1
|
Optimization of Aquaporin Loading for Performance Enhancement of Aquaporin-Based Biomimetic Thin-Film Composite Membranes. MEMBRANES 2021; 12:membranes12010032. [PMID: 35054558 PMCID: PMC8777877 DOI: 10.3390/membranes12010032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 11/17/2022]
Abstract
The aquaporin-based biomimetic thin-film composite membrane (ABM-TFC) has demonstrated superior separation performance and achieved successful commercialization. The larger-scale production of the ABM membrane requires an appropriate balance between the performance and manufacturing cost. This study has systematically investigated the effects of proteoliposome concentration, protein-to-lipid ratio, as well as the additive on the separation performance of ABM for the purpose of finding the optimal preparation conditions for the ABM from the perspective of industrial production. Although increasing the proteoliposome concentration or protein-to-lipid ratio within a certain range could significantly enhance the water permeability of ABMs by increasing the loading of aquaporins in the selective layer, the enhancement effect was marginal or even compromised beyond an optimal point. Alternatively, adding cholesterol in the proteoliposome could further enhance the water flux of the ABM membrane, with minor effects on the salt rejection. The optimized ABM not only achieved a nearly doubled water flux with unchanged salt rejection compared to the control, but also demonstrated satisfactory filtration stability within a wide range of operation temperatures. This study provides a practical strategy for the optimization of ABM-TFC membranes to fit within the scheme of industrial-scale production.
Collapse
|
2
|
Impedance characterization of biocompatible hydrogel suitable for biomimetic lipid membrane applications. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Abdelrasoul A, Doan H, Lohi A, Cheng CH. Aquaporin-Based Biomimetic and Bioinspired Membranes for New Frontiers in Sustainable Water Treatment Technology: Approaches and Challenges. POLYMER SCIENCE SERIES A 2018. [DOI: 10.1134/s0965545x18040016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
4
|
Qi S, Wang R, Chaitra GKM, Torres J, Hu X, Fane AG. Aquaporin-based biomimetic reverse osmosis membranes: Stability and long term performance. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.02.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
5
|
González-Henríquez CM, Sarabia-Vallejos MA. Electrospinning deposition of hydrogel fibers used as scaffold for biomembranes. Thermal stability of DPPC corroborated by ellipsometry. Chem Phys Lipids 2015. [PMID: 26206414 DOI: 10.1016/j.chemphyslip.2015.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
DPPC bilayers were deposited over thin hydrogel scaffolds using the Langmuir-Blodgett technique (with DPPC thickness ∼ 6.2 nm). Wrinkled hydrogels films were used to maintain a moist environment in order to enhance DPPC bilayer stability. Polymer mixtures were prepared using HEMA (as a base monomer) and DEGDMA, PEGDA575, PEGDA700 or AAm (as crosslinking agents); a thermal initiator was added to obtain a final pre-hydrogel (oligomer) with an adequate viscosity for thin film formation. This mixture was deposited as wrinkled film/fibers over hydrophilic silicon wafers using an electrospinning technique. Later, these samples were exposed to UV light to trigger photopolymerization, generating crosslinking bonds between hydrogel chains; this process also generated remnant surface stresses in the films that favored wrinkle formation. In the cases where DEGDMA and AAm were used as crosslinking agents, HEMA was added in higher amounts. The resultant polymer film surface showed homogenous layering with some small isolated clusters. If PEGDA575/700 was used as the crosslinking agent, we observed the formation of polymer wrinkled thin films, composed by main and secondary chains (with different dimensions). Moreover, water absorption and release was found to be mediated through surface morphology, ordering and film thickness. The thermal behavior of biomembranes was examined using ellipsometry techniques under controlled heating cycles, allowing phases and phase transitions to be detected through slight thickness variations with respect to temperature. Atomic force microscopy was used to determinate surface roughness changes according to temperature variation, temperature was varied sufficiently for the detection and recording of DPPC phase limits. Contact angle measurements corroborated and quantified system wettability, supporting the theory that wrinkled hydrogel films act to enhance DPPC bilayer stability during thermal cycles.
