, Saint
Fons Cedex 69192, France
| |
Collapse
|
19
|
Kageyama Y, Ikegami T, Hiramatsu N, Takeda S, Sugawara T. Structure and growth behavior of centimeter-sized helical oleate assemblies formed with assistance of medium-length carboxylic acids. SOFT MATTER 2015; 11:3550-3558. [PMID: 25781720 DOI: 10.1039/c5sm00370a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The nonequilibrium organization of self-assemblies from small building-block molecules offers an attractive and essential means to develop advanced functional materials and to understand the intrinsic nature of life systems. Fatty acids are well-known amphiphiles that form self-assemblies of several shapes. Here, we found that the lengths of helical structures of oleic acid formed in a buffered aqueous solution are dramatically different by the presence or absence of certain amphiphilic carboxylic acids. For example, under the coexistence of a small amount of N-decanoyl-l-alanine, we observed the formation of over 1 centimeter-long helical assemblies of oleate with a regular pitch and radius, whereas mainly less than 100 μm-long helices formed without this additive. Such long helical assemblies are unique in terms of their highly dimensional helical structure and growth dynamics. Results from the real-time observation of self-assembly formation, site-selective small-angle X-ray scattering, high-performance liquid chromatography analysis, and pH titration experiments suggested that the coexisting carboxylates assist in elongation by supplying oleate molecules to a scaffold for oleate helical assembly.
Collapse
Affiliation(s)
- Yoshiyuki Kageyama
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| | | | | | | | | |
Collapse
|
20
|
Szuchet S, Nielsen LL, Domowicz MS, Austin JR, Arvanitis DL. CNS myelin sheath is stochastically built by homotypic fusion of myelin membranes within the bounds of an oligodendrocyte process. J Struct Biol 2015; 190:56-72. [PMID: 25682762 DOI: 10.1016/j.jsb.2015.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/25/2015] [Accepted: 01/27/2015] [Indexed: 02/09/2023]
Abstract
Myelin - the multilayer membrane that envelops axons - is a facilitator of rapid nerve conduction. Oligodendrocytes form CNS myelin; the prevailing hypothesis being that they do it by extending a process that circumnavigates the axon. It is pertinent to ask how myelin is built because oligodendrocyte plasma membrane and myelin are compositionally different. To this end, we examined oligodendrocyte cultures and embryonic avian optic nerves by electron microscopy, immuno-electron microscopy and three-dimensional electron tomography. The results support three novel concepts. Myelin membranes are synthesized as tubules and packaged into "myelinophore organelles" in the oligodendrocyte perikaryon. Myelin membranes are matured in and transported by myelinophore organelles within an oligodendrocyte process. The myelin sheath is generated by myelin membrane fusion inside an oligodendrocyte process. These findings abrogate the dogma of myelin resulting from a wrapping motion of an oligodendrocyte process and open up new avenues in the quest for understanding myelination in health and disease.
Collapse
Affiliation(s)
- Sara Szuchet
- Department of Neurology, The University of Chicago, Chicago, IL 60637, USA.
| | - Lauren L Nielsen
- Department of Neurology, The University of Chicago, Chicago, IL 60637, USA
| | - Miriam S Domowicz
- Department of Pediatrics, The University of Chicago, Chicago, IL 60637, USA
| | - Jotham R Austin
- Advance Electron Microscopy Facility, Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Dimitrios L Arvanitis
- Department of Anatomy, Histology, Embryology, University of Thessaly, Larissa, Greece
| |
Collapse
|
21
|
Martiel I, Handschin S, Fong WK, Sagalowicz L, Mezzenga R. Oil transfer converts phosphatidylcholine vesicles into nonlamellar lyotropic liquid crystalline particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 31:96-104. [PMID: 25485462 DOI: 10.1021/la504115a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
There is a need for the development of low-energy dispersion methods tailored to the formation of phospholipid-based nonlamellar lyotropic liquid crystalline (LLC) particles for delivery system applications. Here, facile formation of nonlamellar LLC particles was obtained by simple mixing of a phosphatidylcholine (PC) liposome solution and an oil-in-water emulsion, with limonene or isooctane as an oil. The internal structure of the particles was controlled by the PC-to-oil ratio, consistently with the sequence observed in bulk phase. For the first time, reverse micellar cubosomes with Fm3̅m inner structure were produced. The size, morphology, and inner structure of the particles were characterized by small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), and freeze-fracture cryo scanning electron microscopy (cryo-SEM). These findings pave the way to new strategies in low-energy formulation of LLC delivery systems.
