1
|
Xu H, Liang X, Lu S, Gao M, Wang S, Li Y. Self-Assembly of Palmitic Acid in the Presence of Choline Hydroxide. Molecules 2023; 28:7463. [PMID: 38005186 PMCID: PMC10673190 DOI: 10.3390/molecules28227463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
To disperse fatty acids in aqueous solution, choline, a quaternary ammonium ion, has been used recently. So far, only the self-assembly of myristic acid (MA) in the presence of choline hydroxide as a function of the molar ratio has been investigated, and, thus, the current understanding of these fatty acid systems is still limited. We investigated the self-assembly of palmitic acid (PA) in the presence of choline hydroxide (ChOH) as a function of the molar ratio (R) between ChOH and PA. The self-assemblies were characterized by phase contrast microscopy, cryo-TEM, small-angle X-ray scattering, and 2H NMR. The ionization state of PA was determined by pH, conductivity, and FT-IR measurements. With increase in R, various self-assembled structures, including vesicles, lamellar phase, rigid membranes (large sheets, tubules, cones, and polyhedrals), and micelles, form in the PA/ChOH system, different from those of the MA/ChOH system. The change in R induces pH variation and, consequently, a change in the PA ionization state, which, in turn, regulates the molecular interactions, including hydrogen bonding and electrostatic interaction, leading to various self-assemblies. Temperature is an important factor used to tune the self-assembly transitions. The fatty acid choline systems studied here potentially may be applicable in medicine, chemical engineering, and biotechnology.
Collapse
Affiliation(s)
- Huifang Xu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (X.L.); (S.L.); (S.W.); (Y.L.)
| | - Xin Liang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (X.L.); (S.L.); (S.W.); (Y.L.)
| | - Song Lu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (X.L.); (S.L.); (S.W.); (Y.L.)
| | - Meihua Gao
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Sijia Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (X.L.); (S.L.); (S.W.); (Y.L.)
| | - Yuanyuan Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (X.L.); (S.L.); (S.W.); (Y.L.)
| |
Collapse
|
2
|
Arellano H, Nardello-Rataj V, Szunerits S, Boukherroub R, Fameau AL. Saturated long chain fatty acids as possible natural alternative antibacterial agents: Opportunities and challenges. Adv Colloid Interface Sci 2023; 318:102952. [PMID: 37392663 DOI: 10.1016/j.cis.2023.102952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/03/2023]
Abstract
The spread of new strains of antibiotic-resistant pathogenic microorganisms has led to the urgent need to discover and develop new antimicrobial systems. The antibacterial effects of fatty acids have been well-known and recognized since the first experiments of Robert Koch in 1881, and they are now used in diverse fields. Fatty acids can prevent the growth and directly kill bacteria by insertion into their membrane. For that, a sufficient amount of fatty acid molecules has to be solubilized in water to transfer from the aqueous phase to the cell membrane. Due to conflicting results in the literature and lack of standardization methods, it is very difficult to draw clear conclusions on the antibacterial effect of fatty acids. Most of the current studies link fatty acids' effectiveness against bacteria to their chemical structure, notably the alkyl chain length and the presence of double bonds in their chain. Furthermore, the solubility of fatty acids and their critical aggregation concentration is not only related to their structure, but also influenced by medium conditions (pH, temperature, ionic strength, etc.). There is a possibility that the antibacterial activity of saturated long chain fatty acids (LCFA) may be underestimated due to the lack of water solubility and the use of unsuitable methods to assess their antibacterial activity. Thus, enhancing the solubility of these long chain saturated fatty acids is the main goal before examining their antibacterial properties. To increase their water solubility and thereby improve their antibacterial efficacy, novel alternatives may be considered, including the use of organic positively charged counter-ions instead of the conventional sodium and potassium soaps, the formation of catanionic systems, the mixture with co-surfactants, and solubilization in emulsion systems. This review summarizes the latest findings on fatty acids as antibacterial agents, with a focus on long chain saturated fatty acids. Additionally, it highlights the different ways to improve their water solubility, which may be a crucial factor in increasing their antibacterial efficacy. We finish with a discussion on the challenges, strategies and opportunities for the formulation of LCFAs as antibacterial agents.
Collapse
Affiliation(s)
- Helena Arellano
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Véronique Nardello-Rataj
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Anne-Laure Fameau
- Univ. Lille, CNRS, INRAe, Centrale Lille, UMET, F-59000, Lille, France.