Collapse
Affiliation(s)
- C M González-Henríquez
- Departamento de Química, Universidad Tecnológica Metropolitana, Las Palmeras #3360, Santiago, Chile.
| | - M A Sarabia-Vallejos
- Instituto de Física, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna #4860, Santiago, Chile
| |
Collapse
|
6
|
Tanaka A, Nakashima H, Kashimura Y, Sumitomo K. Electrostatically induced planar lipid membrane formation on a cationic hydrogel array by the fusion of small negatively charged unilamellar vesicles. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.03.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Mech-Dorosz A, Heiskanen A, Bäckström S, Perry M, Muhammad HB, Hélix-Nielsen C, Emnéus J. A reusable device for electrochemical applications of hydrogel supported black lipid membranes. Biomed Microdevices 2015; 17:21. [PMID: 25653071 DOI: 10.1007/s10544-015-9936-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Black lipid membranes (BLMs) are significant in studies of membrane transport, incorporated proteins/ion transporters, and hence in construction of biosensor devices. Although BLMs provide an accepted mimic of cellular membranes, they are inherently fragile. Techniques are developed to stabilize them, such as hydrogel supports. In this paper, we present a reusable device for studies on hydrogel supported (hs) BLMs. These are formed across an ethylene tetrafluoroethylene (ETFE) aperture array supported by the hydrogel, which is during in situ polymerization covalently "sandwiched" between the ETFE substrate and a gold electrode microchip, thus allowing direct electrochemical studies with the integrated working electrodes. Using electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy and contact angle measurements, we demonstrate the optimized chemical modifications of the gold electrode microchips and plasma modification of the ETFE aperture arrays facilitating covalent "sandwiching" of the hydrogel. Both fluorescence microscopy and EIS were used to demonstrate the induced spontaneous thinning of a deposited lipid solution, leading to formation of stabilized hsBLMs on average in 10 min. The determined specific membrane capacitance and resistance were shown to vary in the range 0.31-0.49 μF/cm(2) and 45-65 kΩ cm(2), respectively, corresponding to partially solvent containing BLMs with an average life time of 60-80 min. The characterized hsBLM formation and devised equivalent circuit models lead to a schematic model to illustrate lipid molecule distribution in hydrogel-supported apertures. The functionality of stabilized hsBLMs and detection sensitivity of the platform were verified by monitoring the effect of the ion transporter valinomycin.
Collapse
Affiliation(s)
- Agnieszka Mech-Dorosz
- Department of Micro- and Nanotechnology, Technical University of Denmark, Produktionstorvet 423, 2800, Kgs. Lyngby, Denmark
| | | | | | | | | | | | | |
Collapse
|
8
|
Weatherill EE, Wallace MI. Combining Single-Molecule Imaging and Single-Channel Electrophysiology. J Mol Biol 2015; 427:146-57. [DOI: 10.1016/j.jmb.2014.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/07/2014] [Accepted: 07/07/2014] [Indexed: 12/29/2022]
|
9
|
Potier J, Menuel S, Monflier E, Hapiot F. Synergetic Effect of Randomly Methylated β-Cyclodextrin and a Supramolecular Hydrogel in Rh-Catalyzed Hydroformylation of Higher Olefins. ACS Catal 2014. [DOI: 10.1021/cs5004883] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jonathan Potier
- Université d’Artois, CNRS
UMR 8181, Unité de Catalyse et de Chimie
du Solide-UCCS UArtois, Faculté des Sciences Jean Perrin, rue Jean Souvraz, SP18, 62307 Lens Cedex, France
| | - Stéphane Menuel
- Université d’Artois, CNRS
UMR 8181, Unité de Catalyse et de Chimie
du Solide-UCCS UArtois, Faculté des Sciences Jean Perrin, rue Jean Souvraz, SP18, 62307 Lens Cedex, France
| | - Eric Monflier
- Université d’Artois, CNRS
UMR 8181, Unité de Catalyse et de Chimie
du Solide-UCCS UArtois, Faculté des Sciences Jean Perrin, rue Jean Souvraz, SP18, 62307 Lens Cedex, France
| | - Frédéric Hapiot
- Université d’Artois, CNRS
UMR 8181, Unité de Catalyse et de Chimie
du Solide-UCCS UArtois, Faculté des Sciences Jean Perrin, rue Jean Souvraz, SP18, 62307 Lens Cedex, France
| |
Collapse
|
10
|
Choi HJ, Montemagno CD. Recent Progress in Advanced Nanobiological Materials for Energy and Environmental Applications. MATERIALS 2013; 6:5821-5856. [PMID: 28788424 PMCID: PMC5452742 DOI: 10.3390/ma6125821] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/26/2013] [Accepted: 11/28/2013] [Indexed: 11/25/2022]
