1
|
Wang L, Schubert US, Hoeppener S. Surface chemical reactions on self-assembled silane based monolayers. Chem Soc Rev 2021; 50:6507-6540. [PMID: 34100051 DOI: 10.1039/d0cs01220c] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In this review, we aim to update our review "Chemical modification of self-assembled silane-based monolayers by surface reactions" which was published in 2010 and has developed into an important guiding tool for researchers working on the modification of solid substrate surface properties by chemical modification of silane-based self-assembled monolayers. Due to the rapid development of this field of research in the last decade, the utilization of chemical functionalities in self-assembled monolayers has been significantly improved and some new processes were introduced in chemical surface reactions for tailoring the properties of solid substrates. Thus, it is time to update the developments in the surface functionalization of silane-based molecules. Hence, after a short introduction on self-assembled monolayers, this review focuses on a series of chemical reactions, i.e., nucleophilic substitution, click chemistry, supramolecular modification, photochemical reaction, and other reactions, which have been applied for the modification of hydroxyl-terminated substrates, like silicon and glass, which have been reported during the last 10 years.
Collapse
Affiliation(s)
- Limin Wang
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Humboldtstr. 10, 07743 Jena, Germany
| | | | | |
Collapse
|
2
|
Zhang H, Weiss I, Rudra I, Jo WJ, Kellner S, Katsoukis G, Galoppini E, Frei H. Controlling and Optimizing Photoinduced Charge Transfer across Ultrathin Silica Separation Membrane with Embedded Molecular Wires for Artificial Photosynthesis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23532-23546. [PMID: 33983702 DOI: 10.1021/acsami.1c00735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ultrathin amorphous silica membranes with embedded organic molecular wires (oligo(p-phenylenevinylene), three aryl units) provide chemical separation of incompatible catalytic environments of CO2 reduction and H2O oxidation while maintaining electronic and protonic coupling between them. For an efficient nanoscale artificial photosystem, important performance criteria are high rate and directionality of charge flow. Here, the visible-light-induced charge flow from an anchored Ru bipyridyl light absorber across the silica nanomembrane to Co3O4 water oxidation catalyst is quantitatively evaluated by photocurrent measurements. Charge transfer rates increase linearly with wire density, with 5 nm-2 identified as an optimal target. Accurate measurement of wire and light absorber densities is accomplished by the polarized FT-IRRAS method. Guided by density functional theory (DFT) calculations, four wire derivatives featuring electron-donating (methoxy) and -withdrawing groups (sulfonate, perfluorophenyl) with highest occupied molecular orbital (HOMO) potentials ranging from 1.48 to 0.64 V vs NHE were synthesized and photocurrents evaluated. Charge transfer rates increase sharply with increasing driving force for hole transfer from the excited light absorber to the embedded wire, followed by a decrease as the HOMO potential of the wire moves beyond the Co3O4 valence band level toward more negative values, pointing to an optimal wire HOMO potential around 1.3 V vs NHE. Comparison with photocurrents of samples without nanomembrane indicates that silica layers with optimized wires are able to approach undiminished electron flux at typical solar intensities. Combined with the established high proton conductivity and small-molecule blocking property, the charge transfer measurements demonstrate that oxidation and reduction catalysis can be efficiently integrated on the nanoscale under separation by an ultrathin silica membrane.
