1
|
Kitjanon J, Nisoh N, Phongphanphanee S, Chattham N, Karttunen M, Wong-ekkabut J. Dispersion of Hydrophilic Nanoparticles in Natural Rubber with Phospholipids. Polymers (Basel) 2024; 16:2901. [PMID: 39458729 PMCID: PMC11510818 DOI: 10.3390/polym16202901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Coarse-grained molecular dynamics (CGMD) simulations were employed to investigate the effects of phospholipids on the aggregation of hydrophilic, modified carbon-nanoparticle fillers in cis-polyisoprene (cis-PI) composites. The MARTINI force field was applied to model dipalmitoylphosphatidylcholine (DPPC) lipids and hydrophilic modified fullerenes (HMFs). The simulations of DPPC in cis-PI composites show that the DPPC lipids self-assemble to form a reverse micelle in a rubber matrix. Moreover, HMF molecules readily aggregate into a cluster, in agreement with the previous studies. Interestingly, the mixture of the DPPC and HMF in the rubber matrix shows a cluster of HMF is encapsulated inside the DPPC reverse micelle. The HMF encapsulated micelles disperse well in the rubber matrix, and their sizes are dependent on the lipid concentration. Mechanical and thermal properties of the composites were analyzed by calculating the diffusion coefficients (D), bulk modulus (κ), and glass transition temperatures (Tg). The results suggest that DPPC acts as a plasticizer and enhances the flexibility of the HMF-DPPC rubber composites. These findings provide valuable insights into the design and process of high-performance rubber composites, offering improved mechanical and thermal properties for various applications.
Collapse
Affiliation(s)
- Jiramate Kitjanon
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (J.K.); (N.N.); (N.C.)
- Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Nililla Nisoh
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (J.K.); (N.N.); (N.C.)
- Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Thailand Center of Excellence in Physics (ThEP Center), Commission on Higher Education, Bangkok 10400, Thailand
| | - Saree Phongphanphanee
- Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Thailand Center of Excellence in Physics (ThEP Center), Commission on Higher Education, Bangkok 10400, Thailand
- Department of Material Science, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Specialized Center of Rubber and Polymer Materials in Agriculture and Industry (RPM), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Nattaporn Chattham
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (J.K.); (N.N.); (N.C.)
| | - Mikko Karttunen
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada;
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada
| | - Jirasak Wong-ekkabut
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (J.K.); (N.N.); (N.C.)
- Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Thailand Center of Excellence in Physics (ThEP Center), Commission on Higher Education, Bangkok 10400, Thailand
- Specialized Center of Rubber and Polymer Materials in Agriculture and Industry (RPM), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
2
|
Peng X, Zhang J, Xiao P. Photopolymerization Approach to Advanced Polymer Composites: Integration of Surface-Modified Nanofillers for Enhanced Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400178. [PMID: 38843462 DOI: 10.1002/adma.202400178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/08/2024] [Indexed: 06/28/2024]
Abstract
The incorporation of functionalized nanofillers into polymers via photopolymerization approach has gained significant attention in recent years due to the unique properties of the resulting composite materials. Surface modification of nanofillers plays a crucial role in their compatibility and polymerization behavior within the polymer matrix during photopolymerization. This review focuses on the recent developments in surface modification of various nanofillers, enabling their integration into polymer systems through photopolymerization. The review discusses the key aspects of surface modification of nanofillers, including the selection of suitable surface modifiers, such as photoinitiators and polymerizable groups, as well as the optimization of modification conditions to achieve desired surface properties. The influence of surface modification on the interfacial interactions between nanofillers and the polymer matrix is also explored, as it directly impacts the final properties of the nanocomposites. Furthermore, the review highlights the applications of nanocomposites prepared by photopolymerization, such as sensors, gas separation membranes, purification systems, optical devices, and biomedical materials. By providing a comprehensive overview of the surface modification strategies and their impact on the photopolymerization process and the resulting nanocomposite properties, this review aims to inspire new research directions and innovative ideas in the development of high-performance polymer nanocomposites for diverse applications.
Collapse
Affiliation(s)
- Xiaotong Peng
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Jing Zhang
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Pu Xiao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
3
|
Qi J, Shao Z, Sun Y, Wang Z, Chen Q, Wang J, Huang D, Liu J, Shen J, Cao D, Zeng X, Chen J. Remarkable Toughening of Plastic with Monodispersed Nano-CaCO 3: From Theoretical Predictions to Experimental Validation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13688-13698. [PMID: 38902198 DOI: 10.1021/acs.langmuir.4c01435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The structure-property relationship of poly(vinyl chloride) (PVC)/CaCO3 nanocomposites is investigated by all-atom molecular dynamics (MD) simulations. MD simulation results indicate that the dispersity of nanofillers, interfacial bonding, and chain mobility are imperative factors to improve the mechanical performance of nanocomposites, especially toughness. The tensile behavior and dissipated work of the PVC/CaCO3 model demonstrate that 12 wt % CaCO3 modified with oleate anion and dodecylbenzenesulfonate can impart high toughness to PVC due to its good dispersion, favorable interface interaction, and weak migration of PVC chains. Under the guidance of MD simulation, we experimentally prepared a transparent PVC/CaCO3 nanocomposite with good mechanical properties by in situ polymerization of monodispersed CaCO3 in vinyl chloride monomers. Interestingly, experimental tests indicate that the optimum toughness of a nanocomposite (a 368% increase in the elongation at break and 204% improvement of the impact strength) can be indeed realized by adding 12 wt % CaCO3 modified with oleic acid and dodecylbenzenesulfonic acid, which is remarkably consistent with the MD simulation prediction. In short, this work provides a proof-of-concept of using MD simulation to guide the experimental synthesis of PVC/CaCO3 nanocomposites, which can be considered as an example to develop other functional nanocomposites.
