1
|
Zhou J, Wang Y, Li L. Regulating the Flow-Driven Translocation of Macromolecules through Nanochannels by Interfacial Physical Adsorption. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Jianing Zhou
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yiren Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lianwei Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
2
|
Zhang C, Deng X, Wang C, Bao C, Yang B, Zhang H, Qi S, Dong Z. Helical supramolecular polymer nanotubes with wide lumen for glucose transport: towards the development of functional membrane-spanning channels. Chem Sci 2019; 10:8648-8653. [PMID: 31803439 PMCID: PMC6844296 DOI: 10.1039/c9sc02336d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/29/2019] [Indexed: 01/05/2023] Open
Abstract
The manipulation of strong noncovalent interactions provides a concise and versatile strategy for constructing highly ordered supramolecular structures. By using a shape-persistent building block consisting of phenanthroline derivatives and two quadruply hydrogen-bonding AADD moieties, a type of precise helical supramolecular polymer (HSP) nanotube has been developed. The helical conformation of the supramolecular polymers has been proved via various techniques, showing significantly expanded topologies of supramolecular polymers. From the production of new topological structures of supramolecular polymers, predictable properties and functions have arisen. In this study, the helical folding of supramolecular polymers gave rise to the generation of specific wide lumen structures that can be directly visualized via TEM, and the resulting HSP nanotubes can puncture the lipid bilayer membrane to facilitate the transportation of glucose. Helical supramolecular polymers with a wide lumen structure can puncture the lipid bilayer membrane to facilitate the transport of glucose.![]()
Collapse
Affiliation(s)
- Chenyang Zhang
- State Key Laboratory of Supramolecular Structure and Materials , College of Chemistry , Jilin University , Qianjin Street , Changchun , China .
| | - Xiaoli Deng
- State Key Laboratory of Supramolecular Structure and Materials , College of Chemistry , Jilin University , Qianjin Street , Changchun , China .
| | - Chenxi Wang
- Shanghai Key Laboratory of Functional Materials Chemistry , Institute of Fine Chemicals , East China University of Science and Technology , No. 130 Meilong Road , Shanghai , China
| | - Chunyan Bao
- Shanghai Key Laboratory of Functional Materials Chemistry , Institute of Fine Chemicals , East China University of Science and Technology , No. 130 Meilong Road , Shanghai , China
| | - Bing Yang
- State Key Laboratory of Supramolecular Structure and Materials , College of Chemistry , Jilin University , Qianjin Street , Changchun , China .
| | - Houyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials , College of Chemistry , Jilin University , Qianjin Street , Changchun , China .
| | - Shuaiwei Qi
- State Key Laboratory of Supramolecular Structure and Materials , College of Chemistry , Jilin University , Qianjin Street , Changchun , China .
| | - Zeyuan Dong
- State Key Laboratory of Supramolecular Structure and Materials , College of Chemistry , Jilin University , Qianjin Street , Changchun , China .
| |
Collapse
|
3
|
Eskandani Z, Le Gall T, Montier T, Lehn P, Montel F, Auvray L, Huin C, Guégan P. Polynucleotide transport through lipid membrane in the presence of starburst cyclodextrin-based poly(ethylene glycol)s. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:132. [PMID: 30426391 DOI: 10.1140/epje/i2018-11743-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/12/2018] [Indexed: 06/09/2023]
Abstract
Symmetrical cyclodextrin-based 14-arm star polymers with poly(ethylene glycol) PEG branches were synthesized and characterized. Interactions of the star polymers with lipid bilayers were studied by the "black lipid membrane" technique in order to demonstrate the formation of monomolecular artificial channels. The conditions for the insertion are mainly based on dimensions and amphiphilic properties of the star polymers, in particular the molar mass of the water-soluble polymer branches. Translocation of single-strand DNA (ssDNA) through those synthetic nanopores was investigated, and the close dimension between the cross-section of ssDNA and the cyclodextrin cavity led to an energy barrier that slowed down the translocation process.