| |
Collapse
|
3
|
Lipase-catalyzed synthesis of antibacterial and antioxidative erythorbyl ricinoleate with high emulsifying activity. Food Chem 2023; 404:134697. [DOI: 10.1016/j.foodchem.2022.134697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
|
4
|
Du H, Wang X. Lamellar crystalline networks in the gel-like phase of potassium stearate-stearic acid-water. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Martin N, Douliez J. Fatty Acid Vesicles and Coacervates as Model Prebiotic Protocells. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202100024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Nicolas Martin
- Univ. Bordeaux CNRS Centre de Recherche Paul Pascal UMR 5031 115 Avenue du Dr. Albert Schweitzer 33600 Pessac France
| | - Jean‐Paul Douliez
- Univ. Bordeaux INRAE Biologie du Fruit et Pathologie UMR 1332 71 Avenue Edouard Bourlaux 33140 Villenave d'Ornon France
| |
Collapse
|
6
|
Khanal S, Brea RJ, Burkart MD, Devaraj NK. Chemoenzymatic Generation of Phospholipid Membranes Mediated by Type I Fatty Acid Synthase. J Am Chem Soc 2021; 143:8533-8537. [PMID: 33978402 DOI: 10.1021/jacs.1c02121] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The de novo formation of lipid membranes from minimal reactive precursors is a major goal in synthetic cell research. In nature, the synthesis of membrane phospholipids is orchestrated by numerous enzymes, including fatty acid synthases and membrane-bound acyltransferases. However, these enzymatic pathways are difficult to fully reproduce in vitro. As such, the reconstitution of phospholipid membrane synthesis from simple metabolic building blocks remains a challenge. Here, we describe a chemoenzymatic strategy for lipid membrane generation that utilizes a soluble bacterial fatty acid synthase (cgFAS I) to synthesize palmitoyl-CoA in situ from acetyl-CoA and malonyl-CoA. The fatty acid derivative spontaneously reacts with a cysteine-modified lysophospholipid by native chemical ligation (NCL), affording a noncanonical amidophospholipid that self-assembles into micron-sized membrane-bound vesicles. To our knowledge, this is the first example of reconstituting phospholipid membrane formation directly from acetyl-CoA and malonyl-CoA precursors. Our results demonstrate that combining the specificity and efficiency of a type I fatty acid synthase with a highly selective bioconjugation reaction provides a biomimetic route for the de novo formation of membrane-bound vesicles.
Collapse
Affiliation(s)
- Satyam Khanal
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Roberto J Brea
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
7
|
Gao M, Du N, Yao Z, Li Y, Chen N, Hou W. Spontaneous vesicle formation and vesicle-to-α-gel transition in aqueous mixtures of sodium monododecylphosphate and guanidinium salts. SOFT MATTER 2021; 17:4604-4614. [PMID: 33949616 DOI: 10.1039/d1sm00303h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Monoalkyl phosphates (MAPs) are one kind of important single-chain weak acid/salt type surfactants, but the understanding of their aggregation behavior in water is very limited due to their insolubility at room temperature. In the current work, the effect of guanidinium salts (GuSalts) on the solubility of sodium monododecylphosphate (SDP), a typical MAP, in water was determined at 25.0 °C, and the aggregation behavior of SDP in the GuSalt/water mixtures was investigated. The solubility of SDP is significantly improved by GuSalts including GuCl, GuSO4, GuSO3, GuPO4, and GuCO3 at 25.0 °C, resulting in an isotropic phase. SDP vesicles are spontaneously formed in the isotropic phase, with a critical vesicle concentration of ∼1.0 mM independent of the type of GuSalts. A "bridging dimer" mechanism is proposed to explain the formation of SDP vesicles. The SDP vesicles have a unilamellar structure with a size of ∼80 nm and an alkyl interdigitated degree of ∼25%, and exhibit size-selective permeability. Interestingly, a temperature-induced reversible transition between vesicles and α-gels was observed for the SDP/GuSalt/H2O systems when the SDP content is higher than 20 mM. The α-gels obtained are composed of vesicles and bilayer sheets, showing similar viscoelasticity to conventional gels, although their water content is as high as ∼98 wt%. The microviscosity of SDP vesicle membranes (ca. 35.79-49.34 mPa s at 25.0 °C) and the transition temperature between vesicles and α-gels (ca. 21.0-22.8 °C) are all dependent of the type of GuSalts. This work deepens the understanding of the aggregation behavior of MAPs and also provides valuable information for their practical applications.
Collapse
Affiliation(s)
- Meihua Gao
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan, 250100, P. R. China.
| | - Na Du
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan, 250100, P. R. China.
| | - Zhiyin Yao
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan, 250100, P. R. China.
| | - Ying Li
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan, 250100, P. R. China.
| | - Nan Chen
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan, 250100, P. R. China.
| | - Wanguo Hou
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan, 250100, P. R. China. and National Engineering Technology Research Center of Colloidal Materials, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
8
|
Crivello C, Lazzara G, Chiappisi L. On the effect of the nature of counterions on the self-assembly of polyoxyethylene alkyl ether carboxylic acids. SOFT MATTER 2020; 16:7137-7143. [PMID: 32662480 DOI: 10.1039/d0sm00986e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this contribution, we investigate the effect of the type of counterion on the properties of dilute solutions of polyoxyethylene alkyl ether carboxylic acids. Two different surfactants, presenting an oleic acid alkyl chain and on-average five and nine ethylene oxide units, and terminated by a weakly anionic carboxymethyl group were studied. The surfactants were gradually ionized with sodium hydroxide, arginine, and choline hydroxide. The solutions properties were probed by light scattering, electrophoretic mobility, density and sound velocity measurements, as well as by small-angle neutron scattering. To our initial surprise, no specific effect arising from the nature of the counterion could be determined. We ascribe this phenomenon to the fact that the presence of the ethylene oxide units markedly dilutes the surfactant head group charge density, reducing counterion condensation and subsequent counterion specific effects.