Collapse
Affiliation(s)
- Jiajia Qi
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhengxuan Shao
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yujun Sun
- Xinjiang Tianye (Group) Co., Ltd, Xinjiang 832099, China
| | - Zhirong Wang
- Xinjiang Tianye (Group) Co., Ltd, Xinjiang 832099, China
| | - Qionghai Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiexin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dong Huang
- Xinjiang Tianye (Group) Co., Ltd, Xinjiang 832099, China
| | - Jun Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Department of Polymer Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Jianxiang Shen
- Department of Polymer Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaofei Zeng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianfeng Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
4
|
Yoo H, Mahato M, Kim J, Oh S, Garai M, Nguyen VH, Taseer AK, Lee M, Oh I. Janus CoMOF-SEBS Membrane for Bifunctional Dielectric Layer in Triboelectric Nanogenerators. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307656. [PMID: 38286669 PMCID: PMC11005725 DOI: 10.1002/advs.202307656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/09/2024] [Indexed: 01/31/2024]
Abstract
Considerable research has been conducted on the application of functional nano-fillers to enhance the power generation capabilities of triboelectric nanogenerators (TENGs). However, these additives often exhibit a decrease in output power at higher concentration. Here, a Janus cobalt metal-organic framework-SEBS (JCMS) membrane is reported as a dual-purpose dielectric layer capable of efficiently capturing and blocking charges for high-performance TENGs. The JCMS is produced asymmetrically through gravitational sedimentation, employing spherical CoMOFs within a diluted SEBS solution. Beyond its dual dielectric characteristics, the JCMS showcases exceptional mechanical durability, displaying notable stretchability of up to 475% and remarkable resilience when subjected to diverse mechanical pressures. Consequently, the JCMS-TENG produces a maximum peak-to-peak voltage of 936 V, a current of 42.8 µA, and a power density of 10.89 W m- 2 when exposed to an external force of 10 N at a 5 Hz frequency. This investigation highlights the potential of JCMS-TENGs with unique structures, known for their exceptional energy harvesting capabilities, mechanical strength, and flexibility. Additionally, the promising prospects of easily produced asymmetric structures is emphasized with bifunctionalities for developing efficient and flexible MOFs-based TENGs. These advancements are well-suited for self-powered wearables, rehabilitation devices, and energy harvesters.
Collapse
Affiliation(s)
- Hyunjoon Yoo
- National Creative Research Initiative for Functionally Antagonistic Nano‐EngineeringDepartment of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| | - Manmatha Mahato
- National Creative Research Initiative for Functionally Antagonistic Nano‐EngineeringDepartment of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| | - Ji‐Seok Kim
- National Creative Research Initiative for Functionally Antagonistic Nano‐EngineeringDepartment of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| | - Saewoong Oh
- National Creative Research Initiative for Functionally Antagonistic Nano‐EngineeringDepartment of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| | - Mousumi Garai
- National Creative Research Initiative for Functionally Antagonistic Nano‐EngineeringDepartment of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| | - Van Hiep Nguyen
- National Creative Research Initiative for Functionally Antagonistic Nano‐EngineeringDepartment of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| | - Ashhad Kamal Taseer
- National Creative Research Initiative for Functionally Antagonistic Nano‐EngineeringDepartment of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| | - Myung‐Joon Lee
- National Creative Research Initiative for Functionally Antagonistic Nano‐EngineeringDepartment of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| | - Il‐Kwon Oh
- National Creative Research Initiative for Functionally Antagonistic Nano‐EngineeringDepartment of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| |
Collapse
|
5
|
Colijn I, van der Kooij HM, Schroën K. From fundamental insights to rational (bio)polymer nanocomposite design - Connecting the nanometer to meter scale. Adv Colloid Interface Sci 2024; 324:103076. [PMID: 38301315 DOI: 10.1016/j.cis.2023.103076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/24/2023] [Accepted: 12/24/2023] [Indexed: 02/03/2024]
Abstract
Nanoparticle addition has the potential to make bioplastic use mainstream, as the resultant nanocomposite shows improved mechanical, barrier, and thermal properties. It is well established that the architecture and dynamics of the nanoparticle-polymer interphasial region, ∼ 1.5-9 nm from the nanoparticle surface, are crucial for nanocomposite characteristics. Yet, how these molecular phenomena translate to the bulk is still largely unknown. A multi-disciplinary and multi-scale vision is required to capture the full picture and improve materials far beyond what is currently possible. In this review, a first step in bridging the apparent gap between fundamental insights toward observed material properties is made. At the molecular scale, the polymer chain density and dynamics at the nanoparticle surface are governed by a complex interplay between enthalpy and entropy. The resultant interphasial properties can only be propagated to the macroscopic scale effectively when the nanoparticles are well-distributed. This makes the dispersion state a key parameter for which thermodynamic and kinetic insights can be used to prevent nanoparticle aggregation. These insights are linked to material properties relevant to packaging. The outlook section elaborates on the remaining challenges and the steps required to further understand and better design nanocomposite systems.
Collapse
Affiliation(s)
- Ivanna Colijn
- Wageningen University and Research, Food Process Engineering Group, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| | - Hanne M van der Kooij
- Wageningen University and Research, Physical Chemistry and Soft Matter Group, Stippeneng 4, 6708 WE Wageningen, the Netherlands.
| | - Karin Schroën
- Wageningen University and Research, Food Process Engineering Group, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| |
Collapse
|
6
|
Yu B, Liang H, Nealey PF, Tirrell MV, Rumyantsev AM, de Pablo JJ. Structure and Dynamics of Hybrid Colloid-Polyelectrolyte Coacervates: Insights from Molecular Simulations. Macromolecules 2023; 56:7256-7270. [PMID: 37781214 PMCID: PMC10538443 DOI: 10.1021/acs.macromol.3c01079] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/08/2023] [Indexed: 10/03/2023]
Abstract
Electrostatic interactions in polymeric systems are responsible for a wide range of liquid-liquid phase transitions that are of importance for biology and materials science. Such transitions are referred to as complex coacervation, and recent studies have sought to understand the underlying physics and chemistry. Most theoretical and simulation efforts to date have focused on oppositely charged linear polyelectrolytes, which adopt nearly ideal-coil conformations in the condensed phase. However, when one of the coacervate components is a globular protein, a better model of complexation should replace one of the species with a spherical charged particle or colloid. In this work, we perform coarse-grained simulations of colloid-polyelectrolyte coacervation using a spherical model for the colloid. Simulation results indicate that the electroneutral cell of the resulting (hybrid) coacervates consists of a polyelectrolyte layer adsorbed on the colloid. Power laws for the structure and the density of the condensed phase, which are extracted from simulations, are found to be consistent with the adsorption-based scaling theory of hybrid coacervation. The coacervates remain amorphous (disordered) at a moderate colloid charge, Q, while an intra-coacervate colloidal crystal is formed above a certain threshold, at Q > Q*. In the disordered coacervate, if Q is sufficiently low, colloids diffuse as neutral nonsticky nanoparticles in the semidilute polymer solution. For higher Q, adsorption is strong and colloids become effectively sticky. Our findings are relevant for the coacervation of polyelectrolytes with proteins, spherical micelles of ionic surfactants, and solid organic or inorganic nanoparticles.