Collapse
Affiliation(s)
- Zahra Eskandani
- LAMBE, Univ Evry, CNRS, CEA, Université Paris-Saclay, 91025, Evry, France
- LAMBE, Université Cergy-Pontoise, Université Paris-Seine, 91025, Evry, France
| | - Tony Le Gall
- INSERM UMR 1078, Faculté de Médecine, Université de Bretagne Occidentale, Université Européenne de Bretagne, 22 avenue Camille Desmoulins, 29238, Brest Cedex 3, France
- Plateforme SynNanoVect, Biogenouest, SFR 148 ScInBioS, Université de Bretagne Occidentale, Faculté de Médecine, 22 avenue Camille Desmoulins, 29238, Brest Cedex 3, France
| | - Tristan Montier
- INSERM UMR 1078, Faculté de Médecine, Université de Bretagne Occidentale, Université Européenne de Bretagne, 22 avenue Camille Desmoulins, 29238, Brest Cedex 3, France
- Plateforme SynNanoVect, Biogenouest, SFR 148 ScInBioS, Université de Bretagne Occidentale, Faculté de Médecine, 22 avenue Camille Desmoulins, 29238, Brest Cedex 3, France
- Laboratoire de génétique moléculaire et d'histocompatibilité, CHRU de Brest, 5 avenue du Maréchal Foch, 29609, Brest Cedex 3, France
- DUMG, Université de Bretagne Occidentale, Faculté de Médecine, 22 avenue Camille Desmoulins, 29238, Brest Cedex 3, France
| | - Pierre Lehn
- INSERM UMR 1078, Faculté de Médecine, Université de Bretagne Occidentale, Université Européenne de Bretagne, 22 avenue Camille Desmoulins, 29238, Brest Cedex 3, France
| | - Fabien Montel
- Matière et Systèmes Complexes, CNRS-UMR 7057, Université Paris-Diderot, 10 rue Alice Domon et Léonie Duquet, 75205, Paris cedex 13, France
| | - Loïc Auvray
- Matière et Systèmes Complexes, CNRS-UMR 7057, Université Paris-Diderot, 10 rue Alice Domon et Léonie Duquet, 75205, Paris cedex 13, France
| | - Cécile Huin
- LAMBE, Univ Evry, CNRS, CEA, Université Paris-Saclay, 91025, Evry, France
- LAMBE, Université Cergy-Pontoise, Université Paris-Seine, 91025, Evry, France
| | - Philippe Guégan
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 place Jussieu, F-75005, Paris, France.
| |
Collapse
|
4
|
Chen JY, Haoyang WW, Zhang M, Wu G, Li ZT, Hou JL. A synthetic channel that efficiently inserts into mammalian cell membranes and destroys cancer cells. Faraday Discuss 2018; 209:149-159. [DOI: 10.1039/c8fd00009c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A tubular molecule with terminal positively charged amino groups that displays a strong ability to insert into the membrane of mammalian cells.
Collapse
Affiliation(s)
- Jian-Yu Chen
- Department of Chemistry
- Fudan University
- Shanghai 200433
- China
| | | | - Min Zhang
- Department of Chemistry
- Fudan University
- Shanghai 200433
- China
| | - Gang Wu
- Department of Chemistry
- Fudan University
- Shanghai 200433
- China
| | - Zhan-Ting Li
- Department of Chemistry
- Fudan University
- Shanghai 200433
- China
| | - Jun-Li Hou
- Department of Chemistry
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|
5
|
Achilles A, Bärenwald R, Lechner BD, Werner S, Ebert H, Tschierske C, Blume A, Bacia K, Saalwächter K. Self-Assembly of X-Shaped Bolapolyphiles in Lipid Membranes: Solid-State NMR Investigations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:673-682. [PMID: 26735449 DOI: 10.1021/acs.langmuir.5b03712] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A novel class of rigid-rod bolapolyphilic molecules with three philicities (rigid aromatic core, mobile aliphatic side chains, polar end groups) has recently been demonstrated to incorporate into and span lipid membranes, and to exhibit a rich variety of self-organization modes, including macroscopically ordered snowflake structures with 6-fold symmetry. In order to support a structural model and to better understand the self-organization on a molecular scale, we here report on proton and carbon-13 high-resolution magic-angle spinning solid-state NMR investigations of two different bolapolyphiles (BPs) in model membranes of two different phospholipids (DPPC, DOPC). We elucidate the changes in molecular dynamics associated with three new phase transitions detected by calorimetry in composite membranes of different composition, namely, a change in π-π-packing, the melting of lipid tails associated with the superstructure, and the dissolution and onset of free rotation of the BPs. We derive dynamic order parameters associated with different H-H and C-H bond directions of the BPs, demonstrating that the aromatic cores are well packed below the final phase transition, showing only 180° flips of the phenyl ring, and that they perform free rotations with additional oscillations of the long axis when dissolved in the fluid membrane. Our data suggests that BPs not only form ordered superstructures, but also rather homogeneously dispersed π-packed filaments within the lipid gel phase, thus reducing the corrugation of large vesicles.
