1
|
Tatarko M, Spagnolo S, Csiba M, Šubjaková V, Hianik T. Analysis of the Interaction between DNA Aptamers and Cytochrome C on the Surface of Lipid Films and on the MUA Monolayer: A QCM-D Study. BIOSENSORS 2023; 13:251. [PMID: 36832017 PMCID: PMC9953847 DOI: 10.3390/bios13020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
We analyzed the possibility of the detection of cytochrome c (cyt c) being physically adsorbed on lipid films or covalently bounded to 11-mercapto-1-undecanoic acid (MUA) chemisorbed on the gold layer using quartz crystal microbalance with dissipation monitoring (QCM-D). The negatively charged lipid film composed of a mixture of zwitterionic DMPC and negatively charged DMPG phospholipids at a molar ratio of 1:1 allowed the formation of a stable cyt c layer. Addition of DNA aptamers specific to cyt c, however, resulted in removal of cyt c from the surface. The interaction of cyt c with the lipid film and its removal by DNA aptamers were accompanied by changes in viscoelastic properties evaluated using the Kelvin-Voigt model. Cyt c covalently bound to MUA also provided a stable protein layer already at its relatively low concentrations (0.5 μM). A decrease in the resonant frequency following the addition of gold nanowires (AuNWs) modified by DNA aptamers was observed. The interaction of aptamers with cyt c on the surface can be a combination of specific and non-specific interactions due to electrostatic forces between negatively charged DNA aptamers and positively charged cyt c.
Collapse
|
2
|
Wettstein C, Kano K, Schäfer D, Wollenberger U, Lisdat F. Interaction of Flavin-Dependent Fructose Dehydrogenase with Cytochrome c as Basis for the Construction of Biomacromolecular Architectures on Electrodes. Anal Chem 2016; 88:6382-9. [DOI: 10.1021/acs.analchem.6b00815] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christoph Wettstein
- Biosystems
Technology, Institute of Applied Life Sciences, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany
| | - Kenji Kano
- Division
of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606−8502, Japan
| | - Daniel Schäfer
- Biosystems
Technology, Institute of Applied Life Sciences, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany
| | - Ulla Wollenberger
- Institute
of Biochemistry and Biology, University Potsdam, Karl-Liebknecht-Strasse
24-25, 14476 Potsdam/Golm, Germany
| | - Fred Lisdat
- Biosystems
Technology, Institute of Applied Life Sciences, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany
| |
Collapse
|
3
|
Marmisollé WA, Azzaroni O. Recent developments in the layer-by-layer assembly of polyaniline and carbon nanomaterials for energy storage and sensing applications. From synthetic aspects to structural and functional characterization. NANOSCALE 2016; 8:9890-9918. [PMID: 27138455 DOI: 10.1039/c5nr08326e] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The construction of hybrid polymer-inorganic nanoarchitectures for electrochemical purposes based on the layer-by-layer assembly of conducting polymers and carbon nanomaterials has become increasingly popular over the last decade. This explosion of interest is primarily related to the increasing mastery in the design of supramolecular constructs using simple wet chemical approaches. Concomitantly, this continuous research activity paved the way to the rapid development of nanocomposites or "nanoblends" readily integrable into energy storage and sensing devices. In this sense, the layer-by-layer (LbL) assembly technique has allowed us to access three-dimensional (3D) multicomponent carbon-based network nanoarchitectures displaying addressable electrical, electrochemical and transport properties in which conducting polymers, such as polyaniline, and carbon nanomaterials, such as carbon nanotubes or nanographene, play unique roles without disrupting their inherent functions - complementary entities coexisting in harmony. Over the last few years the level of functional sophistication reached by LbL-assembled carbon-based 3D network nanoarchitectures, and the level of knowledge related to how to design, fabricate and optimize the properties of these 3D nanoconstructs have advanced enormously. This feature article presents and discusses not only the recent advances but also the emerging challenges in complex hybrid nanoarchitectures that result from the layer-by-layer assembly of polyaniline, a quintessential conducting polymer, and diverse carbon nanomaterials. This is a rapidly developing research area, and this work attempts to provide an overview of the diverse 3D network nanoarchitectures prepared up to now. The importance of materials processing and LbL integration is explored within each section and while the overall emphasis is on energy storage and sensing applications, the most widely-used synthetic strategies and characterization methods for "nanoblend" formation and performance evaluation are also presented.
Collapse
Affiliation(s)
- Waldemar A Marmisollé
- Instituto de Investigaciones Fisicoquímica Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, C.C. 16 Suc. (1900) La Plata, Argentina
| | | |
Collapse
|
4
|
ZHOU JP, BAO Y, LIN Q, PANG RS, WANG LM, NIU L. A New Quartz Crystal Microbalance Measuring Method with Expansive Frequency Range and Broadband Adaptive Response Capacity. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2014. [DOI: 10.1016/s1872-2040(13)60735-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Bera T, Deng J, Fang J. Protein-Induced Configuration Transitions of Polyelectrolyte-Modified Liquid Crystal Droplets. J Phys Chem B 2014; 118:4970-5. [DOI: 10.1021/jp501587h] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tanmay Bera
- Department of Materials Science
and Engineering, University of Central Florida, Orlando, Florida 32826, United States
| | - Jinan Deng
- Department of Materials Science
and Engineering, University of Central Florida, Orlando, Florida 32826, United States
| | - Jiyu Fang
- Department of Materials Science
and Engineering, University of Central Florida, Orlando, Florida 32826, United States
| |
Collapse
|
6
|
Singh K, Blanford CF. Electrochemical Quartz Crystal Microbalance with Dissipation Monitoring: A Technique to Optimize Enzyme Use in Bioelectrocatalysis. ChemCatChem 2014. [DOI: 10.1002/cctc.201300900] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Ghach W, Etienne M, Urbanova V, Jorand FP, Walcarius A. Sol–gel based ‘artificial’ biofilm from Pseudomonas fluorescens using bovine heart cytochrome c as electron mediator. Electrochem commun 2014. [DOI: 10.1016/j.elecom.2013.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
8
|
Comminges C, Frasca S, Sütterlin M, Wischerhoff E, Laschewsky A, Wollenberger U. Surface modification with thermoresponsive polymer brushes for a switchable electrochemical sensor. RSC Adv 2014. [DOI: 10.1039/c4ra07190e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Thermoresponsive polymer brushes' reversible phase transition is evidenced with E-QCM-D and electrochemistry, and acts as an electrochemical switch.