Collapse
Affiliation(s)
- Hongna Zhang
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, United States
| | - Ian Weiss
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| | - Indranil Rudra
- Shell India Markets Pvt. Ltd., Mahadeva Kodigehalli, Bangalore 562149, India
| | - Won Jun Jo
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, United States
| | - Simon Kellner
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, United States
| | - Georgios Katsoukis
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, United States
| | - Elena Galoppini
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| | - Heinz Frei
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Sujan MI, Sarkar SD, Sultana S, Bushra L, Tareq R, Roy CK, Azam MS. Bi-functional silica nanoparticles for simultaneous enhancement of mechanical strength and swelling capacity of hydrogels. RSC Adv 2020; 10:6213-6222. [PMID: 35496010 PMCID: PMC9049678 DOI: 10.1039/c9ra09528d] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/04/2020] [Indexed: 11/21/2022] Open
Abstract
A combination of strong load-bearing capacity and high swelling degree is desired in hydrogels for many applications including drug delivery, tissue engineering, and biomedical engineering. However, a compromising relationship exists between these two most important characteristics of hydrogels. Improving both of these important properties simultaneously in a single hydrogel material is still beyond the satisfactory limit. Herein, we report a novel approach to address this problem by introducing a silica-based bi-functional 3D crosslinker. Our bi-functional silica nanoparticles (BF-Si NPs) possess amine groups that are able to offer pseudo-crosslinking effects induced by inter-cohesive bonding, and acrylate groups that can form conventional covalent crosslinking in the same hydrogel. We fabricated polyacrylic acid (PAc-Si) and polyacrylamide (PAm-Si) hydrogels using our BF-Si NPs via free radical polymerization to demonstrate this concept. Incorporation of the BF-Si crosslinkers into the hydrogels has resulted in a large enhancement in the mechanical properties compared to conventional hydrogel crosslinked with N,N′-methylene bisacrylamide (MBA). For instance, tensile strength and the toughness increased by more than 6 times and 10 times, respectively, upon replacing MBA with BF-Si in polyacrylamide hydrogel. Moreover, the hydrogels crosslinked with BF-Si exhibited a remarkably elevated level of swelling capacity in the aqueous medium. Our facile yet smart strategy of employing the 3D bi-functional crosslinker for combining high swelling degree and strong mechanical properties in the same hydrogels can be extended to the fabrication of many similar acrylate or vinyl polymer hydrogels. Bi-functional silica crosslinkers simultaneously enhance the mechanical strength and swelling capacity of the polyacrylic acid and polyacrylamide hydrogels.![]()
Collapse
Affiliation(s)
- Majharul Islam Sujan
- Department of Chemistry
- Bangladesh University of Engineering and Technology (BUET)
- Dhaka 1000
- Bangladesh
| | - Stephen Don Sarkar
- Department of Chemistry
- Bangladesh University of Engineering and Technology (BUET)
- Dhaka 1000
- Bangladesh
| | - Salma Sultana
- Department of Chemistry
- Bangladesh University of Engineering and Technology (BUET)
- Dhaka 1000
- Bangladesh
| | - Labiba Bushra
- Department of Chemistry
- Bangladesh University of Engineering and Technology (BUET)
- Dhaka 1000
- Bangladesh
| | - Rizwan Tareq
- Department of Chemistry
- Bangladesh University of Engineering and Technology (BUET)
- Dhaka 1000
- Bangladesh
- Department of Materials and Metallurgical Engineering
| | - Chanchal Kumar Roy
- Department of Chemistry
- Bangladesh University of Engineering and Technology (BUET)
- Dhaka 1000
- Bangladesh
| | - Md. Shafiul Azam
- Department of Chemistry
- Bangladesh University of Engineering and Technology (BUET)
- Dhaka 1000
- Bangladesh
| |
Collapse
|
4
|
Fernandes AE, Jonas AM. Design and engineering of multifunctional silica-supported cooperative catalysts. Catal Today 2019. [DOI: 10.1016/j.cattod.2018.11.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Kasinathan P, Lang C, Radhakrishnan S, Schnee J, D'Haese C, Breynaert E, Martens JA, Gaigneaux EM, Jonas AM, Fernandes AE. “Click” Silica‐Supported Sulfonic Acid Catalysts with Variable Acid Strength and Surface Polarity. Chemistry 2019; 25:6753-6762. [DOI: 10.1002/chem.201806186] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Palraj Kasinathan
