1
|
Tahir MN, Salloum S, Rondeau-Gagné S, Eichhorn SH. Amide-Assisted Polymerization of 1,3-Butadiyne Containing Thiolate Ligands on Small Gold Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10943-10952. [PMID: 36048746 DOI: 10.1021/acs.langmuir.2c01222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Incorporation of directing amide groups has been shown to facilitate the topochemical polymerization of 1,3-butadiyne (diacetylene) groups in noncrystalline phases such as gels, amorphous solids, and liquid crystals. It remains challenging to polymerize 1,3-butadiyne-containing alkylthiolate ligands within their self-assembled monolayers on gold nanoparticles (AuNPs), which enhances their stability and adds new optical and electronic properties. Especially smaller AuNPs of sizes below 5 nm in diameter have been reported to display sluggish photopolymerization and are susceptible to photodegradation under UV irradiation. To probe the effectiveness of the amide-directed photopolymerization of 1,3-butadiyne ligands, small AuNPs in the 2-4 nm range were synthesized that contain alkylthiolate ligands with and without amide and 1,3-butadiyne groups. Their photopolymerization and photostability were studied by transmission electron microscopy (TEM), UV-vis spectroscopy, and Raman spectroscopy. AuNP with amide-free 1,3-butadiyne ligands templated the polymerization of the 1,3-butadiyne ligands but fused to large and insoluble particles during the polymerization process. AuNPs with ligands containing both 1,3-butadiyne and amide groups polymerized significantly faster, which slowed down photodegradation. A UV irradiation (254 nm and 176 W/m2) for 5-10 min was found to be optimal for the AuNPs with directing amide groups studied here, although their average core sizes grew from 3.8 to 4.0 nm in diameter and about 20% of the attached 1,3-butadiyne ligands remained unreacted after 10 minutes of irradiation. About 75% of the attached 1,3-butadiyne ligands were already polymerized during the first 5 min of UV irradiation. This decrease in reactivity is reasoned with a fast polymerization of ligands attached to facet sites and slower polymerization rates for ligands attached to edge and corner sites. Unexpectedly, photopolymerization occurred only in the presence of solvent, whereas no polydiacetylene was generated when dry powders of any of the diacetylene-containing gold nanoparticles were irradiated.
Collapse
Affiliation(s)
- M Nazir Tahir
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| | - Sarah Salloum
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| | - Simon Rondeau-Gagné
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| | - S Holger Eichhorn
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| |
Collapse
|
2
|
Asadi-Aghbolaghi N, Pototschnig J, Jamshidi Z, Visscher L. Effects of ligands on (de-)enhancement of plasmonic excitations of silver, gold and bimetallic nanoclusters: TD-DFT+TB calculations. Phys Chem Chem Phys 2021; 23:17929-17938. [PMID: 34379064 DOI: 10.1039/d1cp03220h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal nanoclusters can be synthesized in various sizes and shapes and are typically protected with ligands to stabilize them. These ligands can also be used to tune the plasmonic properties of the clusters as the absorption spectrum of a protected cluster can be significantly altered compared to the bare cluster. In this paper, we computationally investigate the influence of thiolate ligands on the plasmonic intensity for silver, gold and alloy clusters. Using time-dependent density functional theory with tight-binding approximations, TD-DFT+TB, we show that this level of theory can reproduce the broad experimental spectra of Au144(SR)60 and Ag53Au91(SR)60 (R = CH3) compounds with satisfactory agreement. As TD-DFT+TB does not depend on atom-type parameters we were able to apply this approach on large ligand-protected clusters with various compositions. With these calculations we predict that the effect of ligands on the absorption can be a quenching as well as an enhancement. We furthermore show that it is possible to unambiguously identify the plasmonic peaks by the scaled Coulomb kernel technique and explain the influence of ligands on the intensity (de-)enhancement by analyzing the plasmonic excitations in terms of the dominant orbital contributions.