Collapse
Affiliation(s)
- Chiara Crivello
- Institut Max von Laue - Paul Langevin, 71 avenue des Martyrs, 38042 Grenoble, France. and Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze pad 17, 90128 Palermo, Italy
| | - Giuseppe Lazzara
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze pad 17, 90128 Palermo, Italy
| | - Leonardo Chiappisi
- Institut Max von Laue - Paul Langevin, 71 avenue des Martyrs, 38042 Grenoble, France.
| |
Collapse
|
9
|
Chen S, Leung FKC, Stuart MCA, Wang C, Feringa BL. Dynamic Assemblies of Molecular Motor Amphiphiles Control Macroscopic Foam Properties. J Am Chem Soc 2020; 142:10163-10172. [PMID: 32379449 PMCID: PMC7273467 DOI: 10.1021/jacs.0c03153] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Indexed: 11/30/2022]
Abstract
Stimuli-responsive supramolecular assemblies controlling macroscopic transformations with high structural fluidity, i.e., foam properties, have attractive prospects for applications in soft materials ranging from biomedical systems to industrial processes, e.g., textile coloring. However, identifying the key processes for the amplification of molecular motion to a macroscopic level response is of fundamental importance for exerting the full potential of macroscopic structural transformations by external stimuli. Herein, we demonstrate the control of dynamic supramolecular assemblies in aqueous media and as a consequence their macroscopic foam properties, e.g., foamability and foam stability, by large geometrical transformations of dual light/heat stimuli-responsive molecular motor amphiphiles. Detailed insight into the reversible photoisomerization and thermal helix inversion at the molecular level, supramolecular assembly transformations at the microscopic level, and the stimuli-responsive foam properties at the macroscopic level, as determined by UV-vis absorption and NMR spectroscopies, electron microscopy, and foamability and in situ surface tension measurements, is presented. By selective use of external stimuli, e.g., light or heat, multiple states and properties of macroscopic foams can be controlled with very dilute aqueous solutions of the motor amphiphiles (0.2 weight%), demonstrating the potential of multiple stimuli-responsive supramolecular systems based on an identical molecular amphiphile and providing opportunities for future soft materials.
Collapse
Affiliation(s)
- Shaoyu Chen
- Center
for System Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
- Key
Laboratory of Eco-Textile, Ministry of Education, College of Textiles
Science and Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People’s
Republic of China
| | - Franco King-Chi Leung
- Center
for System Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Marc C. A. Stuart
- Center
for System Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Chaoxia Wang
- Key
Laboratory of Eco-Textile, Ministry of Education, College of Textiles
Science and Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People’s
Republic of China
| | - Ben L. Feringa
- Center
for System Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| |
Collapse
|
10
|
Ma Y, Wu Y, Lee JG, He L, Rother G, Fameau AL, Shelton WA, Bharti B. Adsorption of Fatty Acid Molecules on Amine-Functionalized Silica Nanoparticles: Surface Organization and Foam Stability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3703-3712. [PMID: 32202121 PMCID: PMC7311077 DOI: 10.1021/acs.langmuir.0c00156] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/20/2020] [Indexed: 05/25/2023]
Abstract
The crucial roles of the ionization state and counterion presence on the phase behavior of fatty acid in aqueous solutions are well-established. However, the effects of counterions on the adsorption and morphological state of fatty acid on nanoparticle surfaces are largely unknown. This knowledge gap exists due to the high complexity of the interactions between nanoparticles, counterions, and fatty acid molecules in aqueous solution. In this study, we use adsorption isotherms, small angle neutron scattering, and all-atom molecular dynamic simulations to investigate the effect of addition of ethanolamine as a counterion on the adsorption and self-assembly of decanoic acid onto aminopropyl-modified silica nanoparticles. We show that the morphology of the fatty acid assemblies on silica nanoparticles changes from discrete surface patches to a continuous bilayer by increasing concentration of the counterion. This morphological behavior of fatty acid on the oppositely charged nanoparticle surface alters the interfacial activity of the fatty acid-nanoparticle complex and thus governs the stability of the foam formed by the mixture. Our study provides new insights into the structure-property relationship of fatty acid-nanoparticle complexes and outlines a framework to program the stability of foams formed by mixtures of nanoparticles and amphiphiles.