Collapse
Affiliation(s)
- Clément Comminges
- Institut für Biochemie und Biologie
- Universität Potsdam
- 14476 Potsdam-Golm, Germany
| | - Stefano Frasca
- Institut für Biochemie und Biologie
- Universität Potsdam
- 14476 Potsdam-Golm, Germany
| | - Martin Sütterlin
- Institut für Chemie
- Universität Potsdam
- 14476 Potsdam-Golm, Germany
| | - Erik Wischerhoff
- Fraunhofer-Institut für Angewandte Polymerforschung (IAP)
- 14476 Potsdam-Golm, Germany
| | - André Laschewsky
- Institut für Chemie
- Universität Potsdam
- 14476 Potsdam-Golm, Germany
| | - Ulla Wollenberger
- Institut für Biochemie und Biologie
- Universität Potsdam
- 14476 Potsdam-Golm, Germany
- Institut für Chemie
- Universität Potsdam
| |
Collapse
|
9
|
Ma Y, Dong J, Bhattacharjee S, Wijeratne S, Bruening ML, Baker GL. Increased protein sorption in poly(acrylic acid)-containing films through incorporation of comb-like polymers and film adsorption at low pH and high ionic strength. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:2946-54. [PMID: 23351043 PMCID: PMC3727236 DOI: 10.1021/la305137m] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In principle, incorporation of comb-like block copolymers in multilayer polyelectrolyte films can both increase film thickness relative to coatings containing linear polymers and provide more swollen films for increased sorption of proteins. In the absence of added salt, alternating adsorption of 5 bilayers of protonated poly(allylamine) (PAH) and comb-like poly(2-hydroxyethyl methacrylate)-graft-poly(acrylic acid) (PHEMA-g-PAA) leads to ∼2-fold thicker coatings than adsorption of PAH and linear PAA, and the difference in the thicknesses of the two coatings increases with the number of bilayers. Moreover, the (PAH/PHEMA-g-PAA)n films sorb 2- to 4-fold more protein than corresponding films prepared with linear PAA, and coatings deposited at pH 3.0 sorb more protein than coatings adsorbed at pH 5.0, 7.0, or 9.0. In fact changes in deposition pH and addition of 0.5 M NaCl to polyelectrolyte adsorption solutions alter protein sorption more dramatically than variations in the constituent polymer architecture. When deposited from 0.5 M NaCl at pH 3.0, both (PAH/PHEMA-g-PAA)5 and (PAH/PAA)5 films increase in thickness more than 400% upon adsorption of lysozyme. These films contain a high concentration of free -COOH groups, and subsequent deprotonation of these groups at neutral pH likely contributes to increased protein binding. Lysozyme sorption stabilizes these films, as without lysozyme films deposited at pH 3.0 from 0.5 M NaCl desorb at neutral pH. Films deposited at pH 9.0 from 0.5 M NaCl are more stable and also bind large amounts of lysozyme. The high binding capacities of these films make them attractive for potential applications in protein isolation or immobilization of enzymes.
Collapse
Affiliation(s)
| | | | | | - Salinda Wijeratne
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Merlin L. Bruening
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
10
|
Kleo K, Schäfer D, Klar S, Jacob D, Grunow R, Lisdat F. Immunodetection of inactivated Francisella tularensis bacteria by using a quartz crystal microbalance with dissipation monitoring. Anal Bioanal Chem 2012; 404:843-51. [DOI: 10.1007/s00216-012-6172-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/10/2012] [Accepted: 05/30/2012] [Indexed: 11/29/2022]
|
11
|
Chaubaroux C, Vrana E, Debry C, Schaaf P, Senger B, Voegel JC, Haikel Y, Ringwald C, Hemmerlé J, Lavalle P, Boulmedais F. Collagen-based fibrillar multilayer films cross-linked by a natural agent. Biomacromolecules 2012; 13:2128-35. [PMID: 22662909 DOI: 10.1021/bm300529a] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Surface functionalization plays an important role in the design of biomedical implants, especially when layer forming cells, such as endothelial or epithelial cells, are needed. In this study, we define a novel nanoscale surface coating composed of collagen/alginate polyelectrolyte multilayers and cross-linked for stability with genipin. This buildup follows an exponential growth regime versus the number of deposition cycles with a distinct nanofibrillar structure that is not damaged by the cross-linking step. Stability and cell compatibility of the cross-linked coatings were studied with human umbilical vein endothelial cells. The surface coating can be covered by a monolayer of vascular endothelial cells within 5 days. Genipin cross-linking renders the surface more suitable for cell attachment and proliferation compared to glutaraldehyde (more conventional cross-linker) cross-linked surfaces, where cell clumps in dispersed areas were observed. In summary, it is possible with the defined system to build fibrillar structures with a nanoscale control of film thickness, which would be useful for in vivo applications such as inner lining of lumens for vascular and tracheal implants.
Collapse
Affiliation(s)
- Christophe Chaubaroux
- Institut National de la Santé et de la Recherche Médicale , INSERM UMR 977, Biomaterials and Tissue Engineering, Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|