Collapse
Affiliation(s)
- Narges Asadi-Aghbolaghi
- Department of Physical Chemistry, Chemistry & Chemical Engineering Research Center of Iran, Tehran, Iran
| | | | | | | |
Collapse
|
3
|
Mostafavi SH, Mettry M, Gill AD, Easley CJ, Hooley RJ, Bardeen CJ. Heterogeneous kinetics of photoinduced cross-linking of silica nanoparticles with surface-tethered anthracenes. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.137059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
4
|
Fu X, Chen B, Li C, Li H, Liao ZM, Yu D, Zewail AH. Direct Visualization of Photomorphic Reaction Dynamics of Plasmonic Nanoparticles in Liquid by Four-Dimensional Electron Microscopy. J Phys Chem Lett 2018; 9:4045-4052. [PMID: 29976067 DOI: 10.1021/acs.jpclett.8b01360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Liquid-cell electron microscopy (LC-EM) provides a unique approach for in situ imaging of morphology changes of nanocrystals in liquids under electron beam irradiation. However, nanoscale real-time imaging of chemical and physical reaction processes in liquids under optical stimulus is still challenging. Here, we report direct observation of photomorphic reaction dynamics of gold nanoparticles (AuNPs) in water by liquid-cell four-dimensional electron microscopy (4D-EM) with high spatiotemporal resolution. The photoinduced agglomeration, coalescence, and fusion dynamics of AuNPs at different temperatures are studied. At low laser fluences, the AuNPs show a continuous aggregation in several seconds, and the aggregate size decreases with increasing fluence. At higher fluences close to the melting threshold of AuNPs, the aggregates further coalesced into nanoplates. While at fluences far above the melting threshold, the aggregates fully fuse into bigger NPs, which is completed within tens of nanoseconds. This liquid-cell 4D-EM would also permit study of other numerical physical and chemical reaction processes in their native environments.
Collapse
Affiliation(s)
- Xuewen Fu
- Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics , California Institute of Technology , Pasadena , California 91125 , United States
| | - Bin Chen
- Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics , California Institute of Technology , Pasadena , California 91125 , United States
| | - Caizhen Li
- State Key Laboratory for Mesoscopic Physics, School of Physics , Peking University , Beijing 100871 , China
| | - Heng Li
- Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics , California Institute of Technology , Pasadena , California 91125 , United States
| | - Zhi-Min Liao
- State Key Laboratory for Mesoscopic Physics, School of Physics , Peking University , Beijing 100871 , China
| | - Dapeng Yu
- Institute for Quantum Science and Technology and Department of Physics , South University of Science and Technology of China (SUSTech) , Shenzhen 518055 , China
| | - Ahmed H Zewail
- Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics , California Institute of Technology , Pasadena , California 91125 , United States
| |
Collapse
|
5
|
Cassano D, Pocoví-Martínez S, Voliani V. Ultrasmall-in-Nano Approach: Enabling the Translation of Metal Nanomaterials to Clinics. Bioconjug Chem 2017; 29:4-16. [PMID: 29186662 DOI: 10.1021/acs.bioconjchem.7b00664] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Currently, nanomaterials are of widespread use in daily commercial products. However, the most-promising and potentially impacting application is in the medical field. In particular, nanosized noble metals hold the promise of shifting the current medical paradigms for the detection and therapy of neoplasms thanks to the: (i) localized surface plasmon resonances (LSPRs), (ii) high electron density, and (iii) suitability for straightforward development of all-in-one nanoplatforms. Nonetheless, there is still no clinically approved noble metal nanomaterial for cancer therapy and diagnostics. The clinical translation of noble metal nanoparticles (NPs) is mainly prevented by the issue of persistence in organism after the medical action. Such persistence increases the likelihood of toxicity and the interference with common medical diagnoses. Size reduction to ultrasmall nanoparticles (USNPs) is a suitable approach to promoting metal excretion by the renal pathway. However, most of the functionalities of NPs are lost or severely altered in USNPs, jeopardizing clinical applications. A ground-breaking advance to jointly combine the appealing behaviors of NPs with metal excretion relies on the ultrasmall-in-nano approach for the design of all-in-one degradable nanoplatforms composed of USNPs. Such nanoarchitectures might lead to the delivery of a novel paradigm for nanotechnology, enabling the translation of noble metal nanomaterials to clinics to treat carcinomas in a less-invasive and more-efficient manner. This Review covers the recent progresses related to this exciting approach. The most-significant nanoarchitectures designed with the ultrasmall-in-nano approach are discussed, and perspectives on these nanoarchitectures are provided.