Collapse
Affiliation(s)
- Boyuan Yu
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Heyi Liang
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Paul F. Nealey
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Matthew V. Tirrell
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Center
for Molecular Engineering, Argonne National
Laboratory, Lemont, Illinois 60439, United States
| | - Artem M. Rumyantsev
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Department
of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Juan J. de Pablo
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Center
for Molecular Engineering, Argonne National
Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
7
|
Nagumo R, Suzuki Y, Nakata I, Matsuoka T, Iwata S. Influence of Molecular Structures of Organic Foulants on the Antifouling Properties of Poly(2-methoxyethyl acrylate) and Its Analogs: A Molecular Dynamics Study. ACS Biomater Sci Eng 2023. [PMID: 37354100 DOI: 10.1021/acsbiomaterials.3c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
Elucidating the fouling phenomena of polymer surfaces will facilitate the molecular design of high-performance biomedical devices. Here, we investigated the remarkable antifouling properties of two acrylate materials, poly(2-methoxyethyl acrylate) (PMEA) and poly(3-methoxypropionic acid vinyl ester) (PMePVE), which have a terminal methoxy group on the side chain, via molecular dynamics simulations of binary mixtures of acrylate/methacrylate trimers with n-pentane or 2,2-dimethylpropane (neopentane), that serve as the nonpolar organic probe (organic foulants). The second virial coefficient (B2) was determined to assess the aggregation/dispersion properties in the binary mixtures. The order of the B2 values for the trimer/pentane mixtures indicated that the terminal methoxy group of the side chain plays an important role in enhancing the fouling resistance to nonpolar organic foulants. Here, we hypothesized that the antifouling properties of PMEA/PMePVE surfaces originate from the resistance. To evaluate the molecular-level accessibility of organic foulants to acrylate/methacrylate materials, we examined the radial distribution functions (RDFs) of the terminal methyl groups of neopentane around the main chains of the acrylate/methacrylate trimers. As a result, the third distinct RDF peaks are observed only for the methacrylate trimers. The peaks are attributed to the hydrophobic interactions between the methyl group of neopentane and that of the main chain of the trimer. Accordingly, the methyl group of the main chain of methacrylate materials, such as poly(2-hydroxyethyl methacrylate) and poly(2-methoxyethyl methacrylate), unfavorably induces fouling with organic foulants. In this study, we clarify that preventing hydrophobic interactions between an organic foulant and polymeric material is essential for enhancing the antifouling property. Our approach has great potential for evaluating the molecular-level affinities of organic foulant with polymer surfaces for the molecular design of excellent antifouling polymeric materials.
Collapse
Affiliation(s)
- Ryo Nagumo
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Aichi, Japan
- Department of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Aichi, Japan
| | - Yui Suzuki
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Aichi, Japan
| | - Ibuki Nakata
- Department of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Aichi, Japan
| | - Takumi Matsuoka
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Aichi, Japan
| | - Shuichi Iwata
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Aichi, Japan
- Department of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Aichi, Japan
| |
Collapse
|
8
|
Sunwoo SH, Han SI, Jung D, Kim M, Nam S, Lee H, Choi S, Kang H, Cho YS, Yeom DH, Cha MJ, Lee S, Lee SP, Hyeon T, Kim DH. Stretchable Low-Impedance Conductor with Ag-Au-Pt Core-Shell-Shell Nanowires and in Situ Formed Pt Nanoparticles for Wearable and Implantable Device. ACS NANO 2023; 17:7550-7561. [PMID: 37039606 DOI: 10.1021/acsnano.2c12659] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Mechanically soft metallic nanocomposites have gained much attention as a key material for intrinsically stretchable biointegrated devices. However, it has been challenging to develop a stretchable conductive nanocomposite with all the desired material characteristics including high conductivity, high stretchability, low cytotoxicity, and low impedance. Here, we present a material strategy for the stretchable conductive nanocomposite, particularly emphasizing low impedance, by combining silver-gold-platinum core-shell-shell nanowires and homogeneously dispersed in situ synthesized platinum nanoparticles (Pt NPs). The highly embossed structure of the outermost Pt shell, together with the intrinsic electrical property of Pt, contributes to minimizing the impedance. The gold-platinum double-layer sheath prevents leaching of cytotoxic Ag ions, thus improving biocompatibility. Homogeneously dispersed Pt NPs, synthesized in situ during fabrication of the nanocomposite, simultaneously enhance conductivity, reduce impedance, and improve stretchability by supporting the percolation network formation. This intrinsically stretchable nanocomposite conductor can be applied to wearable and implantable bioelectronics for recording biosignals and delivering electrical stimulations in vivo.
Collapse
Affiliation(s)
- Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea
| | - Sang Ihn Han
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Dongjun Jung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Minseong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seonghyeon Nam
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunjin Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Suji Choi
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts 02134, United States
| | - Hyejeong Kang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Ye Seul Cho
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Da-Hae Yeom
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Myung-Jin Cha
- Department of Cardiology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Seunghwan Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung-Pyo Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
9
|
Lesniewska N, Beaussart A, Duval JF. Electrostatics of soft (bio)interfaces: Corrections of mean-field Poisson-Boltzmann theory for ion size, dielectric decrement and ion-ion correlation. J Colloid Interface Sci 2023; 642:154-168. [PMID: 37003010 DOI: 10.1016/j.jcis.2023.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/28/2023]
Abstract
HYPOTHESIS Electrostatics of soft (ion-permeable) (bio)particles (e.g. microorganisms, core/shell colloids) in aqueous electrolytes is commonly formulated by the mean-field Poisson-Boltzmann theory and integration of the charge contributions from electrolyte ions and soft material. However, the effects connected to the size of the electrolyte ions and that of the structural charges carried by the particle, to dielectric decrement and ion-ion correlations on soft interface electrostatics have been so far considered at the margin, despite the limits of the Gouy theory for condensed and/or multivalent electrolytes. EXPERIMENTS Accordingly, we modify herein the Poisson-Boltzmann theory for core/shell (bio)interfaces to include the aforementioned molecular effects considered separately or concomitantly. The formalism is applicable for poorly to highly charged particles in the thin electric double layer regime and to unsymmetrical multivalent electrolytes. FINDINGS Computational examples of practical interests are discussed with emphasis on how each considered molecular effect or combination thereof affects the interfacial potential distribution depending on size and valence of cations and anions, size of particle charges, length scale of ionic correlations and shell-to-Debye layer thickness ratio. The origins of here-evidenced pseudo-harmonic potential profile and ion size-dependent screening of core/shell particle charges are detailed. In addition, the existence and magnitude of the Donnan potential when reached in the shell layer are shown to depend on the excluded volumes of the electrolyte ions.