Collapse
Affiliation(s)
- Yingzhen Ma
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Yao Wu
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Jin Gyun Lee
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Lilin He
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Gernot Rother
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Anne-Laure Fameau
- National
Institute of French Agriculture Research, Nantes 44300, France
| | - William A. Shelton
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
- Center
for Computation and Technology, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Bhuvnesh Bharti
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|
11
|
The curious case of 12-hydroxystearic acid — the Dr. Jekyll & Mr. Hyde of molecular gelators. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2019.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Arnould A, Cousin F, Salonen A, Saint-Jalmes A, Perez A, Fameau AL. Controlling Foam Stability with the Ratio of Myristic Acid to Choline Hydroxide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11076-11085. [PMID: 30149714 DOI: 10.1021/acs.langmuir.8b02261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The interfacial and foam properties of a model system based on the mixture between myristic acid and choline hydroxide have been investigated as a function of the molar ratio ( R) between these two components and temperature. The aim of this study was to obtain insight on the links between the self-assemblies in bulk and in the foam liquid channels, the surfactant packing at the interface, and the resulting foam properties and stability. A multiscale approach was used combining small angle neutron scattering, specular neutron reflectivity, surface tension measurements, and photography. We highlighted three regimes of foam stability in this system by modifying R: high foam stability for R < 1, intermediate at R ∼ 1, and low for R > 1. The different regimes come from the pH variations in bulk linked to R. The pH plays a crucial role at the molecular scale by setting the ionization state of the myristic acid molecules adsorbed at the gas-liquid interface, which in turn controls both the properties of the monolayer and the stability of the films separating the bubbles. The main requirement to obtain stable foams is to set the pH close to the p Ka in order to have a mixture of protonated and ionized molecules giving rise to intermolecular hydrogen bonds. As a result, a dense monolayer is formed at the interface with a low surface tension. R also modifies the structure of self-assembly in bulk and therefore within the foam, but such a morphological change has only a minor effect on the foam stability. This study confirms that foam stability in surfactant systems having a carboxylic acid as polar headgroup is mainly linked to the ionization state of the molecules at the interface.
Collapse
Affiliation(s)
- Audrey Arnould
- Biopolymères Interactions Assemblages INRA , la Géraudière , 44316 Nantes , France
| | - Fabrice Cousin
- Laboratoire Léon-Brillouin , CEA Saclay , 91191 Gif-sur-Yvette CEDEX, France
| | - Anniina Salonen
- Laboratoire de Physique des Solides, UMR 8502, Université of Paris Sud, 91405 Orsay , France
| | - Arnaud Saint-Jalmes
- Institut de Physique de Rennes, UMR CNRS 6251-Université Rennes 1, Rennes 35042 , France
| | - Adrian Perez
- Grupo de Biocoloides, Instituto de Tecnología de Alimentos , Universidad Nacional del Litoral , 1 de Mayo 3250 , Santa Fe 3000 , Argentina
| | - Anne-Laure Fameau
- Biopolymères Interactions Assemblages INRA , la Géraudière , 44316 Nantes , France
| |
Collapse
|
13
|
Arnould A, Cousin F, Chabas L, Fameau AL. Impact of the molar ratio and the nature of the counter-ion on the self-assembly of myristic acid. J Colloid Interface Sci 2018; 510:133-141. [DOI: 10.1016/j.jcis.2017.09.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 12/01/2022]
|
14
|
Fayolle D, Altamura E, D'Onofrio A, Madanamothoo W, Fenet B, Mavelli F, Buchet R, Stano P, Fiore M, Strazewski P. Crude phosphorylation mixtures containing racemic lipid amphiphiles self-assemble to give stable primitive compartments. Sci Rep 2017; 7:18106. [PMID: 29273739 PMCID: PMC5741756 DOI: 10.1038/s41598-017-18053-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/29/2017] [Indexed: 01/13/2023] Open
Abstract
It is an open question how the chemical structure of prebiotic vesicle-forming amphiphiles complexified to produce robust primitive compartments that could safely host foreign molecules. Previous work suggests that comparingly labile vesicles composed of plausibly prebiotic fatty acids were eventually chemically transformed with glycerol and a suitable phosphate source into phospholipids that would form robust vesicles. Here we show that phosphatidic acid (PA) and phosphatidylethanolamine (PE) lipids can be obtained from racemic dioleoyl glycerol under plausibly prebiotic phosphorylation conditions. Upon in situ hydration of the crude phosphorylation mixtures only those that contained rac-DOPA (not rac-DOPE) generated stable giant vesicles that were capable of encapsulating water-soluble probes, as evidenced by confocal microscopy and flow cytometry. Chemical reaction side-products (identified by IR and MS and quantified by 1H NMR) acted as co-surfactants and facilitated vesicle formation. To mimic the compositional variation of such primitive lipid mixtures, self-assembly of a combinatorial set of the above amphiphiles was tested, revealing that too high dioleoyl glycerol contents inhibited vesicle formation. We conclude that a decisive driving force for the gradual transition from unstable fatty acid vesicles to robust diacylglyceryl phosphate vesicles was to avoid the accumulation of unphosphorylated diacylglycerols in primitive vesicle membranes.
