1
|
Angelescu DG. Coarse-grained simulation studies on the adsorption of polyelectrolyte complexes upon lipid membranes. Phys Chem Chem Phys 2019; 21:12446-12459. [DOI: 10.1039/c9cp01448a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Conformations of a polyelectrolyte complex irreversibly bound to a zwitterionic lipid bilayer.
Collapse
Affiliation(s)
- Daniel G. Angelescu
- Romanian Academy
- “Ilie Murgulescu” Institute of Physical Chemistry
- 060021 Bucharest
- Romania
| |
Collapse
|
2
|
Alipoormazandarani N, Fatehi P. Adsorption Characteristics of Carboxymethylated Lignin on Rigid and Soft Surfaces Probed by Quartz Crystal Microbalance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15293-15303. [PMID: 30468388 DOI: 10.1021/acs.langmuir.8b02694] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Limited information is available on the interaction of anionically charged lignin and cationic particles, despite the promising use of anionic lignin as a coagulant and dispersant for suspension systems. The main objective of this study was to discover the fate of lignin on its interaction with rigid and soft surfaces. In this work, carboxymethylated lignin (CML) with two different charge densities were produced, and their adsorption performance on gold and poly(diallydimethylammonium chloride) (PDADMAC)-coated gold surfaces was comprehensively studied. The viscoelastic properties of adsorbed CML on the gold surface were investigated by means of quartz crystal microbalance with dissipation. A higher adsorbed amount and compact layer were observed for the adsorption of CML with a lower charge density of -1.16 meq/g (CML1). CML with a higher charge density (-2.92 meq/g), CML2, yielded a lower surface excess density of 2.31 × 10-6 mol/m2 and a higher occupied area per molecule (71.84 Å2) at the interface of water and gold sensor. Below and at equilibrium, CML2 generated a bulkier adsorption layer than did CML1 on the gold sensor and on the PDADMAC-coated sensor. Studies on the layer-by-layer (LBL) assembly of CML and PDADMAC revealed that CML1 adsorbed more greatly than CML2 on PDADMAC, and it generated a thicker but less viscoelastic layer. In this system, the greater loss to storage modulus ( G″/ G') value was achieved for CML2, indicating its looser structure in the LBL system. Studies on the LBL assembly of carboxymethylated xylan/PDADMAC and CML/PDADMAC provided concrete evidence for the fate of three-dimensional structure of CML on its adsorption performance.
Collapse
Affiliation(s)
| | - Pedram Fatehi
- Chemical Engineering Department , Lakehead University , 955 Oliver Road , Thunder Bay , ON , Canada P7B 5E1
| |
Collapse
|
3
|
Klimkevicius V, Makuska R. Successive RAFT polymerization of poly(ethylene oxide) methyl ether methacrylates with different length of PEO chains giving diblock brush copolymers. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2016.11.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
McArdle T, McNamara TP, Fei F, Singh K, Blanford CF. Optimizing the Mass-Specific Activity of Bilirubin Oxidase Adlayers through Combined Electrochemical Quartz Crystal Microbalance and Dual Polarization Interferometry Analyses. ACS APPLIED MATERIALS & INTERFACES 2015; 7:25270-25280. [PMID: 26506112 DOI: 10.1021/acsami.5b07290] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Two surface analysis techniques, dual polarization interferometry (DPI) and analysis by an electrochemical quartz crystal microbalance with dissipation capability (E-QCM-D), were paired to find the deposition conditions that give the highest and most stable electrocatalytic activity per adsorbed mass of enzyme. Layers were formed by adsorption from buffered solutions of bilirubin oxidase from Myrothecium verrucaria at pH 6.0 to planar surfaces, under high enzyme loading (≥1 mg mL(-1)) for contact periods of up to 2 min. Both unmodified and carboxylate-functionalized gold-coated sensors showed that a deposition solution concentration of 10-25 mg mL(-1) gave the highest activity per mass of adsorbed enzyme with an effective catalytic rate constant (k(cat)) of about 60 s(-1). The densification of adsorbed layers observed by DPI correlated with reduced bioactivity observed by parallel E-QCM-D measurements. Postadsorption changes in thickness and density observed by DPI were incorporated into Kelvin-Voigt models of the QCM-D response. The modeled response matched experimental observations when the adlayer viscosity tripled after adsorption.