Collapse
|
10
|
Demir EC, McDermott MT, Kim CL, Ayranci C. Towards better understanding the stiffness of nanocomposites via parametric study of an analytical model modeling parameters and experiments. JOURNAL OF COMPOSITE MATERIALS 2023; 57:1087-1104. [PMID: 36974194 PMCID: PMC10037548 DOI: 10.1177/00219983221149122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The stiffness of polymeric materials can be improved dramatically with the addition of nanoparticles. In theory, as the nanoparticle loading in the polymer increases, the nanocomposite becomes stiffer; however, experiments suggest that little or no stiffness improvement is observed beyond an optimal nanoparticle loading. The mismatch between the theoretical and experimental findings, particularly at high particle loadings, needs to be understood for the effective use of nanoparticles. In this respect, we have recently developed an analytical model to close the gap in the literature and predict elastic modulus of nanocomposites. The model is based on a three-phase Mori-Tanaka model coupled with the Monte-Carlo method, and satisfactorily captures the experimental results, even at high nanoparticle loadings. The developed model can also be used to study the effects of agglomeration in nanocomposites. In this paper, we use this model to study the effects of agglomeration and related model parameters on the stiffness of nanocomposites. In particular, the effects of particle orientation, critical distance, dispersion state and agglomerate property, and particle aspect ratio are investigated to demonstrate capabilities of the model and to observe how optimal particle loading changes with respect these parameters. The study shows that the critical distance defining agglomerates and the properties of agglomerates are the key design parameters at high particle loadings. These two parameters rule the optimal elastic modulus with respect to particle loading. The findings will allow researchers to form design curves and successfully predict the elastic moduli of nanocomposites without the exhaustive experimental undertakings.
Collapse
Affiliation(s)
- Eyup Can Demir
- Department of Mechanical
Engineering, University of Alberta, Edmonton,
Alberta, Canada
| | - Mark T McDermott
- Department of Chemistry,
University
of Alberta, Edmonton, Alberta,
Canada
| | - Chun ll Kim
- Department of Mechanical
Engineering, University of Alberta, Edmonton,
Alberta, Canada
| | - Cagri Ayranci
- Department of Mechanical
Engineering, University of Alberta, Edmonton,
Alberta, Canada
| |
Collapse
|
11
|
Qian Z, Zhu YL, Lu ZY, Qian HJ. Unexpected Solvent Effect Leading to Interface Segregation of Single-Chain Nanoparticles in All-Polymer Nanocomposite Films upon Solvent Evaporation. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Zhao Qian
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - You-Liang Zhu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Hu-Jun Qian
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
12
|
Danischewski J, Donelson D, Farzansyed M, Jacoski E, Kato H, Lucin Q, Roca M. Color Transferability from Solution to Solid Using Silica Coated Silver Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1786-1792. [PMID: 36701245 PMCID: PMC9910289 DOI: 10.1021/acs.langmuir.2c02611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/11/2023] [Indexed: 06/17/2023]
Abstract
The interpretation of color change in sensors and tests can be linked to incorrect conclusions if the intrinsic color changes are not accounted for. In this work, we study the intrinsic color change associated with the process of embedding nanoparticles in a polymer to create nanocomposite films. We present a safer, faster method to coat silver nanoparticles with silica and employ a seven-factor Plackett-Burman design to identify critical factors in the synthesis. Silver nanodisks with increasing thicknesses of the silica shell showed a decreasing sensitivity of their localized surface plasmon resonance (LSPR) toward changes in the refractive index surrounding the nanoparticle. A color shift of up to 72 nm was observed when bare nanoparticles were embedded in poly(vinyl alcohol), but no color change was perceived when nanoparticles were coated with a 25-nm-thick silica shell. Understanding the origin of color changes intrinsic to the preparation of polymeric nanocomposites aids in the design and correct use of plasmonic sensors.
Collapse
Affiliation(s)
| | - Destiny Donelson
- Chemistry Department, Skidmore
College, Saratoga
Springs, New York12866-1632, United States
| | - Maleeha Farzansyed
- Chemistry Department, Skidmore
College, Saratoga
Springs, New York12866-1632, United States
| | - Erin Jacoski
- Chemistry Department, Skidmore
College, Saratoga
Springs, New York12866-1632, United States
| | - Haru Kato
- Chemistry Department, Skidmore
College, Saratoga
Springs, New York12866-1632, United States
| | - Quincy Lucin
- Chemistry Department, Skidmore
College, Saratoga
Springs, New York12866-1632, United States
| | - Maryuri Roca
- Chemistry Department, Skidmore
College, Saratoga
Springs, New York12866-1632, United States
| |
Collapse
|
13
|
Advanced Polymeric Nanocomposite Membranes for Water and Wastewater Treatment: A Comprehensive Review. Polymers (Basel) 2023; 15:polym15030540. [PMID: 36771842 PMCID: PMC9920371 DOI: 10.3390/polym15030540] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
Nanomaterials have been extensively used in polymer nanocomposite membranes due to the inclusion of unique features that enhance water and wastewater treatment performance. Compared to the pristine membranes, the incorporation of nanomodifiers not only improves membrane performance (water permeability, salt rejection, contaminant removal, selectivity), but also the intrinsic properties (hydrophilicity, porosity, antifouling properties, antimicrobial properties, mechanical, thermal, and chemical stability) of these membranes. This review focuses on applications of different types of nanomaterials: zero-dimensional (metal/metal oxide nanoparticles), one-dimensional (carbon nanotubes), two-dimensional (graphene and associated structures), and three-dimensional (zeolites and associated frameworks) nanomaterials combined with polymers towards novel polymeric nanocomposites for water and wastewater treatment applications. This review will show that combinations of nanomaterials and polymers impart enhanced features into the pristine membrane; however, the underlying issues associated with the modification processes and environmental impact of these membranes are less obvious. This review also highlights the utility of computational methods toward understanding the structural and functional properties of the membranes. Here, we highlight the fabrication methods, advantages, challenges, environmental impact, and future scope of these advanced polymeric nanocomposite membrane based systems for water and wastewater treatment applications.
Collapse
|
14
|
Okoli U, Rishi K, Beaucage G, Kammler HK, McGlasson A, Chauby M, Narayanan V, Grammens J, Kuppa VK. Dispersion of modified fumed silica in elastomeric nanocomposites. POLYMER 2023. [DOI: 10.1016/j.polymer.2022.125407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Xu N, Liu Z, Lv Y, Liu S, Yang S, Zhang W. Improved Coarse-Grained Model for Nanoparticles Based on the Martini Force Field and Its Application in Molecular Dynamics Simulation on Gel Ink. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14172-14184. [PMID: 36367785 DOI: 10.1021/acs.langmuir.2c02185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Research on the dispersion and stability of nanoparticles in liquid media is one of the key subjects for nanomaterial utilization. In consideration of the preponderance of coarse-grained (CG) molecular dynamics (MD) simulation in following and understanding the structure and dynamics on the nanoscale, an improved CG model for nanoparticles based on the Martini force field is established to facilitate the more extensive applications of this simulation method and further studies on complex nanoparticle liquid systems. Gel ink is selected as the liquid system for nanoparticles to validate the improved CG model on the one hand and introduce the CGMD simulation method into the studies of this system on the other. The calculation shows that the improved model can provide relatively precise results and has good computational stability. The effect mechanisms of the thickener and disperser on the carbon black nanoparticle are similar, namely the result of a delicate balance between the interaction of the thickener/disperser with the carbon black nanoparticle and the interaction of the thickener and disperser with each other. Furthermore, the phase assimilating effect of disperser molecules is key for separating the agglomerated carbon black nanoparticles; thereafter, the space steric hindrance effect and the electrostatic hindrance effect play main roles in maintaining the dispersion of carbon black nanoparticles.