- Institute of Condensed Matter and NanosciencesUCLouvain 1348 Louvain-la-Neuve Belgium
| | - Charlotte Lang
- Institute of Condensed Matter and NanosciencesUCLouvain 1348 Louvain-la-Neuve Belgium
| | - Sambhu Radhakrishnan
- Center for Surface Chemistry and Catalysis, Characterization and Application TeamKULeuven 3001 Leuven Belgium
| | - Josefine Schnee
- Institute of Condensed Matter and NanosciencesUCLouvain 1348 Louvain-la-Neuve Belgium
| | - Cécile D'Haese
- Institute of Condensed Matter and NanosciencesUCLouvain 1348 Louvain-la-Neuve Belgium
| | - Eric Breynaert
- Center for Surface Chemistry and Catalysis, Characterization and Application TeamKULeuven 3001 Leuven Belgium
| | - Johan A. Martens
- Center for Surface Chemistry and Catalysis, Characterization and Application TeamKULeuven 3001 Leuven Belgium
| | - Eric M. Gaigneaux
- Institute of Condensed Matter and NanosciencesUCLouvain 1348 Louvain-la-Neuve Belgium
| | - Alain M. Jonas
- Institute of Condensed Matter and NanosciencesUCLouvain 1348 Louvain-la-Neuve Belgium
| | - Antony E. Fernandes
- Institute of Condensed Matter and NanosciencesUCLouvain 1348 Louvain-la-Neuve Belgium
- Current address: Certech Rue Jules Bordet 7180 Seneffe Belgium
| |
Collapse
|
6
|
Faderl C, Budde S, Kachkovskyi G, Rackl D, Reiser O. Visible Light-Mediated Decarboxylation Rearrangement Cascade of ω-Aryl-N-(acyloxy)phthalimides. J Org Chem 2018; 83:12192-12206. [DOI: 10.1021/acs.joc.8b01538] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christian Faderl
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Simon Budde
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Georgiy Kachkovskyi
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Daniel Rackl
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Oliver Reiser
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
7
|
Chandra P, Jonas AM, Fernandes AE. Spatial Coordination of Cooperativity in Silica-Supported Cu/TEMPO/Imidazole Catalytic Triad. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01399] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Prakash Chandra
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Alain M. Jonas
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Antony E. Fernandes
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
8
|
Meillan M, Buffeteau T, Le Bourdon G, Thomas L, Degueil M, Heuzé K, Bennetau B, Vellutini L. Mixed Self-Assembled Monolayers with Internal Urea Group on Silica Surface. ChemistrySelect 2017. [DOI: 10.1002/slct.201702434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Matthieu Meillan
- University of Bordeaux, ISM, UMR 5255; F-33400 Talence France
- CNRS; ISM, UMR 5255; F-33400 Talence France
| | - Thierry Buffeteau
- University of Bordeaux, ISM, UMR 5255; F-33400 Talence France
- CNRS; ISM, UMR 5255; F-33400 Talence France
| | - Gwenaëlle Le Bourdon
- University of Bordeaux, ISM, UMR 5255; F-33400 Talence France
- CNRS; ISM, UMR 5255; F-33400 Talence France
| | - Laurent Thomas
- University of Bordeaux, ISM, UMR 5255; F-33400 Talence France
- CNRS; ISM, UMR 5255; F-33400 Talence France
| | - Marie Degueil
- University of Bordeaux, ISM, UMR 5255; F-33400 Talence France
- CNRS; ISM, UMR 5255; F-33400 Talence France
| | - Karine Heuzé
- University of Bordeaux, ISM, UMR 5255; F-33400 Talence France
- CNRS; ISM, UMR 5255; F-33400 Talence France
| | - Bernard Bennetau
- University of Bordeaux, ISM, UMR 5255; F-33400 Talence France
- CNRS; ISM, UMR 5255; F-33400 Talence France
| | - Luc Vellutini
- University of Bordeaux, ISM, UMR 5255; F-33400 Talence France
- CNRS; ISM, UMR 5255; F-33400 Talence France
| |
Collapse
|
9
|