Collapse
Affiliation(s)
- Anja Achilles
- Institut für Physik - NMR, ‡Institut für Chemie - Physikalische Chemie, §ZIK HALOmem, and ∥Institut für Chemie - Organische Chemie, Martin-Luther-Universität Halle-Wittenberg , D-06120 Halle, Germany
| | - Ruth Bärenwald
- Institut für Physik - NMR, ‡Institut für Chemie - Physikalische Chemie, §ZIK HALOmem, and ∥Institut für Chemie - Organische Chemie, Martin-Luther-Universität Halle-Wittenberg , D-06120 Halle, Germany
| | - Bob-Dan Lechner
- Institut für Physik - NMR, ‡Institut für Chemie - Physikalische Chemie, §ZIK HALOmem, and ∥Institut für Chemie - Organische Chemie, Martin-Luther-Universität Halle-Wittenberg , D-06120 Halle, Germany
| | - Stefan Werner
- Institut für Physik - NMR, ‡Institut für Chemie - Physikalische Chemie, §ZIK HALOmem, and ∥Institut für Chemie - Organische Chemie, Martin-Luther-Universität Halle-Wittenberg , D-06120 Halle, Germany
| | - Helgard Ebert
- Institut für Physik - NMR, ‡Institut für Chemie - Physikalische Chemie, §ZIK HALOmem, and ∥Institut für Chemie - Organische Chemie, Martin-Luther-Universität Halle-Wittenberg , D-06120 Halle, Germany
| | - Carsten Tschierske
- Institut für Physik - NMR, ‡Institut für Chemie - Physikalische Chemie, §ZIK HALOmem, and ∥Institut für Chemie - Organische Chemie, Martin-Luther-Universität Halle-Wittenberg , D-06120 Halle, Germany
| | - Alfred Blume
- Institut für Physik - NMR, ‡Institut für Chemie - Physikalische Chemie, §ZIK HALOmem, and ∥Institut für Chemie - Organische Chemie, Martin-Luther-Universität Halle-Wittenberg , D-06120 Halle, Germany
| | - Kirsten Bacia
- Institut für Physik - NMR, ‡Institut für Chemie - Physikalische Chemie, §ZIK HALOmem, and ∥Institut für Chemie - Organische Chemie, Martin-Luther-Universität Halle-Wittenberg , D-06120 Halle, Germany
| | - Kay Saalwächter
- Institut für Physik - NMR, ‡Institut für Chemie - Physikalische Chemie, §ZIK HALOmem, and ∥Institut für Chemie - Organische Chemie, Martin-Luther-Universität Halle-Wittenberg , D-06120 Halle, Germany
| |
Collapse
|
6
|
Gunasekara RW, Zhao Y. Conformationally switchable water-soluble fluorescent bischolate foldamers as membrane-curvature sensors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:3919-3925. [PMID: 25782344 DOI: 10.1021/acs.langmuir.5b00379] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Membrane curvature is an important parameter in biological processes such as cellular movement, division, and vesicle fusion and budding. Traditionally, only proteins and protein-derived peptides have been used as sensors for membrane curvature. Three water-soluble bischolate foldamers were synthesized, all labeled with an environmentally sensitive fluorophore to report their binding with lipid membranes. The orientation and ionic nature of the fluorescent label were found to be particularly important in their performance as membrane-curvature sensors. The bischolate with an NBD group in the hydrophilic α-face of the cholate outperformed the other two analogues as a membrane-curvature sensor and responded additionally to the lipid composition including the amounts of cholesterol and anionic lipids in the membranes.