Collapse
Affiliation(s)
- Dimitri Fayolle
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université de Lyon, Claude Bernard Lyon 1, 43 bvd du 11 Novembre 1918, F-69622, Villeurbanne Cedex, France
| | - Emiliano Altamura
- Department of Chemistry, University of Bari, Via E. Orabona 4, I-70125, Bari, Italy
| | - Alice D'Onofrio
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université de Lyon, Claude Bernard Lyon 1, 43 bvd du 11 Novembre 1918, F-69622, Villeurbanne Cedex, France
| | - Warren Madanamothoo
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université de Lyon, Claude Bernard Lyon 1, 43 bvd du 11 Novembre 1918, F-69622, Villeurbanne Cedex, France
| | - Bernard Fenet
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université de Lyon, Claude Bernard Lyon 1, 43 bvd du 11 Novembre 1918, F-69622, Villeurbanne Cedex, France
| | - Fabio Mavelli
- Department of Chemistry, University of Bari, Via E. Orabona 4, I-70125, Bari, Italy
| | - René Buchet
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université de Lyon, Claude Bernard Lyon 1, 43 bvd du 11 Novembre 1918, F-69622, Villeurbanne Cedex, France
| | - Pasquale Stano
- Biological and Environmental Science and Technology Department, University of Salento, Ecotekne, I-73100, Lecce, Italy.
| | - Michele Fiore
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université de Lyon, Claude Bernard Lyon 1, 43 bvd du 11 Novembre 1918, F-69622, Villeurbanne Cedex, France.
| | - Peter Strazewski
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université de Lyon, Claude Bernard Lyon 1, 43 bvd du 11 Novembre 1918, F-69622, Villeurbanne Cedex, France.
| |
Collapse
|
15
|
Hong Y, Xu W, Hu Y, Li G, Chen M, Hao J, Dong S. Multi-responsive emulsion of stearic acid soap aqueous solution. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.03.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Wang Y, Jiang L, Wei C, Zhang H. Phase behaviors and self-assembled properties of ion-pairing amphiphile molecules formed by medium-chain fatty acids andl-arginine triggered by external conditions. NEW J CHEM 2017. [DOI: 10.1039/c7nj03299d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The responsive self-assembled structures of ion-pairing amphiphile molecules will provide good insights into various fields.
Collapse
Affiliation(s)
- Yuxian Wang
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Ling Jiang
- College of Food Science and Light Industry
- Nanjing Tech University
- Nanjing 211816
- China
| | - Ce Wei
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Hongman Zhang
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| |
Collapse
|
17
|
Wolfrum S, Marcus J, Touraud D, Kunz W. A renaissance of soaps? - How to make clear and stable solutions at neutral pH and room temperature. Adv Colloid Interface Sci 2016; 236:28-42. [PMID: 27476328 DOI: 10.1016/j.cis.2016.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/14/2016] [Accepted: 07/14/2016] [Indexed: 01/06/2023]
Abstract
Soaps are the oldest and perhaps most natural surfactants. However, they lost much of their importance since "technical surfactants", usually based on sulfates or sulfonates, have been developed over the last fifty years. Indeed, soaps are pH- and salt-sensitive and they are irritant, especially to the eyes. In food emulsions, although authorized, they have a bad taste, and long-chain saturated soaps have a high Krafft temperature. We believe that most or perhaps all of these problems can be solved with modern formulation approaches. We start this paper with a short overview of our present knowledge of soaps and soap formulations. Then we focus on the problem of the lacking soap solubility at neutral pH values. For example, it is well known that with the food emulsifier sodium oleate (NaOl), clear and stable aqueous solutions can only be obtained at pH values higher than 10. A decrease in the pH value leads to turbid and unstable solutions. This effect is not compatible with the formulation of aqueous stable and drinkable formulations with neutral or even acidic pH values. However, the pH value/phase behavior of aqueous soap solutions can be altered by the addition of other surfactants. Such a surfactant can be Rebaudioside A (RebA), a steviol glycoside from the plant Stevia rebaudiana which is used as a natural food sweetener. In a recent paper, we showed the influence of RebA on the apKa value of sodium oleate in a beverage microemulsion and on its clearing temperature. In the present paper, we report on the effect of the edible bio-surfactant RebA, on the macroscopic and microscopic phase behavior of simple aqueous sodium oleate solutions at varying pH values. The macroscopic phase behavior is investigated by visual observation and turbidity measurements. The microscopic phase behavior is analyzed by acid-base titration curves, phase-contrast and electron microscopy. It turned out that even at neutral pH, aqueous NaOl/RebA solutions can be completely clear and stable for more than 50days at room temperature. This is for the first time that a long chain soap could be really solubilized in water at neutral pH at room temperature. At last, these findings were applied to prepare stable, highly translucent and drinkable aqueous solutions of omega-3-fatty acids at a pH value of 7.5.