Sajfutdinow M, Uhlig K, Prager A, Schneider C, Abel B, Smith DM. Nanoscale patterning of self-assembled monolayer (SAM)-functionalised substrates with single molecule contact printing. NANOSCALE 2017; 9:15098-15106. [PMID: 28967945 DOI: 10.1039/c7nr03696e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Defined arrangements of individual molecules are covalenty connected ("printed") onto SAM-functionalised gold substrates with nanometer resolution. Substrates were initially pre-functionlised by coating with 3,3'-dithiodipropionic acid (DTPA) to form a self-assembled monolayer (SAM), which was characterised by atomic force microscopy (AFM), contact angle goniometry, cyclic voltammetry and surface plasmon resonance (SPR) spectroscopy. Pre-defined "ink" patterns displayed on DNA origami-based single-use carriers ("stamp") were covalently conjugated to the SAM using 1-ethyl-3-(3-dimethylamino-propyl)carbodiimide (EDC) and N-hydroxy-succinimide (NHS). These anchor points were used to create nanometer-precise single-molecule arrays, here with complementary DNA and streptavidin. Sequential steps of the printing process were evaluated by AFM and SPR spectroscopy. It was shown that 30% of the detected arrangements closely match the expected length distribution of designed patterns, whereas another 40% exhibit error within the range of only 1 streptavidin molecule. SPR results indicate that imposing a defined separation between molecular anchor points within the pattern through this printing process enhances the efficiency for association of specific binding partners for systems with high sterical hindrance. This study expands upon earlier findings where geometrical information was conserved by the application of DNA nanostructures, by establishing a generalisable strategy which is universally applicable to nearly any type of prefunctionalised substrate such as metals, plastics, silicates, ITO or 2D materials.
Collapse
Affiliation(s)
- M Sajfutdinow
- DNA Nanodevices Group, Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, 04103, Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
10
|
Fratila RM, Navascuez M, Idiago-López J, Eceiza M, Miranda JI, Aizpurua JM, de la Fuente JM. Covalent immobilisation of magnetic nanoparticles on surfaces via strain-promoted azide–alkyne click chemistry. NEW J CHEM 2017. [DOI: 10.1039/c7nj01822c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We report a new family of clickable cyclooctynyl magnetic nanoparticles suitable for bioorthogonal click chemistry applications.
Collapse
Affiliation(s)
- Raluca M. Fratila
- Institute of Materials Science of Aragón (ICMA – CSIC/University of Zaragoza)
- Zaragoza
- Spain
- Centro de Investigación Biomédica en red en Bioingenieria Biomateriales y Nanomedicina (CIBER-BBN)
- Zaragoza
| | - Marcos Navascuez
- Institute of Materials Science of Aragón (ICMA – CSIC/University of Zaragoza)
- Zaragoza
- Spain
| | - Javier Idiago-López
- Institute of Materials Science of Aragón (ICMA – CSIC/University of Zaragoza)
- Zaragoza
- Spain
| | - Maite Eceiza
- José Mari Korta R&D Center
- Basque Country University
- UPV/EHU
- Donostia-San Sebastián
- Spain
| | - José I. Miranda
- José Mari Korta R&D Center
- Basque Country University
- UPV/EHU
- Donostia-San Sebastián
- Spain
| | - Jesús M. Aizpurua
- José Mari Korta R&D Center
- Basque Country University
- UPV/EHU
- Donostia-San Sebastián
- Spain
| | - Jesús M. de la Fuente
- Institute of Materials Science of Aragón (ICMA – CSIC/University of Zaragoza)
- Zaragoza
- Spain
- Centro de Investigación Biomédica en red en Bioingenieria Biomateriales y Nanomedicina (CIBER-BBN)
- Zaragoza
| |
Collapse
|
11
|
Civic MR, Dinolfo PH. Electrochemical Rectification of Redox Mediators Using Porphyrin-Based Molecular Multilayered Films on ITO Electrodes. ACS APPLIED MATERIALS & INTERFACES 2016; 8:20465-20473. [PMID: 27410765 DOI: 10.1021/acsami.6b05643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Electrochemical charge transfer through multilayer thin films of zinc and nickel 5,10,15,20-tetra(4-ethynylphenyl) porphyrin constructed via copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) "click" chemistry was examined. Current rectification toward various outer-sphere redox probes is revealed with increasing numbers of layers, as these films possess insulating properties over the neutral potential range of the porphyrin, then become conductive upon reaching its oxidation potential. Interfacial electron transfer rates of mediator-dye interactions toward [Co(bpy)3](2+), [Co(dmb)3](2+), [Co(NO2-phen)3](2+), [Fe(bpy)3](2+), and ferrocene (Fc), all outer-sphere redox species, were measured by hydrodynamic methods. The ability to modify electroactive films' interfacial electron transfer rates, as well as current rectification toward redox species, has broad applicability in a number of devices, particularly photovoltaics and photogalvanics.
