1
|
Limón D, Hornick JE, Cai K, Beldjoudi Y, Duch M, Plaza JA, Pérez-García L, Stoddart JF. Polysilicon Microchips Functionalized with Bipyridinium-Based Cyclophanes for a Highly Efficient Cytotoxicity in Cancerous Cells. ACS NANO 2022; 16:5358-5375. [PMID: 35357125 DOI: 10.1021/acsnano.1c08090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The use of micrometric-sized vehicles could greatly improve selectivity of cytotoxic compounds as their lack of self-diffusion could maximize their retention in tissues. We have used polysilicon microparticles (SiμP) to conjugate bipyridinium-based compounds, able to induce cytotoxicity under regular intracellular conditions. Homogeneous functionalization in suspension was achieved, where the open-chain structure exhibits a more dense packing than cyclic analogues. The microparticles internalized induce high cytotoxicity per particle in cancerous HeLa cells, and the less densely packed functionalization using cyclophanes promotes higher cytotoxicity per bipy than with open-chain analogues. The self-renewing ability of the particles and their proximity to cell membranes may account for increased lipid peroxidation, achieving toxicity at much lower concentrations than that in solution and in less time, inducing highly efficient cytotoxicity in cancerous cells.
Collapse
Affiliation(s)
- David Limón
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology, University of Barcelona (IN2UB), 08028 Barcelona, Spain
| | - Jessica E Hornick
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Kang Cai
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yassine Beldjoudi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Marta Duch
- Institute of Microelectronics of Barcelona IMB-CNM (CSIC), 08193, Barcelona, Spain
| | - Jose A Plaza
- Institute of Microelectronics of Barcelona IMB-CNM (CSIC), 08193, Barcelona, Spain
| | - Lluïsa Pérez-García
- Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology, University of Barcelona (IN2UB), 08028 Barcelona, Spain
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2033, Australia
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, 311418 Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, 311215 Hangzhou, China
| |
Collapse
|
2
|
Arjona MI, González-Manchón C, Durán S, Duch M, Del Real RP, Kadambi A, Agusil JP, Redondo-Horcajo M, Pérez-García L, Gómez E, Suárez T, Plaza JA. Integrating magnetic capabilities to intracellular chips for cell trapping. Sci Rep 2021; 11:18495. [PMID: 34531498 PMCID: PMC8446022 DOI: 10.1038/s41598-021-98095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/31/2021] [Indexed: 11/09/2022] Open
Abstract
Current microtechnologies have shown plenty of room inside a living cell for silicon chips. Microchips as barcodes, biochemical sensors, mechanical sensors and even electrical devices have been internalized into living cells without interfering their cell viability. However, these technologies lack from the ability to trap and preconcentrate cells in a specific region, which are prerequisites for cell separation, purification and posterior studies with enhanced sensitivity. Magnetic manipulation of microobjects, which allows a non-contacting method, has become an attractive and promising technique at small scales. Here, we show intracellular Ni-based chips with magnetic capabilities to allow cell enrichment. As a proof of concept of the potential to integrate multiple functionalities on a single device of this technique, we combine coding and magnetic manipulation capabilities in a single device. Devices were found to be internalized by HeLa cells without interfering in their viability. We demonstrated the tagging of a subpopulation of cells and their subsequent magnetic trapping with internalized barcodes subjected to a force up to 2.57 pN (for magnet-cells distance of 4.9 mm). The work opens the venue for future intracellular chips that integrate multiple functionalities with the magnetic manipulation of cells.
Collapse
Affiliation(s)
- María Isabel Arjona
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Campus UAB, 08193, Cerdanyola, Barcelona, Spain.