Collapse
Affiliation(s)
- Roshan W Gunasekara
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
7
|
Zhao Y, Cho H, Widanapathirana L, Zhang S. Conformationally controlled oligocholate membrane transporters: learning through water play. Acc Chem Res 2013; 46:2763-72. [PMID: 23537285 DOI: 10.1021/ar300337f] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Controlled translocation of molecules and ions across lipid membranes is the basis of numerous biological functions. Because synthetic systems can help researchers understand the more complex biological ones, many chemists have developed synthetic mimics of biological transporters. Both systems need to deal with similar fundamental challenges. In addition to providing mechanistic insights into transport mechanisms, synthetic transporters are useful in a number of applications including separation, sensing, drug delivery, and catalysis. In this Account, we present several classes of membrane transporters constructed in our laboratory from a facially amphiphilic building block, cholic acid. Our "molecular baskets" can selectively shuttle glucose across lipid membranes without transporting smaller sodium ions. We have also built oligocholate foldamers that transiently fold into helices with internal hydrophilic binding pockets to transport polar guests. Lastly, we describe amphiphilic macrocycles, which form transmembrane nanopores in lipid bilayers through the strong associative interactions of encapsulated water molecules. In addition to presenting the different transport properties of these oligocholate transporters, we illustrate how fundamental studies of molecular behavior in solution facilitate the creation of new and useful membrane transporters, despite the large difference between the two environments. We highlight the strong conformational effect of transporters. Because the conformation of a molecule often alters its size and shape, and the distribution of functional groups, conformational control can be used rationally to tune the property of a transporter. Finally, we emphasize that, whenever water is the solvent, its unique properties--small size, strong solvation for ionic functionalities, and an extraordinary cohesive energy density (i.e., total intermolecular interactions per unit volume)--tend to become critical factors to be considered. Purposeful exploitation of these solvent properties may be essential to the success of the supramolecular process involved--this is also the reason for the "learning through water play" in the title of this Account.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Hongkwan Cho
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | | | - Shiyong Zhang
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
8
|
Widanapathirana L, Zhao Y. Tuning Nanopore Formation of Oligocholate Macrocycles by Carboxylic Acid Dimerization in Lipid Membranes. J Org Chem 2013; 78:4610-4. [DOI: 10.1021/jo400455x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United
States
| |
Collapse
|
9
|
Chen L, Si W, Zhang L, Tang G, Li ZT, Hou JL. Chiral Selective Transmembrane Transport of Amino Acids through Artificial Channels. J Am Chem Soc 2013; 135:2152-5. [DOI: 10.1021/ja312704e] [Citation(s) in RCA: 235] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lei Chen
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433,
China
| | - Wen Si
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433,
China
| | - Liang Zhang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433,
China
| | - Gangfeng Tang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433,
China
| | - Zhan-Ting Li
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433,
China
| | - Jun-Li Hou
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433,
China
| |
Collapse
|
10
|
Wang T, Widanapathirana L, Zhao Y, Hong M. Aggregation and dynamics of oligocholate transporters in phospholipid bilayers revealed by solid-state NMR spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:17071-17078. [PMID: 23153411 DOI: 10.1021/la303661p] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Macrocycles made of cholate building blocks were previously found to transport glucose readily across lipid bilayers. In this study, an (15)N, (13)Cα-labeled glycine was inserted into a cyclic cholate trimer and attached at the end of a linear trimer, respectively. The isotopic labeling allowed us to use solid-state NMR spectroscopy to study the dynamics, aggregation, and depth of insertion of these compounds in lipid membranes. The cyclic compound was found to be mostly immobilized in DLPC, POPC/POPG, and POPC/POPG/cholesterol membranes, whereas the linear trimer displayed large-amplitude motion that depended on the membrane thickness and viscosity. (13)C-detected (1)H spin diffusion experiments revealed the depth of insertion of the compounds in the membranes, as well as their contact with water molecules. The data support a consistent stacking model for the cholate macrocycles in lipid membranes, driven by the hydrophobic interactions of the water molecules in the interior of the macrocycles. The study also shows a strong preference of the linear trimer for the membrane surface, consistent with its lack of transport activity in earlier liposome leakage assays.