Collapse
Affiliation(s)
- Marissa R Civic
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute , 125 Cogswell, 110 Eighth Street, Troy, New York 12180, United States
| | - Peter H Dinolfo
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute , 125 Cogswell, 110 Eighth Street, Troy, New York 12180, United States
| |
Collapse
|
12
|
Ennist JH, Gobrogge EA, Schlick KH, Walker RA, Cloninger MJ. Cyclodextrin-functionalized chromatographic materials tailored for reversible adsorption. ACS APPLIED MATERIALS & INTERFACES 2014; 6:18087-18097. [PMID: 25249268 DOI: 10.1021/am504975y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Novel dendronized silica substrates were synthesized. First- and second- generation polyaryl ether dendrons were appended to silica surfaces. Using Cu(I) mediated cycloaddition "click" chemistry, β-cyclodextrin was tethered to the dendronized surfaces and to a nondendronized surface for comparison purposes. This synthesis strategy affords a modular, versatile method for surface functionalization in which the density of functional groups can be readily varied by changing the generation of dendron used. The surfaces, which are capable of adsorbing target analytes, have been characterized and studied using X-ray photoelectron spectroscopy (XPS) and vibrational sum frequency spectroscopy (VSFS). Fluorescence spectroscopy was used to study the surfaces' ability to retain coumarin 152 (C152). These studies indicated that the β-cyclodextrin functionalized surfaces not only adsorbed C152 but also retained it through multiple aqueous washes. Furthermore, these observations were quantified and show that substrates functionalized with first-generation dendrons have a more than 6 times greater capacity to adsorb C152 than slides functionalized with monomeric β-cyclodextrin. The first-generation dendrons also have 2 times greater the capacity than the larger generation dendrons. This result is explained by describing a dendron that has an increased number of β-cyclodextrin monomers but, when covalently bound to silica, has a footprint too large to optimize the number of accessible monomers. Overall, both dendronized surfaces demonstrated an increased capacity to adsorb targeted analytes over the slides functionalized with monomeric β-cyclodextrin. The studies reported provide a methodology for characterizing and evaluating the properties of novel, highly functional surfaces.
Collapse
Affiliation(s)
- Jessica H Ennist
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | | | | | | | | |
Collapse
|
13
|
Li Z, Weeraman CN, Gibbs-Davis JM. Following the azide-alkyne cycloaddition at the silica/solvent interface with sum frequency generation. Chemphyschem 2014; 15:2247-51. [PMID: 24800780 DOI: 10.1002/cphc.201402161] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Indexed: 11/10/2022]
Abstract
The Cu(I) -catalyzed 1,3-dipolar azide-alkyne cycloaddition (CuAAC) has arisen as one of the most useful chemical transformations for introducing complexity onto surfaces and materials owing to its functional-group tolerance and high yield. However, methods for monitoring such reactions in situ at the widely used silica/solvent interface are hampered by challenges associated with probing such buried interfaces. Using the surface-specific technique broadband sum frequency generation (SFG), we monitored the reaction of a benzyl azide monolayer in real time at the silica/methanol interface. A strong peak at 2096 cm(-1) assigned to the azides was observed for the first time by SFG. Using a cyano-substituted alkyne, the decrease of the azide peak and the increase of the cyano peak (2234 cm(-1) ) were probed simultaneously. From the kinetic analysis, the reaction order with respect to copper was determined to be 2.1, suggesting that CuAAC on the surface follows a similar mechanism as in solution.