Collapse
Affiliation(s)
- Na Xu
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi030024, China
- Shanxi coking coal in Yuncheng salt Refco Group Ltd., Yuncheng, Shanxi044000, China
| | - Zilu Liu
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi030024, China
| | - Yaodong Lv
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi030024, China
| | - Shoujun Liu
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi030024, China
| | - Song Yang
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi030024, China
| | - Wei Zhang
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi030024, China
| |
Collapse
|
16
|
Ren R, Lim C, Li S, Wang Y, Song J, Lin TW, Muir BW, Hsu HY, Shen HH. Recent Advances in the Development of Lipid-, Metal-, Carbon-, and Polymer-Based Nanomaterials for Antibacterial Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3855. [PMID: 36364631 PMCID: PMC9658259 DOI: 10.3390/nano12213855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 05/29/2023]
Abstract
Infections caused by multidrug-resistant (MDR) bacteria are becoming a serious threat to public health worldwide. With an ever-reducing pipeline of last-resort drugs further complicating the current dire situation arising due to antibiotic resistance, there has never been a greater urgency to attempt to discover potential new antibiotics. The use of nanotechnology, encompassing a broad range of organic and inorganic nanomaterials, offers promising solutions. Organic nanomaterials, including lipid-, polymer-, and carbon-based nanomaterials, have inherent antibacterial activity or can act as nanocarriers in delivering antibacterial agents. Nanocarriers, owing to the protection and enhanced bioavailability of the encapsulated drugs, have the ability to enable an increased concentration of a drug to be delivered to an infected site and reduce the associated toxicity elsewhere. On the other hand, inorganic metal-based nanomaterials exhibit multivalent antibacterial mechanisms that combat MDR bacteria effectively and reduce the occurrence of bacterial resistance. These nanomaterials have great potential for the prevention and treatment of MDR bacterial infection. Recent advances in the field of nanotechnology are enabling researchers to utilize nanomaterial building blocks in intriguing ways to create multi-functional nanocomposite materials. These nanocomposite materials, formed by lipid-, polymer-, carbon-, and metal-based nanomaterial building blocks, have opened a new avenue for researchers due to the unprecedented physiochemical properties and enhanced antibacterial activities being observed when compared to their mono-constituent parts. This review covers the latest advances of nanotechnologies used in the design and development of nano- and nanocomposite materials to fight MDR bacteria with different purposes. Our aim is to discuss and summarize these recently established nanomaterials and the respective nanocomposites, their current application, and challenges for use in applications treating MDR bacteria. In addition, we discuss the prospects for antimicrobial nanomaterials and look forward to further develop these materials, emphasizing their potential for clinical translation.
Collapse
Affiliation(s)
- Ruohua Ren
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Chiaxin Lim
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Shiqi Li
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Yajun Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Jiangning Song
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Tsung-Wu Lin
- Department of Chemistry, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan
| | | | - Hsien-Yi Hsu
- School of Energy and Environment, Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong 518057, China
| | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
17
|
Gautham SMB, Patra TK. Deep learning potential of mean force between polymer grafted nanoparticles. SOFT MATTER 2022; 18:7909-7916. [PMID: 36226486 DOI: 10.1039/d2sm00945e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Grafting polymer chains on the surfaces of nanoparticles is a well-known route to control their self-assembly and distribution in a polymer matrix. A wide variety of self-assembled structures are achieved by changing the grafting patterns on the surface of an individual nanoparticle. However, an accurate estimation of the effective potential of mean force between a pair of grafted nanoparticles that determines their assembly and distribution in a polymer matrix is an outstanding challenge in nanoscience. We address this problem via deep learning. As a proof of concept, here we report a deep learning framework that learns the interaction between a pair of single-chain grafted spherical nanoparticles from their molecular dynamics trajectory. Subsequently, we carry out the deep learning potential of mean force-based molecular simulation that predicts the self-assembly of a large number of single-chain grafted nanoparticles into various anisotropic superstructures, including percolating networks and bilayers depending on the nanoparticle concentration in three-dimensions. The deep learning potential of mean force-predicted self-assembled superstructures are consistent with the actual superstructures of single-chain polymer grafted spherical nanoparticles. This deep learning framework is very generic and extensible to more complex systems including multiple-chain grafted nanoparticles. We expect that this deep learning approach will accelerate the characterization and prediction of the self-assembly and phase behaviour of polymer-grafted and unfunctionalized nanoparticles in free space or a polymer matrix.
Collapse
Affiliation(s)
- Sachin M B Gautham
- Department of Chemical Engineering, Center for Atomistic Modeling and Materials Design and Center for Carbon Capture Utilization and Storage, Indian Institute of Technology Madras, Chennai, TN 600036, India.
| | - Tarak K Patra
- Department of Chemical Engineering, Center for Atomistic Modeling and Materials Design and Center for Carbon Capture Utilization and Storage, Indian Institute of Technology Madras, Chennai, TN 600036, India.
| |
Collapse
|
18
|
Al Harby NF, El-Batouti M, Elewa MM. Prospects of Polymeric Nanocomposite Membranes for Water Purification and Scalability and their Health and Environmental Impacts: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12203637. [PMID: 36296828 PMCID: PMC9610978 DOI: 10.3390/nano12203637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 05/26/2023]
Abstract
Water shortage is a major worldwide issue. Filtration using genuine polymeric membranes demonstrates excellent pollutant separation capabilities; however, polymeric membranes have restricted uses. Nanocomposite membranes, which are produced by integrating nanofillers into polymeric membrane matrices, may increase filtration. Carbon-based nanoparticles and metal/metal oxide nanoparticles have received the greatest attention. We evaluate the antifouling and permeability performance of nanocomposite membranes and their physical and chemical characteristics and compare nanocomposite membranes to bare membranes. Because of the antibacterial characteristics of nanoparticles and the decreased roughness of the membrane, nanocomposite membranes often have greater antifouling properties. They also have better permeability because of the increased porosity and narrower pore size distribution caused by nanofillers. The concentration of nanofillers affects membrane performance, and the appropriate concentration is determined by both the nanoparticles' characteristics and the membrane's composition. Higher nanofiller concentrations than the recommended value result in deficient performance owing to nanoparticle aggregation. Despite substantial studies into nanocomposite membrane manufacturing, most past efforts have been restricted to the laboratory scale, and the long-term membrane durability after nanofiller leakage has not been thoroughly examined.