Collapse
Affiliation(s)
- Tuo Wang
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, USA
| | | | | | | |
Collapse
|
11
|
|
12
|
Widanapathirana L, Zhao Y. Effects of amphiphile topology on the aggregation of oligocholates in lipid membranes: macrocyclic versus linear amphiphiles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:8165-8173. [PMID: 22563986 DOI: 10.1021/la301090t] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A macrocyclic and a linear trimer of a facially amphiphilic cholate building block were labeled with a fluorescent dansyl group. The environmentally sensitive fluorophore enabled the aggregation of the two oligocholates in lipid membranes to be studied by fluorescence spectroscopy. Concentration-dependent emission wavelength and intensity revealed a higher concentration of water for the cyclic compound. Both compounds were shown by the red-edge excitation shift (REES) to be located near the membrane/water interface at low concentrations, but the cyclic trimer was better able to migrate into the hydrophobic core of the membrane than the linear trimer. Fluorescent quenching by a water-soluble (NaI) and a lipid-soluble (TEMPO) quencher indicated that the cyclic trimer penetrated into the hydrophobic region of the membrane more readily than the linear trimer, which preferred to stay close to the membrane surface. The fluorescent data corroborated with the previous leakage assays that suggested the stacking of the macrocyclic cholate trimer into transmembrane nanopores, driven by the strong associative interactions of water molecules inside the macrocycles in a nonpolar environment.
Collapse
|
13
|
Hu XB, Chen Z, Tang G, Hou JL, Li ZT. Single-Molecular Artificial Transmembrane Water Channels. J Am Chem Soc 2012; 134:8384-7. [DOI: 10.1021/ja302292c] [Citation(s) in RCA: 341] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiao-Bo Hu
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Zhenxia Chen
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Gangfeng Tang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Jun-Li Hou
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Zhan-Ting Li
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| |
Collapse
|
14
|
Widanapathirana L, Zhao Y. Aromatically Functionalized Cyclic Tricholate Macrocycles: Aggregation, Transmembrane Pore Formation, Flexibility, and Cooperativity. J Org Chem 2012; 77:4679-87. [DOI: 10.1021/jo3004056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
15
|
Zhang S, Zhao Y. Flexible oligocholate foldamers as membrane transporters and their guest-dependent transport mechanism. Org Biomol Chem 2012; 10:260-6. [DOI: 10.1039/c1ob06364b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
16
|
Widanapathirana L, Li X, Zhao Y. Hydrogen bond-assisted macrocyclic oligocholate transporters in lipid membranes. Org Biomol Chem 2012; 10:5077-83. [DOI: 10.1039/c2ob25301a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Zhang S, Zhao Y. Effects of Micelle Properties on the Conformation of Oligocholates and Importance of Rigidity of Foldamers. J Org Chem 2011; 77:556-62. [DOI: 10.1021/jo202156d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shiyong Zhang
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
18
|
Zhang S, Zhao Y. Oligocholate Foldamers as Carriers for Hydrophilic Molecules across Lipid Bilayers. Chemistry 2011; 17:12444-51. [DOI: 10.1002/chem.201101510] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 08/17/2011] [Indexed: 11/08/2022]
|