Collapse
|
18
|
Garenne D, Beven L, Navailles L, Nallet F, Dufourc EJ, Douliez JP. Sequestration of Proteins by Fatty Acid Coacervates for Their Encapsulation within Vesicles. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201607117] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David Garenne
- UMR 1332; biologie et pathologie du fruit, INRA; centre de Bordeaux 33883 Villenave O'Ornon France
| | - Laure Beven
- UMR 1332; biologie et pathologie du fruit, INRA; centre de Bordeaux 33883 Villenave O'Ornon France
| | - Laurence Navailles
- Université de Bordeaux; Centre de Recherche Paul-Pascal, CNRS; av. A. Schweitzer 33600 Pessac France
| | - Frédéric Nallet
- Université de Bordeaux; Centre de Recherche Paul-Pascal, CNRS; av. A. Schweitzer 33600 Pessac France
| | - Erick J. Dufourc
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS; université de Bordeaux; Institut polytechnique Bordeaux; 33600 Pessac France
| | - Jean-Paul Douliez
- UMR 1332; biologie et pathologie du fruit, INRA; centre de Bordeaux 33883 Villenave O'Ornon France
| |
Collapse
|
19
|
Garenne D, Beven L, Navailles L, Nallet F, Dufourc EJ, Douliez JP. Sequestration of Proteins by Fatty Acid Coacervates for Their Encapsulation within Vesicles. Angew Chem Int Ed Engl 2016; 55:13475-13479. [PMID: 27659782 DOI: 10.1002/anie.201607117] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Indexed: 11/11/2022]
Abstract
Encapsulating biological materials in lipid vesicles is of interest for mimicking cells; however, except in some particular cases, such processes do not occur spontaneously. Herein, we developed a simple and robust method for encapsulating proteins in fatty acid vesicles in high yields. Fatty acid based, membrane-free coacervates spontaneously sequester proteins and can reversibly form membranous vesicles upon varying the pH value, the precrowding feature in coacervates allowing for protein encapsulation within vesicles. We then produced enzyme-enriched vesicles and show that enzymatic reactions can occur in these micrometric capsules. This work could be of interest in the field of synthetic biology for building microreactors.
Collapse
Affiliation(s)
- David Garenne
- UMR 1332, biologie et pathologie du fruit, INRA, centre de Bordeaux, 33883, Villenave O'Ornon, France
| | - Laure Beven
- UMR 1332, biologie et pathologie du fruit, INRA, centre de Bordeaux, 33883, Villenave O'Ornon, France
| | - Laurence Navailles
- Université de Bordeaux, Centre de Recherche Paul-Pascal, CNRS, av. A. Schweitzer, 33600, Pessac, France
| | - Frédéric Nallet
- Université de Bordeaux, Centre de Recherche Paul-Pascal, CNRS, av. A. Schweitzer, 33600, Pessac, France
| | - Erick J Dufourc
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, université de Bordeaux, Institut polytechnique Bordeaux, 33600, Pessac, France
| | - Jean-Paul Douliez
- UMR 1332, biologie et pathologie du fruit, INRA, centre de Bordeaux, 33883, Villenave O'Ornon, France.
| |
Collapse
|
20
|
Clouding in fatty acid dispersions for charge-dependent dye extraction. J Colloid Interface Sci 2016; 468:95-102. [DOI: 10.1016/j.jcis.2016.01.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 11/18/2022]
|
21
|
Douliez JP, Houssou BH, Fameau AL, Navailles L, Nallet F, Grélard A, Dufourc EJ, Gaillard C. Self-Assembly of Bilayer Vesicles Made of Saturated Long Chain Fatty Acids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:401-410. [PMID: 26700689 DOI: 10.1021/acs.langmuir.5b03627] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Saturated long chain fatty acids (sLCFA, e.g., C14:0, C16:0, and C18:0) are potentially the greenest and cheapest surfactants naturally available. However, because aqueous sodium soaps of sLCFA are known to crystallize, the self-assembly of stable bilayer vesicles has not been reported yet. Here, by using such soaps in combination with guanidine hydrochloride (GuHCl), which has been shown recently to prevent crystallization, we were capable of producing stable bilayer vesicles made of sLCFA. The phase diagrams were established for a variety of systems showing that vesicles can form in a broad range of composition and pH. Both solid state NMR and small-angle neutron scattering allowed demonstrating that in such vesicles sLCFA are arranged in a bilayer structure which exhibits similar dynamic and structural properties as those of phospholipid membranes. We expect these vesicles to be of interest as model systems of protocells and minimal cells but also for various applications since fatty acids are potentially substitutes to phospholipids, synthetic surfactants, and polymers.
Collapse
Affiliation(s)
- Jean-Paul Douliez
- UMR 1332, biologie et pathologie du fruit, INRA , centre de Bordeaux, 33883 Villenave d'Ornon, France
| | | | - A-Laure Fameau
- UR 1268 Biopolymères Interactions et Assemblages, INRA , rue de la Géraudière, 44316 Nantes, France
| | | | | | | | | | - Cédric Gaillard
- UR 1268 Biopolymères Interactions et Assemblages, INRA , rue de la Géraudière, 44316 Nantes, France
| |
Collapse
|
22
|
Li G, Yang Q, Song A, Hao J. Self-assembled structural transition from vesicle phase to sponge phase and emulsifying properties in mixtures of arginine and fatty acids. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.09.071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Forth J, French DJ, Gromov AV, King S, Titmuss S, Lord KM, Ridout MJ, Wilde PJ, Clegg PS. Temperature- and pH-Dependent Shattering: Insoluble Fatty Ammonium Phosphate Films at Water-Oil Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:9312-9324. [PMID: 26263177 DOI: 10.1021/acs.langmuir.5b01981] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We study the films formed by tetradecylamine (TDA) at the water-dodecane interface in the presence of hydrogen phosphate ions. Using Fourier transform infrared spectroscopy (FTIR), interfacial shear rheology, confocal fluorescence microscopy, cryo-scanning electron microscopy (cryo-SEM), and small-angle neutron scattering (SANS), we find that between pH 5 and 8 tetradecylammonium cations bind to hydrogen phosphate anions to form needle-shaped crystallites of tetradecylammonium hydrogen phosphate (TAHP). These crystallites self-assemble into films with a range of morphologies; below pH 7, they form brittle, continuous sheets, and at pH 8, they form lace-like networks that deform plastically under shear. They are also temperature-responsive: when the system is heated, the film thins and its rheological moduli drop. We find that the temperature response is caused by dissolution of the film in to the bulk fluid phases. Finally, we show that these films can be used to stabilize temperature-responsive water-in-oil emulsions with potential applications in controlled release of active molecules.
