1
|
Wang R, Zhang J, Zhu Y, Chai Z, An Z, Shu X, Song H, Xiang X, He J. Selective Photocatalytic Activation of Ethanol C-H and O-H Bonds over Multi-Au@SiO 2/TiO 2: Role of Catalyst Surface Structure and Reaction Kinetics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2848-2859. [PMID: 34995054 DOI: 10.1021/acsami.1c20514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The chemical bond diversity and flexible reactivity of biomass-derived ethanol make it a vital feedstock for the production of value-added chemicals but result in low conversion selectivity. Herein, composite catalysts comprising SiO2-coated single- or multiparticle Au cores hybridized with TiO2 nanoparticles (mono- or multi-Au@SiO2/TiO2, respectively) were fabricated via electrostatic self-assembly. The C-H and O-H bonds of ethanol were selectively activated (by SiO2 and TiO2, respectively) under irradiation to form CH3CH•(OH) or CH3CH2O• radicals, respectively. The formation and depletion kinetics of these radicals was analyzed by electron spin resonance to reveal marked differences between mono- and multi-Au@SiO2/TiO2. Consequently, the selectivity of these catalysts for 1,1-diethoxyethane after 6 h irradiation was determined as 81 and 99%, respectively, which was attributed to the more pronounced effect of localized surface plasmon resonance for multi-Au@SiO2/TiO2. Notably, only acetaldehyde was formed on a Au/TiO2 catalyst without a SiO2 shell. Fourier transform infrared (FTIR) spectroscopy indicated that the C-H adsorption of ethanol was enhanced in the case of multi-Au@SiO2/TiO2, while NH3 temperature-programmed desorption and pyridine adsorption FTIR spectroscopy revealed that multi-Au@SiO2/TiO2 exhibited enhanced surface acidity. Collectively, the results of experimental and theoretical analyses indicated that the adsorption of acetaldehyde on multi-Au@SiO2/TiO2 was stronger than that on Au/TiO2, which resulted in the oxidative coupling of ethanol to afford 1,1-diethoxyethane on the former and the dehydrogenation of ethanol to acetaldehyde on the latter.
Collapse
Affiliation(s)
- Ruirui Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beishanhuan Donglu, Beijing 100029, People's Republic of China
| | - Jian Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beishanhuan Donglu, Beijing 100029, People's Republic of China
| | - Yanru Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beishanhuan Donglu, Beijing 100029, People's Republic of China
| | - Zhigang Chai
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beishanhuan Donglu, Beijing 100029, People's Republic of China
| | - Zhe An
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beishanhuan Donglu, Beijing 100029, People's Republic of China
| | - Xin Shu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beishanhuan Donglu, Beijing 100029, People's Republic of China
| | - Hongyan Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beishanhuan Donglu, Beijing 100029, People's Republic of China
| | - Xu Xiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beishanhuan Donglu, Beijing 100029, People's Republic of China
| | - Jing He
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beishanhuan Donglu, Beijing 100029, People's Republic of China
| |
Collapse
|
2
|
Chaudhry M, Lim DK, Kang JW, Yaqoob Z, So P, Bhopal MF, Wang M, Qamar R, Bhatti AS. Electrochemically driven optical and SERS immunosensor for the detection of a therapeutic cardiac drug. RSC Adv 2022; 12:2901-2913. [PMID: 35425323 PMCID: PMC8979105 DOI: 10.1039/d1ra07680a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases pose a serious health risk and have a high mortality rate of 31% worldwide. Digoxin is the most commonly prescribed pharmaceutical preparation to cardiovascular patients particularly in developing countries. The effectiveness of the drug critically depends on its presence in the therapeutic range (0.8–2.0 ng mL−1) in the patient's serum. We fabricated immunoassay chips based on QD photoluminescence (QDs-ELISA) and AuNP Surface Enhanced Raman Scattering (SERS-ELISA) phenomena to detect digoxin in the therapeutic range. Digoxin levels were monitored using digoxin antibodies conjugated to QDs and AuNPs employing the sandwich immunoassay format in both the chips. The limit of detection (LOD) achieved through QDs-ELISA and SERS-ELISA was 0.5 ng mL−1 and 0.4 ng mL−1, respectively. It is demonstrated that the sensitivity of QDs-ELISA was dependent on the charge transfer mechanism from the QDs to the antibody through ionic media, which was further explored using electrochemical impedance spectroscopy. We demonstrate that QDs-ELISA was relatively easy to fabricate compared to SERS-ELISA. The current study envisages replacement of conventional methodologies with small immunoassay chips using QDs and/or SERS-based tags with fast turnaround detection time as compared to conventional ELISA. Cardiovascular diseases pose a serious health risk and have a high mortality rate of 31% worldwide.![]()
Collapse
Affiliation(s)
- Madeeha Chaudhry
- Centre for Micro and Nano Devices, Department of Physics, COMSATS University Islamabad, Tarlai Kalan, Islamabad 45550, Pakistan
- Department of Biosciences, International Islamic University, H-10, Islamabad Capital Territory, 44000 Islamabad, Pakistan
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Korea
| | - Jeon Woong Kang
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zahid Yaqoob
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter So
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Muhammad Fahad Bhopal
- Centre for Micro and Nano Devices, Department of Physics, COMSATS University Islamabad, Tarlai Kalan, Islamabad 45550, Pakistan
| | - Minqiang Wang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Raheel Qamar
- Science &Technology Sector, ICESCO, Rabat, Morocco
| | - Arshad Saleem Bhatti
- Centre for Micro and Nano Devices, Department of Physics, COMSATS University Islamabad, Tarlai Kalan, Islamabad 45550, Pakistan
- Virtual University of Pakistan, M.A Jinnah Campus, Lahore, Pakistan
| |
Collapse
|
3
|
Li C, Hosokawa C, Suzuki M, Taguchi T, Murase N. Preparation and biomedical applications of bright robust silica nanocapsules with multiple incorporated InP/ZnS quantum dots. NEW J CHEM 2018. [DOI: 10.1039/c8nj02465k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
InP/ZnS quantum dots incorporated in silica capsules are robust and bright, and can image cells clearly.