Collapse
Affiliation(s)
- Zhiguo Li
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2 (Canada)
| | | | | |
Collapse
|
14
|
Azam MS, Gibbs-Davis JM. Monitoring DNA Hybridization and Thermal Dissociation at the Silica/Water Interface Using Resonantly Enhanced Second Harmonic Generation Spectroscopy. Anal Chem 2013; 85:8031-8. [DOI: 10.1021/ac401009u] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Md. Shafiul Azam
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
15
|
Palomaki PKB, Civic MR, Dinolfo PH. Photocurrent enhancement by multilayered porphyrin sensitizers in a photoelectrochemical cell. ACS APPLIED MATERIALS & INTERFACES 2013; 5:7604-7612. [PMID: 23772987 DOI: 10.1021/am401923f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Multilayer Zn(II) tetraphenylporphyrin chromophores, assembled using copper-catalyzed azide-alkyne cycloaddition (CuAAC), provide a new sensitization scheme that could be useful in dye-sensitized solar cells (DSSCs). We report on the photoelectrochemical responses of multilayer films of Zn(II) 5,10,15,20-tetra(4-ethynylphenyl)porphyrin (1) assembled on planar ITO substrates operating as a p-type DSSC using three different redox mediators. The traditional I(-)/I3(-) redox couple results in the greatest short circuit current densities (JSC) but very low open circuit potentials (VOC). The use of cobalt sepulchrate ([Co(sep)](2+/3+)) and cobalt tris-bipyridine ([Co(bpy)3](2+/3+)) as redox mediators generates higher VOC values, but at the expense of lower photocurrents. These results highlight the inherent differences in the interactions between the redox mediator and Zn(II) tetraphenylporphyrin multilayer films. Increasing the porphyrin content through multilayer growth proved to be effective in increasing the performance of photoelectrochemical cells with all three redox mediators. Cells using I(-)/I3(-) reached maximum performance (power output) at five porphyrin layers, [Co(bpy)3](2+/3+) at five layers, and [Co(sep)](2+/3+) at three layers. For all mediators, JSC increases with the addition of porphyrin layers beyond a monolayer. However, JSC reaches a maximum value at a point greater than one layer after which it decreases, presumably due to exciton diffusion limitations and the insulating effects of the multilayer film. Similarly, all cells also reach a maximum VOC beyond one porphyrin layer. We show that porphyrin arrays assembled using newly developed CuAAC layer-by-layer growth may be useful as a multilayer sensitization scheme for use in photoelectrochemical cells.
Collapse
Affiliation(s)
- Peter K B Palomaki
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 125 Cogswell, 110 Eighth Street, Troy, New York 12180, United States
| | | | | |
Collapse
|
16
|
Díaz JA, Grewer DM, Gibbs-Davis JM. Tuning ratios, densities, and supramolecular spacing in bifunctional DNA-modified gold nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:873-883. [PMID: 22228478 DOI: 10.1002/smll.201101922] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 10/25/2011] [Indexed: 05/31/2023]
Abstract
Methods for combining multiple functions into well-defined nanomaterials are still lacking, despite their need in nanomedicine and within the broader field of nanotechnology. Here several strategies for controlling the amount and the ratio of combinations of labeled DNA on 13-nm gold nanoparticles using self-assembly of thiolated DNA and/or DNA-directed assembly are explored. It is found that the self-assembly of mixtures of fluorescently labeled DNA can lead to a higher amount of labeled DNA per particle; however, the ratio of fluorophores on the nanoparticles differs greatly from that in the self-assembly solution. In contrast, when fluorescently labeled DNA are hybridized to DNA-modified gold nanoparticles, the fluorophore ratio on the nanoparticles is much closer to their ratio in solution. The use of bifunctional DNA-doublers in self-assembly and DNA-directed assembly is also explored to increase the complexity of these materials and control their composition. Finally, tuning the distance between the labels from 2.9 to 5.4 nm was achieved using different hybridized DNA clamp complexes. Fluorescent results suggest that assembling these clamps on nanoparticle surfaces may be possible, although the resulting label spacing could not be quantified.