Collapse
Affiliation(s)
- Domenico Cassano
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia , Piazza San Silvestro 12-56126, Pisa, Italy.,NEST-Scuola Normale Superiore , Piazza San Silvestro 12-56126, Pisa, Italy
| | - Salvador Pocoví-Martínez
- National Research Council, Institute of Clinical Physiology , Via G. Moruzzi 1-56124, Pisa, Italy
| | - Valerio Voliani
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia , Piazza San Silvestro 12-56126, Pisa, Italy
| |
Collapse
|
6
|
Luo W, Gobbo P, McNitt CD, Sutton DA, Popik VV, Workentin MS. “Shine & Click” Photo-Induced Interfacial Unmasking of Strained Alkynes on Small Water-Soluble Gold Nanoparticles. Chemistry 2016; 23:1052-1059. [DOI: 10.1002/chem.201603398] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Wilson Luo
- Department of Chemistry and Centre for Materials and Biomaterials Research; Western University; 1151 Richmond St. London ON N6A 5B7 Canada
| | - Pierangelo Gobbo
- Department of Chemistry and Centre for Materials and Biomaterials Research; Western University; 1151 Richmond St. London ON N6A 5B7 Canada
| | | | - Dewey A. Sutton
- Department of Chemistry; University of Georgia; Athens GA 30602 United States
| | - Vladimir V. Popik
- Department of Chemistry; University of Georgia; Athens GA 30602 United States
| | - Mark S. Workentin
- Department of Chemistry and Centre for Materials and Biomaterials Research; Western University; 1151 Richmond St. London ON N6A 5B7 Canada
| |
Collapse
|
7
|
Stolzer L, Quick AS, Abt D, Welle A, Naumenko D, Lazzarino M, Wegener M, Barner-Kowollik C, Fruk L. Photo-induced surface encoding of gold nanoparticles. Chem Commun (Camb) 2015; 51:3363-6. [PMID: 25621835 DOI: 10.1039/c4cc08880h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoreactive gold nanoparticles (NP) can be encoded in a spatially resolved fashion using direct laser writing techniques into variable patterns. The surface of the gold nanoparticles is imparted with photoreactivity by tethering photo-caged dienes ('photoenols'), which are able to undergo a rapid Diels-Alder cycloaddition with surface anchored enes. Subsequent to surface encoding, the particles feature residual caged dienes, which can be reactivated for secondary surface encoding.
Collapse
Affiliation(s)
- Lukas Stolzer
- Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Str.1, 76131 Karlsruhe, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Efficient Photochemical Approaches for Spatially Resolved Surface Functionalization. Angew Chem Int Ed Engl 2015; 54:11388-403. [DOI: 10.1002/anie.201504920] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Indexed: 12/18/2022]
|
9
|
Delaittre G, Goldmann AS, Mueller JO, Barner-Kowollik C. Effiziente photochemische Verfahren für die räumlich aufgelöste Oberflächenfunktionalisierung. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504920] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Li YJ, Chiu WJ, Unnikrishnan B, Huang CC. Monitoring thrombin generation and screening anticoagulants through pulse laser-induced fragmentation of biofunctional nanogold on cellulose membranes. ACS APPLIED MATERIALS & INTERFACES 2014; 6:15253-15261. [PMID: 25141032 DOI: 10.1021/am503615c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Thrombin generation (TG) has an important part in the blood coagulation system, and monitoring TG is useful for diagnosing various health issues related to hypo-coagulability and hyper-coagulability. In this study, we constructed probes by using mixed cellulose ester membranes (MCEMs) modified with gold nanoparticles (Au NPs) for monitoring thrombin activity using laser desorption/ionization mass spectrometry (LDI-MS). The LDI process produced Au cationic clusters ([Au(n)](+); n = 1-3) that we detected through MS. When thrombin reacted with fibrinogen on the Au NPs-MCEMs, insoluble fibrin was formed, hindering the formation of Au cationic clusters and, thereby, decreasing the intensity of their signals in the mass spectrum. Accordingly, we incorporated fibrinogen onto the Au NPs-MCEMs to form Fib-Au NPs-MCEM probes to monitor TG with good selectivity (>1000-fold toward thrombin with respect to other proteins or enzymes) and sensitivity (limit of detection for thrombin of ca. 2.5 pM in human plasma samples). Our probe exhibited remarkable performance in monitoring the inhibition of thrombin activity by direct thrombin inhibitors. Analyses of real samples using our new membrane-based probe suggested that it will be highly useful in practical applications for the effective management of hemostatic complications.