Collapse
Affiliation(s)
- Nouf F. Al Harby
- Department of Chemistry, College of Science, Qassim University, Qassim 52571, Saudi Arabia
| | - Mervette El-Batouti
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21526, Egypt
| | - Mahmoud M. Elewa
- Arab Academy for Science, Technology and Maritime Transport, Alexandria P.O. Box 1029, Egypt
| |
Collapse
|
19
|
Moinuddin M, Tripathy M. Effect of Architecture and Topology on the Self-Assembly of Polymer-Grafted Nanoparticles. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Md Moinuddin
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai400076, Maharashtra, India
| | - Mukta Tripathy
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai400076, Maharashtra, India
| |
Collapse
|
20
|
Qu J, Chen Q, Huang W, Zhang L, Liu J. Dispersion and Diffusion Mechanism of Nanofillers with Different Geometries in Bottlebrush Polymers: Insights from Molecular Dynamics Simulation. J Phys Chem B 2022; 126:7761-7770. [PMID: 36169228 DOI: 10.1021/acs.jpcb.2c04389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The dispersion and diffusion mechanism of nanofillers in polymer nanocomposites (PNCs) are crucial for understanding the properties of PNCs, which is of great significance for the design of novel materials. Herein, we investigate the dispersion and diffusion behavior of two geometries of nanofillers, namely, spherical nanoparticles (SNPs) and nanorods (NRs), in bottlebrush polymers by utilizing coarse-grained molecular dynamics simulations. With the increase of the interaction strength between the nanofiller and polymer (εnp), both the SNPs and NRs experience a typical "aggregated phase-dispersed phase-bridged phase" state transition in the bottlebrush polymer matrix. We evaluate the validity of the Stokes-Einstein (SE) equation for predicting the diffusion coefficient of nanofillers in bottlebrush polymers. The results demonstrate that the SE predictions are slightly larger than the simulated values for small SNP sizes because the local viscosity that is felt by small SNPs in the densely grafted bottlebrush polymer does not differ much from the macroscopic viscosity. The relative size of the length of the NRs (L) and the radius of gyration (Rg) of the bottlebrush polymer play a key role in the diffusion of NRs. In addition, we characterize the anisotropic diffusion of NRs to analyze their translational and rotational diffusion. The motion of NRs in the direction perpendicular to the end-to-end vector is more hindered, indicating that there is a strong coupling between the rotation of NRs and the motion of the polymer. The NR motion shows stronger anisotropic diffusion at short time scales because of the steric effects generated by side chains of the bottlebrush polymer. In general, our results provide a fundamental understanding of the dispersion of nanofillers and the microscopic mechanism of nanofiller diffusion in bottlebrush polymers.
Collapse
Affiliation(s)
- Jiajun Qu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.,State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Qionghai Chen
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.,State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Wanhui Huang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.,State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Liqun Zhang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.,State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jun Liu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.,State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
21
|
Dhumal U, Erigi U, Tripathy M. Polymer-mediated self-assembly, dispersion, and phase separation of Janus nanorods. Phys Chem Chem Phys 2022; 24:23634-23650. [PMID: 36134618 DOI: 10.1039/d2cp01743a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The challenge of stabilizing polymer nanocomposites lies in the fact that nanoparticles tend to phase separate from the polymer melt due to an entropic 'depletion attraction' between nanoparticles. Additionally, composites of polymer and nanorods show a decrease in miscibility with increasing nanorod aspect ratio [U. K. Sankar and M. Tripathy, Macromolecules, 2015, 48, 432-442; U. Erigi, U. Dhumal and M. Tripathy, J. Chem. Phys., 2021, 154, 124903]. In this work, we have studied the structure and phase behaviour of polymer-Janus nanorod mixtures using Polymer Reference Interaction Site Model (PRISM) theory and molecular dynamics simulations. The composite system of polymer and Janus nanorods of two different thicknesses, at various Janus nanorod densities, and for different interaction strengths between polymer and attractive sites of Janus nanorods (εpa), is investigated for their miscibility and self-assembly. At low Janus nanorod density, PRISM theory predicts transitions from the entropic depletion-driven contact aggregation of Janus nanorods to a well-dispersed phase to the bridging-driven phase separation of Janus nanorods, with increasing εpa. This behaviour is similar to earlier predictions for homogeneous nanorods. However, molecular dynamics simulations do not confirm the bridging-driven phase separation at high εpa predicted by PRISM theory. We find that both PRISM theory and molecular dynamics simulations are in agreement in the intermediate and high Janus nanorod density regimes. PRISM theory predicts, and simulations confirm, that at high Janus nanorod densities, the system undergoes a transition from depletion-driven macrophase separation to dispersion to chemical anisotropy-driven self-assembly with increasing εpa. The self-assembly at high εpa is mediated by the polymer. At intermediate Janus nanorod densities, the usual transition from an entropic depletion-driven macrophase separation to dispersion is predicted at low εpa. At high εpa, both PRISM theory and molecular dynamics simulations show transition to a state that is simultaneously macrophase separated and microphase separated (self-assembled).
Collapse
Affiliation(s)
- Umesh Dhumal
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Umashankar Erigi
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Mukta Tripathy
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
22
|
Li X, Liu J, Zheng Z. Recent progress of elastomer–silica nanocomposites toward green tires:simulation and experiment. POLYM INT 2022. [DOI: 10.1002/pi.6454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiu Li
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials Hubei University Wuhan 430062 China
| | - Jun Liu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials Beijing University of Chemical Technology Beijing 100029 China
| | - Zi‐Jian Zheng
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials Hubei University Wuhan 430062 China
| |
Collapse
|
23
|
Zhang G, Tian C, Shi J, Zhang X, Liu J, Tan T, Zhang L. Mechanically Robust, Self-Repairable, Shape Memory and Recyclable Ionomeric Elastomer Composites with Renewable Lignin via Interfacial Metal-Ligand Interactions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38216-38227. [PMID: 35950777 DOI: 10.1021/acsami.2c10731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lignin, the most abundant aromatic polymer in nature, is one of the most promising renewable feedstocks for value-added polymer products. However, it is challenging to prepare high-performance and multifunctional polymer materials with renewable lignin because of its poor compatibility with the elastomer matrix. In fact, lignin often requires solvent fractionation, chemical modification, or prohibitively expensive additives. This work develops a cost-effective strategy to prepare ionomeric elastomer composites based on a commercial carboxyl elastomer and a high content of lignin without purification or chemical modification. The compatibility between the elastomer and lignin is improved by the incorporation of zinc oxide which creates metal-ligand coordination at the interfaces between the carboxyl groups of the elastomer and the oxygen-bearing groups of the lignin. This results in fine dispersion of the lignin in the elastomer matrix, even when its content reaches 50 wt %. The lignin/elastomer composites show excellent mechanical properties, which are attributed to the reinforcing effect of the lignin domains and the presence of abundant sacrificial coordination bonds. Moreover, ionic bonds and ionic aggregates created by the neutralization of the zinc ions with the carboxyl groups of the elastomer behave as physical crosslinks which endow the composites with excellent recyclability; namely, their mechanical properties are retained or even improved after multiple reprocessing cycles. They also show good self-repairability and shape memory. Hence, this work may open up new avenues to utilize lignin as a renewable alternative to petroleum derivatives for designing and fabricating high-performance and multifunctional elastomer materials.