Collapse
Affiliation(s)
- Trevor McArdle
- School of Materials and Manchester Institute of Biotechnology, University of Manchaster , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Thomas P McNamara
- School of Materials and Manchester Institute of Biotechnology, University of Manchaster , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Fan Fei
- School of Materials and Manchester Institute of Biotechnology, University of Manchaster , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Kulveer Singh
- School of Materials and Manchester Institute of Biotechnology, University of Manchaster , 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford , South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Christopher F Blanford
- School of Materials and Manchester Institute of Biotechnology, University of Manchaster , 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
5
|
Angelescu DG, Linse P. Branched-linear polyion complexes at variable charge densities. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:355101. [PMID: 26249029 DOI: 10.1088/0953-8984/27/35/355101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Structural behavior of complexes formed by a charged and branched copolymer and an oppositely charged and linear polyion was examined by Monte Carlo simulations employing a coarse-grained bead-spring model. The fractional bead charge and the branching density were systematically varied; the former between 0e and 1e and the latter such that both the comb-polymer and the bottle-brush limits were included. The number of beads of the main chain of the branched copolymer and of the linear polyion was always kept constant and equal, and a single side-chain length was used. Our analysis involved characterization of the complex as well as investigation of size, shape, and flexibility of the charged moieties. An interplay between Coulomb interaction and side-chain repulsion governed the structure of the polyion complex. At strong Coulomb interaction, the complexes underwent a gradual transition from a globular structure at low branching density to an extended one at high branching density. As the electrostatic coupling was decreased, the transition was smoothened and shifted to lower branching density, and, eventually, a behavior similar to that found for neutral branched polymer was observed. Structural analogies and dissimilarities with uncharged branched polymers in poor solutions are discussed.
Collapse
Affiliation(s)
- Daniel G Angelescu
- Romanian Academy, Institute of Physical Chemistry Ilie Murgulescu, Splaiul Independentei 202, 060021 Bucharest, Romania
| | | |
Collapse
|
6
|
Sarkar SK, Lee BT. Hard tissue regeneration using bone substitutes: an update on innovations in materials. Korean J Intern Med 2015; 30:279-93. [PMID: 25995658 PMCID: PMC4438282 DOI: 10.3904/kjim.2015.30.3.279] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/05/2015] [Indexed: 12/15/2022] Open
Abstract
Bone is a unique organ composed of mineralized hard tissue, unlike any other body part. The unique manner in which bone can constantly undergo self-remodeling has created interesting clinical approaches to the healing of damaged bone. Healing of large bone defects is achieved using implant materials that gradually integrate with the body after healing is completed. Such strategies require a multidisciplinary approach by material scientists, biological scientists, and clinicians. Development of materials for bone healing and exploration of the interactions thereof with the body are active research areas. In this review, we explore ongoing developments in the creation of materials for regenerating hard tissues.
Collapse
Affiliation(s)
- Swapan Kumar Sarkar
- Institute of Tissue Regeneration, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Byong Taek Lee
- Institute of Tissue Regeneration, Soonchunhyang University College of Medicine, Cheonan, Korea
| |
Collapse
|
7
|
Cattoz B, de Vos WM, Cosgrove T, Crossman M, Espidel Y, Prescott SW. Interpolymer complexation: comparisons of bulk and interfacial structures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:4151-4159. [PMID: 25793709 DOI: 10.1021/la503870b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The interactions between the strong polyelectrolyte sodium poly(styrenesulfonate), NaPSS, and the neutral polymer poly(vinylpyrrolidone), PVP, were investigated in bulk and at the silica/solution interface using a combination of diffusion nuclear magnetic resonance spectroscopy (NMR), small-angle neutron scattering (SANS), solvent relaxation NMR, and ellipsometry. We show for the first time that complex formation occurs between NaPSS and PVP in solution; the complexes formed were shown not to be influenced by pH variation, whereas increasing the ionic strength increases the complexation of NaPSS but does not influence the PVP directly. The complexes formed contained a large proportion of NaPSS. Study of these interactions at the silica interface demonstrated that complexes also form at the nanoparticle interface where PVP is added in the system prior to NaPSS. For a constant PVP concentration and varying NaPSS concentration, the system remains stable until NaPSS is added in excess, which leads to depletion flocculation. Surface complex formation using the layer-by-layer technique was also reported at a planar silica interface.