| | | | - Sara Durán
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Campus UAB, 08193, Cerdanyola, Barcelona, Spain
| | - Marta Duch
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Campus UAB, 08193, Cerdanyola, Barcelona, Spain
| | - Rafael P Del Real
- Instituto de Ciencia de Materiales de Madrid, ICMM (CSIC), Cantoblanco, 28049, Madrid, Spain
| | - Abhinav Kadambi
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Campus UAB, 08193, Cerdanyola, Barcelona, Spain
| | - Juan Pablo Agusil
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Campus UAB, 08193, Cerdanyola, Barcelona, Spain
| | | | - Lluïsa Pérez-García
- School of Pharmacy, University of Nottingham, University Park, Nottingham, UK
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Universitat de Barcelona, 08028, Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Elvira Gómez
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
- Departament de Ciència de Materials i Química Física, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Teresa Suárez
- Centro de Investigaciones Biológicas Margarita Salas, CIB (CSIC), 28040, Madrid, Spain
| | - José Antonio Plaza
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Campus UAB, 08193, Cerdanyola, Barcelona, Spain
| |
Collapse
|
3
|
Mandecki W, Rodriguez EF, Drawbridge J. Tagging of individual embryos with electronic p-Chips. Biomed Microdevices 2016; 18:100. [PMID: 27787762 DOI: 10.1007/s10544-016-0127-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Collecting information about biochemical processes occurring inside a single cell or embryo is traditionally done either using fluorescent dyes with microscopy or via microelectrode voltage-clamp techniques. This paper demonstrates that a more direct method - transmission of information using an electronic chip implanted in an embryo - is feasible. A light-activated microtransponder with dimensions 250 μm × 250 μm × 100 μm (a "p-Chip") was implanted into a blastula-stage frog (Xenopus laevis) embryo. To implant the chip, a small slit is made in the blastocoel roof with an electrolytically-sharpened tungsten needle, and the p-Chip is inserted using fine forceps. The chip is activated when illuminated by a 60 mW focused laser beam, which causes the p-Chip to send its numeric ID to a nearby receiver. At no time during signal transmission does a wire or other type of object come in contact with or penetrate the epidermal layer covering the p-Chip. The embryo survives the procedure, extruding the chip after approximately 3 h. The method shows promise for studies including voltage potential, pH and other parameters.
Collapse
Affiliation(s)
- Wlodek Mandecki
- PharmaSeq, Inc., 11 Deer Park Dr., Suite 104, Monmouth Junction, NJ, 08852, USA.
| | | | - Julie Drawbridge
- Department of Biology and Behavioral Neuroscience, Rider University, 2083 Lawrenceville Rd, Lawrenceville, NJ, 08648, USA
| |
Collapse
|
4
|
van den Berg SA, Alonso JM, Wadhwa K, Franssen MCR, Wennekes T, Zuilhof H. Microwave-assisted formation of organic monolayers from 1-alkenes on silicon carbide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:10562-10565. [PMID: 25111008 DOI: 10.1021/la502197q] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The rate of formation of covalently linked organic monolayers on HF-etched silicon carbide (SiC) is greatly increased by microwave irradiation. Upon microwave treatment for 60 min at 100 °C (60 W), 1-alkenes yield densely packed, covalently attached monolayers on flat SiC surfaces, a process that typically takes 16 h at 130 °C under thermal conditions. This approach was extended to SiC microparticles. The monolayers were characterized by X-ray photoelectron spectroscopy and static water contact angle measurements. The microwave-assisted reaction is compatible with terminal functionalities such as alkenes that enable subsequent versatile "click" chemistry reactions, further broadening the range and applicability of chemically modified SiC surfaces.
Collapse
Affiliation(s)
- Sebastiaan A van den Berg
- Laboratory of Organic Chemistry, Wageningen University , Dreijenplein 8, 6703 HB, Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
5
|
Penon O, Novo S, Durán S, Ibañez E, Nogués C, Samitier J, Duch M, Plaza JA, Pérez-García L. Efficient Biofunctionalization of Polysilicon Barcodes for Adhesion to the Zona Pellucida of Mouse Embryos. Bioconjug Chem 2012. [DOI: 10.1021/bc3004205] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Oriol Penon
- Department of Pharmacology
and Therapeutical Chemistry and Institute of Nanoscience and Nanotechnology
UB (IN2UB), Universitat de Barcelona, Avda. Joan XXIII s/n, 08028 Barcelona, Spain
| | - Sergi Novo
- Department of Cellular Biology,
Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Sara Durán
- Institute of Microelectronics of Barcelona, IMB-CNM (CSIC), Campus UAB, 08193 Bellaterra,
Barcelona, Spain
| | - Elena Ibañez
- Department of Cellular Biology,
Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Carme Nogués
- Department of Cellular Biology,
Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Josep Samitier
- Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 10-12, 08028 Barcelona,
Spain
- Department
of Electronics, Universitat de Barcelona, c/Martí
i Franquès 1, 08028 Barcelona, Spain
| | - Marta Duch
- Institute of Microelectronics of Barcelona, IMB-CNM (CSIC), Campus UAB, 08193 Bellaterra,
Barcelona, Spain
| | - José Antonio Plaza
- Institute of Microelectronics of Barcelona, IMB-CNM (CSIC), Campus UAB, 08193 Bellaterra,
Barcelona, Spain
| | - Lluïsa Pérez-García
- Department of Pharmacology
and Therapeutical Chemistry and Institute of Nanoscience and Nanotechnology
UB (IN2UB), Universitat de Barcelona, Avda. Joan XXIII s/n, 08028 Barcelona, Spain
| |
Collapse
|