Collapse
Affiliation(s)
- Ganggang Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Chenru Tian
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jinwei Shi
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Nanjing Green Gold Giant Rubber & Plastic High-Tech Co., Ltd, Nanjing 211899, P. R. China
| | - Xi Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Jun Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Tianwei Tan
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
24
|
Liu M, Huang H, Li S, Chen Z, Liu J, Zeng X, Zhang L. Versatilely Manipulating the Mechanical Properties of Polymer Nanocomposites by Incorporating Porous Fillers: A Molecular Dynamics Simulation Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10150-10161. [PMID: 35948115 DOI: 10.1021/acs.langmuir.2c01090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polymer nanocomposites (PNCs) have been attracting myriad scientific and technological attention due to their promising mechanical and functional properties. However, there remains a need for an efficient method that can further strengthen the mechanical performance of PNCs. Here, we propose a strategy to design and fabricate novel PNCs by incorporating porous fillers (PFs) such as metal-organic frameworks with ultrahigh specific surface areas and tunable nanospaces to polymer matrices via coarse-grained molecular dynamics simulations. Three important parameters─the polymer chain stiffness (k), the interaction strength between the PF center and the end functional groups of polymer chains (εcenter end), and the PF weight fraction (w)─are systematically examined. First, attributed to the penetration of polymer chains into PFs at a strong εcenter end, the dimension of polymer chains such as the radius of gyration and the end-to-end distance increases greatly as a function of k compared to the case of the neat polymer system. The penetration of polymer chains is validated by characterizing the radial distribution function between end functional groups and filler centers, as well as the visualization of the snapshots. Also, the dispersion state of PFs tends to be good because of the chain penetration. Then, the glass transition temperature ratio of PNCs to that of the neat systems exhibits a maximum in the case of k = 5ε, indicating that the strongest interlocking between polymer chains and PFs occurs at intermediate chain stiffness. The polymer chain dynamics of PNCs decreases to a plateau at k = 5ε and then becomes stable, and the relative mobility to that of the neat system as well presents the same variation trend. Furthermore, the mechanical property under uniaxial deformation is thoroughly studied, and intermediates k, εcenter end, and w can bring about the best mechanical property. This is because of the robust penetration and interaction, which is confirmed by calculating the stress of every component of PNCs with and without end functional groups and PF centers as well as the nonbonded interaction energy change between different components. Finally, the optimal condition (k = 5.36ε, εcenter end = 5.29ε, and w = 6.54%) to design the PNC with superior mechanical behavior is predicted by Gaussian process regression, an active machine learning (ML) method. Overall, incorporating PFs greatly enhances the entanglements and interactions between polymer chains and nanofillers and brings effective mechanical reinforcements with lower filler weight fractions. We anticipate that this will provide new routes to the design of mechanically reinforced PNCs.
Collapse
Affiliation(s)
- Minghui Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Haifeng Huang
- CETC Big Data Research Institution Co. Ltd., Guiyang 550081, People's Republic of China
| | - Sai Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Zhudan Chen
- Institute of Automation, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jun Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xiaofei Zeng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
25
|
Chan SY, Jhalaria M, Huang Y, Li R, Benicewicz BC, Durning CJ, Vo T, Kumar SK. Local Structure of Polymer-Grafted Nanoparticle Melts. ACS NANO 2022; 16:10404-10411. [PMID: 35816726 DOI: 10.1021/acsnano.2c00643] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polymer-grafted nanoparticle (GNP) membranes show unexpected gas transport enhancements relative to the neat polymer, with a maximum as a function of graft molecular weight (MWg ≈ 100 kDa) for sufficiently high grafting densities. The structural origins of this behavior are unclear. Simulations suggest that polymer segments are stretched near the nanoparticle (NP) surface and form a dry layer, while more distal chain fragments are in their undeformed Gaussian states and interpenetrate with segments from neighboring NPs. This theoretical basis is derived by considering the behavior of two adjacent NPs; how this behavior is modified by multi-NP effects relevant to gas separation membranes is unexplored. Here, we measure and interpret SAXS data for poly(methyl acrylate)-grafted silica NPs and find that for very low MWgs, contact between GNPs obeys the two-NP theory─namely that the NPs act like hard spheres, with radii that are linear combinations of the NP core sizes and the dry zone dimensions; thus, the interpenetration zones relax into the interstitial spaces. For chains with MWg > 100 kDa, the interpenetration zones are in the contact regions between two NPs. These results suggest that for MWgs below the transition, gas primarily moves through a series of dry zones with favorable transport, with the interpenetration zone with less favorable transport properties in parallel. For higher MWgs, the dry and interpenetration zones are in series, resulting in a decrease in transport enhancement. The MWg at the transport maximum then corresponds to the chain length with the largest, unfavorable stretching free energy.
Collapse
Affiliation(s)
- Sophia Y Chan
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Mayank Jhalaria
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Yucheng Huang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Brian C Benicewicz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Christopher J Durning
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Thi Vo
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sanat K Kumar
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
26
|
Hariharan K, Patel P, Mehta T. Surface modifications of Gold Nanoparticles: Stabilization and Recent Applications in Cancer Therapy. Pharm Dev Technol 2022; 27:665-683. [PMID: 35850605 DOI: 10.1080/10837450.2022.2103825] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Gold nanoparticles (GNP) are noble metal nanocarriers that have been recently researched upon for pharmaceutical applications, imaging, and diagnosis. These metallic nanocarriers are easy to synthesize using chemical reduction techniques as their surface can be easily modified. Also, the properties of GNP are significantly affected by its size and shape which mandates its stabilization using suitable techniques of surface modification. Over the past decade, research has focused on surface modification of GNP and its stabilization using polymers, polysaccharides, proteins, dendrimers, and phase-stabilizers like gel phase or ionic liquid phase. The use of GNP for pharmaceutical applications requires its surface modification using biocompatible and inert surface modifiers. The stabilizers used, interact with the surface of GNP to provide either electrostatic stabilization or steric stabilization. This review extensively discusses the surface modification techniques for GNP and the related molecular level interactions involved in the same. The influence of various factors like the concentration of stabilizers used their characteristics like chain length and thickness, pH of the surrounding media, etc., on the surface of GNP and resulting to stability have been discussed in detail. Further, this review highlights the recent applications of surface-modified GNP in the management of tumor microenvironment and cancer therapy.