Abstract
In this review, we briefly introduce our efforts to reconstruct cellular life processes by mimicking natural systems and the applications of these systems to energy and environmental problems. Functional units of in vitro cellular life processes are based on the fabrication of artificial organelles using protein-incorporated polymersomes and the creation of bioreactors. This concept of an artificial organelle originates from the first synthesis of poly(siloxane)-poly(alkyloxazoline) block copolymers three decades ago and the first demonstration of protein activity in the polymer membrane a decade ago. The increased value of biomimetic polymers results from many research efforts to find new applications such as functionally active membranes and a biochemical-producing polymersome. At the same time, foam research has advanced to the point that biomolecules can be efficiently produced in the aqueous channels of foam. Ongoing research includes replication of complex biological processes, such as an artificial Calvin cycle for application in biofuel and specialty chemical production, and carbon dioxide sequestration. We believe that the development of optimally designed biomimetic polymers and stable/biocompatible bioreactors would contribute to the realization of the benefits of biomimetic systems. Thus, this paper seeks to review previous research efforts, examine current knowledge/key technical parameters, and identify technical challenges ahead.
Collapse
Affiliation(s)
- Hyo-Jick Choi
- National Institute for Nanotechnology and Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 2M9, Canada.
| | - Carlo D Montemagno
- National Institute for Nanotechnology and Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 2M9, Canada.
| |
Collapse
|
11
|
Wang HL, Chung TS, Tong YW, Jeyaseelan K, Armugam A, Duong HHP, Fu F, Seah H, Yang J, Hong M. Mechanically robust and highly permeable AquaporinZ biomimetic membranes. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2013.01.031] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Sun G, Chung TS, Chen N, Lu X, Zhao Q. Highly permeable aquaporin-embedded biomimetic membranes featuring a magnetic-aided approach. RSC Adv 2013. [DOI: 10.1039/c3ra40608c] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
13
|
Frese D, Steltenkamp S, Schmitz S, Steinem C. In situ generation of electrochemical gradients across pore-spanning membranes. RSC Adv 2013. [DOI: 10.1039/c3ra42723d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
14
|
Zagnoni M. Miniaturised technologies for the development of artificial lipid bilayer systems. LAB ON A CHIP 2012; 12:1026-1039. [PMID: 22301684 DOI: 10.1039/c2lc20991h] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Artificially reproducing cellular environments is a key aim of synthetic biology, which has the potential to greatly enhance our understanding of cellular mechanisms. Microfluidic and lab-on-a-chip (LOC) techniques, which enable the controlled handling of sub-microlitre volumes of fluids in an automated and high-throughput manner, can play a major role in achieving this by offering alternative and powerful methodologies in an on-chip format. Such techniques have been successfully employed over the last twenty years to provide innovative solutions for chemical analysis and cell-, molecular- and synthetic- biology. In the context of the latter, the formation of artificial cell membranes (or artificial lipid bilayers) that incorporate membrane proteins within miniaturised LOC architectures offers huge potential for the development of highly sensitive molecular sensors and drug screening applications. The aim of this review is to give a comprehensive and critical overview of the field of microsystems for creating and exploiting artificial lipid bilayers. Advantages and limitations of three of the most popular approaches, namely suspended, supported and droplet-based lipid bilayers, are discussed. Examples are reported that show how artificial cell membrane microsystems, by combining together biological procedures and engineering techniques, can provide novel methodologies for basic biological and biophysical research and for the development of biotechnology tools.
Collapse
Affiliation(s)
- Michele Zagnoni
- Centre for Microsystems and Photonics, University of Strathclyde, Glasgow, UK.
| |
Collapse
|