Collapse
Affiliation(s)
- Chunliang Li
- Health Research Institute
- National Institute of Advanced Industrial Science and Technology (AIST)
- Ikeda
- Osaka
- Japan
| | - Chie Hosokawa
- Biomedical Research Institute and Advanced Photonics and Biosensing Open Innovation Laboratory
- National Institute of Advanced Industrial Science and Technology (AIST)
- Osaka
- Japan
| | - Mariko Suzuki
- Health Research Institute
- National Institute of Advanced Industrial Science and Technology (AIST)
- Ikeda
- Osaka
- Japan
| | - Takahisa Taguchi
- Health Research Institute
- National Institute of Advanced Industrial Science and Technology (AIST)
- Ikeda
- Osaka
- Japan
| | - Norio Murase
- Health Research Institute
- National Institute of Advanced Industrial Science and Technology (AIST)
- Ikeda
- Osaka
- Japan
| |
Collapse
|
4
|
Huo X, Dai C, Tian D, Li S, Li X. Au@SiO 2 core–shell structure involved with methotrexate: Fabrication, biodegradation process and bioassay explore. Int J Pharm 2015; 496:965-75. [DOI: 10.1016/j.ijpharm.2015.10.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/09/2015] [Accepted: 10/19/2015] [Indexed: 12/26/2022]
|
5
|
Abstract
Properties of Au nanoparticles (NPs) caused by various sizes (5-12 nm) were studied in this article. Au NPs capped with citrate of various sizes were synthesized by two methods including trisodium citrate dihydrate reduction of chloroauric acid tetrahydrate and sodium borohydride reducion of chloroauric acid tetrahydrate. Au NPs were characterized and measured by using transmission electron microscope (TEM), UV-vis-NIR absorption spectroscopy, and surface Raman scattering. The results of experiment indicated that the size of Au NPs was related to the type of reducing agent and molar ratio of reducing agent and chloroauric acid. The weaker the reducing capacity of the reducing agent or the lower the molar ratio, the bigger the size of Au NPs is. The max wavelength of absorption peak for the citrate-capped Au NPs is red-shifted with the increase of particle diameter. Raman scattering observed from Au NPs of various sizes is found to be NP size-dependent. It is clear that the bigger Au NPs are more apparent in the Raman scattering determination. Size-tunable Au NPs should be crucial for biosensors, particularly as Raman-tag particles.
Collapse
|
6
|
Stable and water-soluble CdTe@SiO2 composite nanospheres: Preparation, characterization and application in LED. Colloids Surf A Physicochem Eng Asp 2013. [DOI: 10.1016/j.colsurfa.2013.02.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Fanizza E, Depalo N, Clary L, Agostiano A, Striccoli M, Curri ML. A combined size sorting strategy for monodisperse plasmonic nanostructures. NANOSCALE 2013; 5:3272-82. [PMID: 23467538 DOI: 10.1039/c3nr33944k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The fabrication of highly monodisperse silica coated Au NPs by the microemulsion approach and the selection of the nanostructure morphology have been described. Several experimental conditions, synthetic parameters and post-preparative strategies such as reaction time, precursor concentration, size selection techniques and NP surface treatments have been suitably investigated in order to fabricate Au and Au@SiO2 NPs with peculiar and tuneable plasmonic properties that strongly depend on the specific size distribution and nanostructure morphology. In particular, size selected precipitation of oleylamine-capped Au NPs by antisolvent titration has successfully offered a strategy to discriminate and collect monodisperse fractions with different average size and narrow size distribution. Moreover, for the first time, a deep insight into the microemulsion mechanism for the silica shell growth has been provided, highlighting the critical role played by the density of oleylamine at the Au NP surface. Specifically the capping agent has been demonstrated to strongly determine the multiplicity of the core in the final Au@SiO2 nanostructures. Density gradient centrifugation has been finally performed to sort the achieved Au@SiO2 NPs with different morphologies, which was ultimately able to recover a significant fraction formed of two Au NPs in one silica shell. A systematic characterization of the Au and Au@SiO2 NPs has been carried out by complementary morphological and spectroscopic techniques. These deeply investigated materials, with tuneable plasmonic properties, have been proposed as versatile building blocks useful for the design and fabrication of plasmonic and photonic structures as well as metamaterials for device applications.