Collapse
Affiliation(s)
- Joe Forth
- School of Physics and Astronomy, University of Edinburgh , Edinburgh EH9 3FD, U.K
| | - David J French
- School of Physics and Astronomy, University of Edinburgh , Edinburgh EH9 3FD, U.K
| | - Andrei V Gromov
- EaStChem, School of Chemistry, University of Edinburgh , Edinburgh EH9 3FJ, U.K
| | - Stephen King
- STFC ISIS Facility, Rutherford Appleton Laboratory , Harwell Oxford Campus, Didcot OX11 0QX, U.K
| | - Simon Titmuss
- School of Physics and Astronomy, University of Edinburgh , Edinburgh EH9 3FD, U.K
| | - Kathryn M Lord
- School of Biological Sciences, University of Edinburgh , Edinburgh EH9 3BF, U.K
| | - Mike J Ridout
- Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, U.K
| | - Pete J Wilde
- Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, U.K
| | - Paul S Clegg
- School of Physics and Astronomy, University of Edinburgh , Edinburgh EH9 3FD, U.K
| |
Collapse
|
24
|
Xu W, Zhang H, Zhong Y, Jiang L, Xu M, Zhu X, Hao J. Bilayers at High pH in the Fatty Acid Soap Systems and the Applications for the Formation of Foams and Emulsions. J Phys Chem B 2015; 119:10760-7. [PMID: 26237503 DOI: 10.1021/acs.jpcb.5b04553] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In our previous work, we reported bilayers at high pH in the stearic acid/CsOH/H2O system, which was against the traditional viewpoint that fatty acid (FA) bilayers must be formed at the pKa of the fatty acid. Herein, the microstructures at high pH of several fatty acid soap systems were investigated systematically. We found that palmitic acid/KOH/H2O, palmitic acid/CsOH/H2O, stearic acid/KOH/H2O, and stearic acid/CsOH/H2O systems can form bilayers at high pH. The bilayer structure was demonstrated by cryogenic transmission electron microscopy (cryo-TEM) and deuterium nuclear magnetic resonance ((2)H NMR), and molecular dynamics simulation was used to confirm the formation of bilayers. The influence of fatty acids with different chain lengths (n = 10, 12, 14, 16, and 18) and different counterions including Li(+), Na(+), K(+), Cs(+), (CH3)4N(+), (C2H5)4N(+), (C3H7)4N(+), and (C4H9)4N(+) on the formation of bilayers was discussed. The stability of foam and emulsification properties were compared between bilayers and micelles, drawing the conclusion that bilayer structures possess a much stronger ability to foam and stronger emulsification properties than micelles do.
Collapse
|
25
|
Xu W, Gu H, Zhu X, Zhong Y, Jiang L, Xu M, Song A, Hao J. CO2-Controllable Foaming and Emulsification Properties of the Stearic Acid Soap Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:5758-5766. [PMID: 25961406 DOI: 10.1021/acs.langmuir.5b01295] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Fatty acids, as a typical example of stearic acid, are a kind of cheap surfactant and have important applications. The challenging problem of industrial applications is their solubility. Herein, three organic amines-ethanolamine (EA), diethanolamine (DEA), and triethanolamine (TEA)-were used as counterions to increase the solubility of stearic acid, and the phase behaviors were investigated systematically. The phase diagrams were delineated at 25 and 50 °C, respectively. The phase-transition temperature was measured by differential scanning calorimetry (DSC) measurements, and the microstructures were vesicles and planar sheets observed by cryogenic transmission electron microscopy (cryo-TEM) observations. The apparent viscosity of the samples was determined by rheological characterizations. The values, rcmc, for the three systems were less than 30 mN·m(-1). Typical samples of bilayers used as foaming agents and emulsifiers were investigated for the foaming and emulsification assays. CO2 was introduced to change the solubility of stearic acid, inducing the transition of their surface activity and further achieving the goal of defoaming and demulsification.