Collapse
Affiliation(s)
- Isabelle Martiel
- Food and Soft Materials Science, Institute of Food, Nutrition & Health, ETH Zurich , Schmelzbergstrasse 9, CH-8092 Zurich, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
22
|
Soejima T, Amako Y, Ito S, Kimizuka N. Light-reducible dissipative nanostructures formed at the solid-liquid interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:14219-14225. [PMID: 25370594 DOI: 10.1021/la5036568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Dissipative structures are macroscopic or even larger ordered structures that emerge under conditions far from thermodynamic equilibrium. In contrast, molecular self-assembly has been investigated near at the thermodynamic equilibrium, which provides basically smaller, nano-to-micron sized structures. In terms of the formation principles, there exists an essential gap between the dissipative structures and molecular self-assemblies. To fill this gap, molecular self-assembly of light-reducible organic-inorganic ion pairs was investigated under far-from-equilibrium conditions. When solid films of tetraalkylammonium hexafluorophosphate were immersed in aqueous Au(OH)4(-) and immediately photoirradiated, gold nanowires are formed at the solid-aqueous interface. On the other hand, such nanowires were not formed when the photoirradiation was conducted for the specimens after a prolonged immersion period of 60 min. These observations indicate spontaneous growth of dissipative nanofibrous self-assemblies consisting of light-reducible ion pairs [tetraalkylammonium ion][Au(OH)4(-)] at the interface and their photoreduction to give developed nanowires. These nanowires are not available by the photoreduction of Au(OH)4(-) ions under conditions near at the thermodynamic equilibrium. A picture for the dissipative nanostructures is obtained: the formation of amphiphilic light-reducible nanowire structures is based on the static self-assembly near at the thermodynamic equilibrium, whereas their spontaneous, anisotropic growth from the interface to the aqueous phase is directed by dynamic, dissipative self-assembly phenomena under the far-from-equilibrium conditions. Thus, the both elements of dissipative self-assembly (dynamic) and static molecular self-assembly fuse together at the nanoscale, which is an essential feature of the dissipative nanostructures.
Collapse
Affiliation(s)
- Tetsuro Soejima
- Department of Applied Chemistry, Kinki University , 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | | | | | | |
Collapse
|
23
|
Peddireddy K, Kumar P, Thutupalli S, Herminghaus S, Bahr C. Myelin structures formed by thermotropic smectic liquid crystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:15682-15688. [PMID: 24274621 DOI: 10.1021/la4038588] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We report on transient structures, formed by thermotropic smectic-A liquid crystals, resembling the myelin figures of lyotropic lamellar liquid crystals. The thermotropic myelin structures form during the solubilization of a smectic-A droplet in an aqueous phase containing a cationic surfactant at concentrations above the critical micelle concentration. Similar to the lyotropic myelin figures, the thermotropic myelins appear in an optical microscope as flexible tubelike structures growing at the smectic/aqueous interface. Polarizing microscopy and confocal fluorescence microscopy show that the smectic layers are parallel to the tube surface and form a cylindrically bent arrangement around a central line defect in the tube. We study the growth behavior of this new type of myelins and discuss similarities to and differences from the classical lyotropic myelin figures.
Collapse
Affiliation(s)
- Karthik Peddireddy
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Goettingen, Germany
| | | | | | | | | |
Collapse
|
24
|
Peddireddy K, Jampani VSR, Thutupalli S, Herminghaus S, Bahr C, Muševič I. Lasing and waveguiding in smectic A liquid crystal optical fibers. OPTICS EXPRESS 2013; 21:30233-30242. [PMID: 24514602 DOI: 10.1364/oe.21.030233] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We demonstrate a new class of soft matter optical fibers, which are self-assembled in a form of smectic-A liquid crystal microtubes grown in an aqueous surfactant dispersion of a smectic-A liquid crystal. The diameter of the fibers is highly uniform and the fibers are highly birefringent. They are characterized by a line topological defect in the core of the fiber with an optical axis pointing from the defect core towards the surface. We demonstrate guiding of light along the fiber and Whispering Gallery Mode (WGM) lasing in a plane perpendicular to the fiber. The light guiding as well as the lasing threshold are significantly dependent on the polarization of the excitation beam. The observed threshold for WGM lasing is very low (≈ 75μJ/cm(2)) when the pump beam polarization is perpendicular to the direction of the laser dye alignment and is similar to the lasing threshold in nematic droplets. The smectic-A fibers are soft and flexible and can be manipulated with laser tweezers demonstrating a promising approach for realization of soft photonic circuits.
Collapse
|
25
|
Dutton H, Tiddy GJT, Kowalski A, James A. Complex Phase Behavior in the Transition Region Between Gel (Lβ) and Lamellar (Lα) Phases for a Commercial Nonionic Surfactant System, C12-14EO3. J DISPER SCI TECHNOL 2011. [DOI: 10.1080/01932691.2011.616123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|