Collapse
Affiliation(s)
- Elisabetta Fanizza
- Istituto per i Processi Chimico Fisici IPCF Consiglio Nazionale delle Ricerche CNR, c/o Dip. Chimica, via Orabona 4, 70126 Bari, Italy.
| | | | | | | | | | | |
Collapse
|
8
|
Li Y, Jin Z, Li T, Xiu Z. One-step synthesis and characterization of core-shell Fe@SiO2 nanocomposite for Cr (VI) reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 421-422:260-266. [PMID: 22381028 DOI: 10.1016/j.scitotenv.2012.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 01/02/2012] [Accepted: 01/04/2012] [Indexed: 05/31/2023]
Abstract
A facile one-step method was developed to fabricate mono-dispersed Fe nanoparticles (Fe NPs) coated with SiO(2) shell by aqueous reduction method combined with modified Stöber method. Borohydride was acted not only as a reductant for iron salt but also as a catalyst for hydrolysis and polycondensation reaction of tetraethylorthosilicate (TEOS), and more importantly, there was no need to use surface primer for the generation of Fe NPs and catalyst NH(4)OH for SiO(2). Both the Fe NPs agglomeration and SiO(2) shell thickness can be controlled through the synthetic conditions. Lower potassium borohydride (KBH(4)) injection speed was preferable to assemble Fe NPs. The SiO(2) shell thickness increased gradually with the increase of TEOS amount. Under the condition of TEOS amount of 0.1mL and KBH(4) injection speed of 5mL/min, 25nm single Fe NP was coated with SiO(2) shell with thickness of about 9nm. The resulting nanoporous SiO(2) shell was proved to allow reactant to reach the Fe NPs while at the same time protect them from aggregation. The reactivity characterization of the SiO(2)-coated Fe nanoparticles (Fe@SiO(2)) showed that both TEOS concentration and KBH(4) injection speed had effect on Cr (VI) degradation ability. The highest removal capacity of Fe@SiO(2) can reach 467mgCr/gFe at an initial Cr (VI) concentration of 70mg/L under pH 6.0±0.1. XPS and TEM results showed that Cr (VI) was converted to nontoxic Cr (III) and the reaction product was completely adsorbed to SiO(2) shell.
Collapse
Affiliation(s)
- Yongchao Li
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | | | | | | |
Collapse
|
9
|
Yang P, Zhang A, Ando M, Murase N. Multiple hydrophobic QDs assembled in SiO2 particles using silane coupling agent. Colloids Surf A Physicochem Eng Asp 2012. [DOI: 10.1016/j.colsurfa.2012.01.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Padmanabhan SC, McGrath J, Bardosova M, Pemble ME. A facile method for the synthesis of highly monodisperse silica@gold@silica core–shell–shell particles and their use in the fabrication of three-dimensional metallodielectric photonic crystals. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm31706k] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Jokerst JV, Lobovkina T, Zare RN, Gambhir SS. Nanoparticle PEGylation for imaging and therapy. Nanomedicine (Lond) 2011; 6:715-28. [PMID: 21718180 PMCID: PMC3217316 DOI: 10.2217/nnm.11.19] [Citation(s) in RCA: 1410] [Impact Index Per Article: 108.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Nanoparticles are an essential component in the emerging field of nanomedical imaging and therapy. When deployed in vivo, these materials are typically protected from the immune system by polyethylene glycol (PEG). A wide variety of strategies to coat and characterize nanoparticles with PEG has established important trends on PEG size, shape, density, loading level, molecular weight, charge and purification. Strategies to incorporate targeting ligands are also prevalent. This article presents a background to investigators new to stealth nanoparticles, and suggests some key considerations needed prior to designing a nanoparticle PEGylation protocol and characterizing the performance features of the product.
Collapse
Affiliation(s)
- Jesse V Jokerst
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, 318 Campus Drive, Stanford University, Stanford, CA 94305-5427 USA
| | - Tatsiana Lobovkina
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA 94305-5080 USA
| | - Richard N Zare
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA 94305-5080 USA
- Bioengineering, Materials Science & Engineering, Bio-Xc, Stanford University, Stanford, CA 94305, USA
| | - Sanjiv S Gambhir
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, 318 Campus Drive, Stanford University, Stanford, CA 94305-5427 USA
- Bioengineering, Materials Science & Engineering, Bio-Xc, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|