Collapse
Affiliation(s)
- Yu-Jia Li
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University , Keelung 20224, Taiwan
| | | | | | | |
Collapse
|
11
|
Pérez-Prieto J. Symbiosis Between Photoactive Nanoparticles and their Organic Ligands. Photochem Photobiol 2013; 89:1291-8. [DOI: 10.1111/php.12109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/27/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Julia Pérez-Prieto
- Instituto de Ciencia Molecular (ICMol); Universidad de Valencia; Paterna Valencia Spain
| |
Collapse
|
12
|
Malyshev D, Boscá F, Crites COL, Hallett-Tapley GL, Netto-Ferreira JC, Alarcon EI, Scaiano JC. Size-controlled photochemical synthesis of niobium nanoparticles. Dalton Trans 2013; 42:14049-52. [DOI: 10.1039/c3dt51167g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Pocoví-Martínez S, Francés-Soriano L, Zaballos-García E, Scaiano JC, González-Béjar M, Pérez-Prieto J. CO2 switchable nanoparticles: reversible water/organic-phase exchange of gold nanoparticles by gas bubbling. RSC Adv 2013. [DOI: 10.1039/c3ra23212c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
14
|
Zou M, Du M, Zhu H, Xu C, Li N, Fu Y. Synthesis of silver nanoparticles in electrospun polyacrylonitrile nanofibers using tea polyphenols as the reductant. POLYM ENG SCI 2012. [DOI: 10.1002/pen.23358] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Bueno-Alejo CJ, D'Alfonso C, Pacioni NL, González-Béjar M, Grenier M, Lanzalunga O, Alarcon EI, Scaiano JC. Ultraclean derivatized monodisperse gold nanoparticles through laser drop ablation customization of polymorph gold nanostructures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:8183-9. [PMID: 22591001 DOI: 10.1021/la3010689] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We report a novel nanosecond laser ablation synthesis for spherical gold nanoparticles as small as 4 nm in only 5 s (532 nm, 0.66 J/cm(2)), where the desired protecting agent can be selected in a protocol that avoids repeated sample irradiation and undesired exposure of the capping agent during ablation. This method takes advantage of the recently developed synthesis of clean unprotected polymorph and polydisperse gold nanostructures using H(2)O(2) as a reducing agent. The laser drop technique provides a unique tool for delivering controlled laser doses to small drops that undergo assisted fall into a solution or suspension of the desired capping agent, yielding monodisperse custom-derivatized composite materials using a simple technique.
Collapse
Affiliation(s)
- Carlos J Bueno-Alejo
- Department of Chemistry and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Hashimoto S, Werner D, Uwada T. Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2012. [DOI: 10.1016/j.jphotochemrev.2012.01.001] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
17
|
Lu WE, Zheng ML, Chen WQ, Zhao ZS, Duan XM. Gold nanoparticles prepared by glycinate ionic liquid assisted multi-photon photoreduction. Phys Chem Chem Phys 2012; 14:11930-6. [DOI: 10.1039/c2cp41869j] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Zhu H, Du M, Zou M, Xu C, Li N, Fu Y. Facile and green synthesis of well-dispersed Au nanoparticles in PAN nanofibers by tea polyphenols. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm16569d] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Chakraborty S, Joshi P, Shanker V, Ansari ZA, Singh SP, Chakrabarti P. Contrasting effect of gold nanoparticles and nanorods with different surface modifications on the structure and activity of bovine serum albumin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:7722-7731. [PMID: 21591651 DOI: 10.1021/la200787t] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nanoparticles exposed to biofluids become coated with proteins, thus making protein-nanoparticle interactions of particular interest. The consequence on protein conformation and activity depends upon the extent of protein adsorption on the nanoparticle surface. We report the interaction of bovine serum albumin (BSA) with gold nanostructures, particularly gold nanoparticles (GNP) and gold nanorods (GNR). The difference in the geometry and surface properties of nanoparticles is manifested during complexation in terms of different binding modes, structural changes, thermodynamic parameters, and the activity of proteins. BSA is found to retain native-like structure and properties upon enthalpy-driven BSA-GNP complexation. On the contrary, the entropically favored BSA-GNR complexation leads to substantial loss in protein secondary and tertiary structures with the release of a large amount of bound water, as indicated by isothermal calorimetry (ITC), circular dichroism (CD), and Fourier transform infrared (FTIR) and fluorescence spectroscopies. The esterase activity assay demonstrated a greater loss in BSA activity after complexation with GNR, whereas the original activity is retained in the presence of GNP. The formation of large assemblies (aggregates) and reduced average lifetime, as evidenced from dynamic light scattering and fluorescence decay measurements, respectively, suggest that GNR induces protein unfolding at its surface. The effect of temperature on the CD spectra of BSA-GNP was found to be similar to that of pristine BSA, whereas BSA-GNR shows distortion in CD spectra at lower wavelengths, strengthening the perception of protein unfolding. High binding constant and entropy change for BSA-GNR complexation determined by ITC are consistent with large surfacial interaction that may lead to protein unfolding. The present work highlights the differential response of a protein depending on the nature of the nanostructure and its surface chemistry, which need to be modulated for controlling the biological responses of nanostructures for their potential biomedical applications.
Collapse
|