Collapse
Affiliation(s)
- Julián A Díaz
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | | | | |
Collapse
|
17
|
Luo Y, Bernien M, Krüger A, Hermanns CF, Miguel J, Chang YM, Jaekel S, Kuch W, Haag R. In situ hydrolysis of imine derivatives on Au(111) for the formation of aromatic mixed self-assembled monolayers: multitechnique analysis of this tunable surface modification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:358-366. [PMID: 22126233 DOI: 10.1021/la202696a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This paper presents a novel method for preparing aromatic, mixed self-assembled monolayers (SAMs) with a dilute surface fraction coverage of protonated amine via in situ hydrolysis of C═N double bond on gold surface. Two imine compounds, (4'-(4-(trifluoromethyl)benzylideneamino)biphenyl-4-yl)methanethiol (CF(3)-C(6)H(4)-CH═N-C(6)H(4)-C(6)H(4)-CH(2)-SH, TFBABPMT) and (4'-(4-cyanobenzylideneamino)biphenyl-4-yl)methanethiol (CN-C(6)H(4)-CH═N-C(6)H(4)-C(6)H(4)-CH(2)-SH, CBABPMT), self-assembled on Au(111) to form highly ordered monolayers, which was demonstrated by infrared reflection absorption spectroscopy (IRRAS) and X-ray photoelectron spectroscopy (XPS). A nearly upright molecular orientation for CF(3)- and CN-terminated SAM was detected by near edge X-ray absorption fine structure (NEXAFS) measurements. Afterward, the acidic catalyzed hydrolysis was carried out in chloroform or an aqueous solution of acetic acid (pH = 3). Systematic studies of this hydrolysis process for CN-terminated SAM in acetic acid at 25 °C were performed by NEXAFS measurements. It was found that about 30% of the imine double bonds gradually cleaved in the first 40 min. Subsequently, a larger hydrolysis rate was observed due to the freer penetration of acetic acid in the SAM and resultant more open molecular packing. Furthermore, the molecular orientation in mixed SAMs did not change during the whole hydrolysis process. This partially hydrolyzed surface contains a controlled amount of free amines/ammonium ions which can be used for further chemical modifications.
Collapse
Affiliation(s)
- Ying Luo
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Leroux YR, Hui F, Noël JM, Roux C, Downard AJ, Hapiot P. Design of robust binary film onto carbon surface using diazonium electrochemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:11222-11228. [PMID: 21774535 DOI: 10.1021/la202250y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The electroreduction of functionalized aryldiazonium salts combined with a protection-deprotection method was evaluated for the fabrication of organized mixed layers covalently bound onto carbon substrates. The first modification consists of the grafting of a protected 4-((triisopropylsilyl)ethynyl)benzene layer onto the carbon surface on which the introduction of a second functional group is possible without altering the first grafted functional group. After deprotection, we obtained an ultrathin robust layer presenting high densities of both active ethynylbenzene groups (available for "click" chemistry) and the second functional group. The strategy was successfully demonstrated using azidomethylferrocene to react with ethynyl moieties in the binary film by "click" chemistry, and NO(2)-phenyl as the second functional group. Two possible modification pathways with different orderings of the various steps were considered to show the influence and importance of the protection-deprotection process on the final surface obtained. Using mild conditions for the grafting of the second layer maintains a concentration of active ethynyl groups similar to that obtained for a one-component monolayer while achieving a high surface concentration of the second modifier. Considering the wide range of functional aryldiazonium salts that could be electrodeposited onto carbon surfaces and the versatility and specificity of the "click" chemistry, this approach appears very promising for the preparation of mixed layers in well-controlled conditions without altering the reactivity of either functional group.
Collapse
Affiliation(s)
- Yann R Leroux
- Sciences Chimiques de Rennes (Equipe MaCSE), CNRS, UMR 6226, Université de Rennes 1, Campus de Beaulieu, Bat 10C, 35042 Rennes Cedex, France
| | | | | | | | | | | |
Collapse
|