Collapse
Affiliation(s)
- Beatrice Cattoz
- †Department of Pharmaceutical, Chemical and Environmental Sciences, Faculty of Engineering and Science, University of Greenwich, Medway Campus, Central Avenue, Chatham Maritime, Kent ME4 4TB, U.K
- ‡School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Wiebe M de Vos
- ‡School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
- §Membrane Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands
| | - Terence Cosgrove
- ‡School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Martin Crossman
- ∥Port Sunlight Laboratory, Unilever Research, Quarry Road East, Bebington, The Wirral CH63 3JW, U.K
| | - Youssef Espidel
- ‡School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Stuart W Prescott
- †Department of Pharmaceutical, Chemical and Environmental Sciences, Faculty of Engineering and Science, University of Greenwich, Medway Campus, Central Avenue, Chatham Maritime, Kent ME4 4TB, U.K
- ⊥School of Chemical Engineering, UNSW Australia, UNSW Sydney, New South Wales 2052, Australia
| |
Collapse
|
8
|
Escorihuela J, González-Martínez MÁ, López-Paz JL, Puchades R, Maquieira Á, Gimenez-Romero D. Dual-Polarization Interferometry: A Novel Technique To Light up the Nanomolecular World. Chem Rev 2014; 115:265-94. [DOI: 10.1021/cr5002063] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jorge Escorihuela
- Department
of Chemistry, Institute of Molecular Recognition and Technological
Development, Universitat Politècnica de València, Camino
de Vera s/n, 46022 València, Spain
| | - Miguel Ángel González-Martínez
- Department
of Chemistry, Institute of Molecular Recognition and Technological
Development, Universitat Politècnica de València, Camino
de Vera s/n, 46022 València, Spain
| | - José Luis López-Paz
- Department
of Chemistry, Institute of Molecular Recognition and Technological
Development, Universitat Politècnica de València, Camino
de Vera s/n, 46022 València, Spain
| | - Rosa Puchades
- Department
of Chemistry, Institute of Molecular Recognition and Technological
Development, Universitat Politècnica de València, Camino
de Vera s/n, 46022 València, Spain
| | - Ángel Maquieira
- Department
of Chemistry, Institute of Molecular Recognition and Technological
Development, Universitat Politècnica de València, Camino
de Vera s/n, 46022 València, Spain
| | - David Gimenez-Romero
- Physical
Chemistry Department, Faculty of Chemistry, Universitat de València, Avenida Dr. Moliner 50, 46100 Burjassot, València, Spain
| |
Collapse
|
9
|
Banerjee R, Gupta S, Dey D, Maiti S, Dhara D. Synthesis of PEG containing cationic block copolymers and their interaction with human serum albumin. REACT FUNCT POLYM 2014. [DOI: 10.1016/j.reactfunctpolym.2013.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Xu P, Huang F, Liang H. Real-time study of a DNA strand displacement reaction using dual polarization interferometry. Biosens Bioelectron 2013; 41:505-10. [DOI: 10.1016/j.bios.2012.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/29/2012] [Accepted: 09/09/2012] [Indexed: 01/12/2023]
|
11
|
Abbah SA, Liu J, Lam RWM, Goh JCH, Wong HK. In vivo bioactivity of rhBMP-2 delivered with novel polyelectrolyte complexation shells assembled on an alginate microbead core template. J Control Release 2012; 162:364-72. [PMID: 22846985 DOI: 10.1016/j.jconrel.2012.07.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/14/2012] [Accepted: 07/23/2012] [Indexed: 11/15/2022]
Abstract