Collapse
|
26
|
Douliez JP, Zhendre V, Grélard A, Dufourc EJ. Aminosilane/oleic acid vesicles as model membranes of protocells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:14717-14724. [PMID: 25420203 DOI: 10.1021/la503908z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Oleic acid vesicles represent good models of membrane protocells that could have existed in prebiotic times. Here, we report the formation, growth polymorphism, and dynamics of oleic acid spherical vesicles (1-10 μm), stable elongated vesicles (>50 μm length; 1-3 μm diameter), and chains of vesicles (pearl necklaces, >50 μm length; 1-3 μm diameter) in the presence of aminopropyl triethoxysilane and guanidine hydrochloride. These vesicles exhibit a remarkable behavior with temperature: spherical vesicles only are observed when keeping the sample at 4 °C for 2 h, and self-aggregated spherical vesicles occur upon freezing/unfreezing (-20/20 °C) samples. Rather homogeneous elongated vesicles are reformed upon heating samples at 80 °C. The phenomenon is reversible through cycles of freezing/heating or cooling/heating of the same sample. Deuterium NMR evidences a chain packing rigidity similar to that of phospholipid bilayers in cellular biomembranes. We expect these bilayered vesicles to be surrounded by a layer of aminosilane oligomers, offering a variant model for membrane protocells.
Collapse
Affiliation(s)
- Jean-Paul Douliez
- UMR 1332, biologie et pathologie du fruit, INRA, centre de Bordeaux, 33883 Villenave d'Ornon, France
| | | | | | | |
Collapse
|
27
|
Fameau AL, Carl A, Saint-Jalmes A, von Klitzing R. Responsive Aqueous Foams. Chemphyschem 2014; 16:66-75. [DOI: 10.1002/cphc.201402580] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Indexed: 12/30/2022]
|
28
|
Fameau AL, Arnould A, Saint-Jalmes A. Responsive self-assemblies based on fatty acids. Curr Opin Colloid Interface Sci 2014. [DOI: 10.1016/j.cocis.2014.08.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Schelero N, Miller R, von Klitzing R. Effect of oppositely charged hydrophobic additives (alkanoates) on the stability of C14TAB foam films. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2014.03.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Synthesis and preliminary investigations into novel 1,2,3-triazole-derived androgen receptor antagonists inspired by bicalutamide. Bioorg Med Chem Lett 2014; 24:4948-53. [PMID: 25301770 DOI: 10.1016/j.bmcl.2014.09.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 12/20/2022]
Abstract
A versatile and high yielding synthesis of novel androgen receptor (AR) antagonists is presented. Using this methodology, six 1,4-substituted-1,2,3-triazole derived bicalutamide mimics were synthesised in five steps and in isolated overall yields from 41% to 85%. Evaluation of these compounds for their anti-proliferative properties against androgen dependent (LNCaP) and independent (PC-3) cells showed promising IC50 values of 34-45 μM and 29-151 μM, respectively. The data suggest that the latter compounds may be an excellent starting point for the development of prostate cancer therapeutics for both androgen dependent and independent forms of this disease. Docking of these compounds (each enantiomer) in silico into the T877A mutated androgen receptor, as possessed by LNCaP cells, was also undertaken.
Collapse
|
31
|
Fameau AL, Zemb T. Self-assembly of fatty acids in the presence of amines and cationic components. Adv Colloid Interface Sci 2014; 207:43-64. [PMID: 24345730 DOI: 10.1016/j.cis.2013.11.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/18/2013] [Accepted: 11/21/2013] [Indexed: 11/27/2022]
Abstract
Fatty acids can self-assemble under various shapes in the presence of amines or cationic components. We assemble and compare these types of self-assembly leading toward a catanionic system either with a cationic surfactant or with an amine component playing the role of counter-ion. First, we focus on the molar ratio as a key driving parameter. Known and yet un-known values from other quantities governing the colloidal properties of these systems such as structural surface charge, osmotic pressure, molecular segregation, rigidity, in plane colloidal interactions and melting transition are discussed. We include also recent results obtained on the interfacial and foaming properties of these systems. We will highlight the specificity of these self-assemblies leading to unusual macroscopic properties rich of robust applications.
Collapse
|
32
|
Abstract
Stable aqueous dispersions of fatty acids can now be obtained and yield multiple applications.
Collapse
Affiliation(s)
- Jean-Paul Douliez
- UMR 1332
- Biologie et Pathologie du Fruit
- INRA
- Centre de Bordeaux
- 33883 Villenave d'Ornon, France
| | - Cédric Gaillard
- UR 1268 Biopolymères Interactions et Assemblages
- INRA
- rue de la Géraudière
- 44316 Nantes, France
| |
Collapse
|
33
|
Fameau AL, Ventureira J, Novales B, Douliez JP. Foaming and emulsifying properties of fatty acids neutralized by tetrabutylammonium hydroxide. Colloids Surf A Physicochem Eng Asp 2012. [DOI: 10.1016/j.colsurfa.2012.03.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
34
|
Mukai M, Kogiso M, Aoyagi M, Asakawa M, Shimizu T, Minamikawa H. Supramolecular nanofiber formation from commercially available arginine and a bola-type diacetylenic diacid via hydrogelation. Polym J 2012. [DOI: 10.1038/pj.2012.46] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|