Electrostatic interactions between polycations and polyanions are being explored to fabricate polyelectrolyte complexes (PEC) that could entrap and regulate the release of a wide range of biomolecules. Here, we report the in vivo application of PEC shells fabricated from three different polycations: poly-l-ornithine (PLO), poly-l-arginine (PLA) and DEAE-dextran (DEAE-D) to condense heparin on the surface of alginate microbeads and further control the delivery of recombinant human bone morphogenetic protein 2 (rhBMP-2) in spinal fusion application. We observed large differences in the behavior of PEC shells fabricated from the cationic polyamino acids (PLO and PLA) when compared to the cationic polysaccharide, DEAE-D. Whereas DEAE-D-based PEC shells eroded and released rhBMP-2 over 2 days in vitro, PLO- and PLA-based shells retained at least 60% of loaded rhBMP-2 after 3 weeks of incubation in phosphate-buffered saline. In vivo implantation in a rat model of posterolateral spinal fusion revealed robust bone formation in the PLO- and PLA-based PEC shell groups. This resulted in a significantly enhanced mechanical stability of the fused segments. However, bone induction and biomechanical stability of spine segments implanted with DEAE-D-based carriers were significantly inferior to both PLO- and PLA-based PEC shell groups (p<0.01). From these results, we conclude that PEC shells incorporating native heparin could be used for growth factor delivery in functional bone tissue engineering application and that PLA- and PLO-based complexes could represent superior options to DEAE-D for loading and in vivo delivery of bioactive BMP-2 in this approach.
Collapse
Affiliation(s)
- Sunny-Akogwu Abbah
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
12
|
Shovsky A, Varga I, Makuška R, Claesson PM. Adsorption and solution properties of bottle-brush polyelectrolyte complexes: effect of molecular weight and stoichiometry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:6618-6631. [PMID: 22471950 DOI: 10.1021/la300365q] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Polyelectrolyte complexes (PECs) self-assembled from bottle-brush polyelectrolytes, having a cationic main chain and uncharged side chains, and linear anionic sodium polystyrenesulfonate (NaPSS) have been investigated with emphasis on (i) the charge density and side chain density of the bottle-brush polyelectrolyte, (ii) the molecular weight of NaPSS, and (iii) the charge stoichiometry of the mixture. Light scattering and electrophoretic mobility data demonstrate that small molecular complexes are formed when the PEO45 side chain density is sufficiently high to provide steric stabilization and prevent PEC aggregation. The adsorption of PECs on negatively charged silicon oxynitride was investigated using dual polarization interferometry, and the time evolution of the adsorbed amount and thickness was determined. Cationic, uncharged, and negatively charged complexes all adsorb to negatively charged silicon oxynitride, and maximum adsorption is achieved for positively charged complexes containing small amounts of PSS. The adsorbed amount and the kinetics of adsorption are reduced with increasing PSS content, and for any given stoichiometry with increasing PSS molecular weight. These findings are discussed in terms of the PEC structure and the ability of anionic polyelectrolytes to leave the PECs during adsorption.
Collapse
Affiliation(s)
- Alexander Shovsky
- School of Chemical Science and Engineering, Department of Chemistry, Surface and Corrosion Science, KTH Royal Institute of Technology , Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
| | | | | | | |
Collapse
|
13
|
Wang Y, Wang J, Yang F, Yang X. Probing Biomolecular Interactions with Dual Polarization Interferometry: Real-Time and Label-Free Coralyne Detection by Use of Homoadenine DNA Oligonucleotide. Anal Chem 2011; 84:924-30. [DOI: 10.1021/ac2019443] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yong Wang
- State Key
Laboratory of Electroanalytical
Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022,
China
- Graduate School of the Chinese Academy of Sciences, Beijing 100039,
China
| | - Juan Wang
- State Key
Laboratory of Electroanalytical
Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022,
China
- Graduate School of the Chinese Academy of Sciences, Beijing 100039,
China
| | - Fan Yang
- State Key
Laboratory of Electroanalytical
Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022,
China
| | - Xiurong Yang
- State Key
Laboratory of Electroanalytical
Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022,
China
| |
Collapse
|