Collapse
Affiliation(s)
- Kartik Hariharan
- Institute of Pharmacy, Nirma University, SG Highway, Gota, Ahmedabad-382481, Gujarat, India
| | - Parth Patel
- Institute of Pharmacy, Nirma University, SG Highway, Gota, Ahmedabad-382481, Gujarat, India
| | - Tejal Mehta
- Institute of Pharmacy, Nirma University, SG Highway, Gota, Ahmedabad-382481, Gujarat, India
| |
Collapse
|
27
|
Chen R, Zhang Z, Zhou M, Han Y, Li F, Liu J, Zhang L. Molecular Dynamics Simulations of Polymer Nanocomposites Welding: Interfacial Structure, Dynamics and Strength. Macromol Rapid Commun 2022; 43:e2200221. [PMID: 35686731 DOI: 10.1002/marc.202200221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/16/2022] [Indexed: 11/12/2022]
Abstract
Polymer welding has received numerous scientific attention, however, the welding of polymer nanocomposites (PNCs) has not been studied yet. In this work, via coarse-grained molecular dynamics simulation, we focus our attention on investigating the welding interfacial structure, dynamics and strength by constructing the upper and lower layers of PNCs, by varying the polymer-nanoparticle (NP) interaction strength εNP-p . Remarkably, at low εNP-p , the NPs gradually migrate into the top and bottom surface layer perpendicular to the z direction during the adhesion process, while they are distributed in the middle region at high εNP-p . Meanwhile, the dimension of polymer chains is found to exhibit a remarkable anisotropy evidenced by the root-mean-square radius of gyration in the xy- (Rg,xy ) and z- (Rg,z ) component. The welding interdiffusion depth increases the fastest at low εNP-p, attributed to the high mobility of polymer chains and NPs. Lastly, although the mechanical properties of PNCs at high εNP-p is the strongest because of the presence of the NPs in the bulk region, the welding efficiency is the greatest at low εNP-p . Generally, our work could provide a fundamental understanding of the interfacial welding of PNCs, in hopes of guiding to design and fabricate excellent self-healable PNCs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ruisi Chen
- Center of Advanced Elastomer Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Zhiyu Zhang
- Center of Advanced Elastomer Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Mengyu Zhou
- Center of Advanced Elastomer Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yue Han
- Center of Advanced Elastomer Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Fanzhu Li
- Center of Advanced Elastomer Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.,State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.,Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Jun Liu
- Center of Advanced Elastomer Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.,State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.,Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.,Interdisciplinary Research Center for Artificial Intelligence, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Liqun Zhang
- Center of Advanced Elastomer Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.,State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.,Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| |
Collapse
|
28
|
Li K, Li Z, Liu J, Wen S, Liu L, Zhang L. Designing the cross-linked network to tailor the mechanical fracture of elastomeric polymer materials. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Demir EC, Benkaddour A, Aldrich DR, McDermott MT, Kim CI, Ayranci C. A predictive model towards understanding the effect of reinforcement agglomeration on the stiffness of nanocomposites. JOURNAL OF COMPOSITE MATERIALS 2022; 56:1591-1604. [PMID: 35464628 PMCID: PMC9016679 DOI: 10.1177/00219983221076639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanocomposite technologies can be significantly enhanced through a careful exploration of the effects of agglomerates on mechanical properties. Existing models are either overly simplified (e.g., neglect agglomeration effects) or often require a significant amount of computational resources. In this study, a novel continuum-based model with a statistical approach was developed. The model is based on a modified three-phase Mori-Tanaka model, which accounts for the filler, agglomerate, and matrix regions. Fillers are randomly dispersed in a defined space to predict agglomeration tendency. The proposed model demonstrates good agreement with the experimentally measured elastic moduli of spin-coated cellulose nanocrystal reinforced polyamide-6 films. The techniques and methodologies presented in the study are sufficiently general in that they can be extended to the analyses of various types of polymeric nanocomposite systems.
Collapse
Affiliation(s)
- Eyup Can Demir
- Department of Mechanical Engineering, University of Alberta Faculty of
Engineering, Edmonton, AB, Canada
| | - Abdelhaq Benkaddour
- Department of Mechanical Engineering, University of Alberta Faculty of
Engineering, Edmonton, AB, Canada
| | - Daniel R Aldrich
- Department of Mechanical Engineering, University of Alberta Faculty of
Engineering, Edmonton, AB, Canada
| | - Mark T McDermott
- Department of Mechanical Engineering, University of Alberta Faculty of
Engineering, Edmonton, AB, Canada
| | - Chun Il Kim
- Department of Mechanical Engineering, University of Alberta Faculty of
Engineering, Edmonton, AB, Canada
| | - Cagri Ayranci
- Department of Mechanical Engineering, University of Alberta Faculty of
Engineering, Edmonton, AB, Canada
| |
Collapse
|
30
|
Zhou Y, Schweizer KS. Theory for the Elementary Time Scale of Stress Relaxation in Polymer Nanocomposites. ACS Macro Lett 2022; 11:199-204. [PMID: 35574769 DOI: 10.1021/acsmacrolett.1c00732] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We construct a microscopic theory for the elementary time scale of stress relaxation in dense polymer nanocomposites. The key dynamical event is proposed to involve the rearrangement of cohesive segment-nanoparticle (NP) tight bridging complexes via an activated small NP dilational motion, which allows the confined segments to relax. The corresponding activation energy is determined by the NP bridge coordination number and potential of mean force barrier. The activation energy varies nonlinearly with interfacial cohesion strength and NP concentration, and a universal master curve is predicted. The theory is in very good agreement with experiments. The underlying ideas are relevant to a variety of other hybrid macromolecular materials involving hard particles and soft macromolecules.
Collapse
|
31
|
Hou G, Li S, Liu J, Weng Y, Zhang L. Designing high performance polymer nanocomposites by incorporating robustness-controlled polymeric nanoparticles: insights from molecular dynamics. Phys Chem Chem Phys 2022; 24:2813-2825. [PMID: 35043809 DOI: 10.1039/d1cp04254h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Introducing polymeric nanoparticles into polymer matrices is an interesting topic, and the robustness of the polymeric nanoparticles is crucial for the properties of the polymer nanocomposites (PNCs). In this study, by incorporating star-shaped polymeric nanoparticles (SSPNs) into the polymer, the effect of the sphericity (η) and arm length (L) of the SSPNs on the mechanical properties of PNCs is systematically investigated, using a coarse-grained molecular dynamics simulation. In addition, the linear and spherical nanoparticles (NPs) are compared with SSPNs by fixing the approximate diameter and mass fraction of the NPs. The radial distribution function, the second virial coefficient, mean-squared displacement, bond autocorrelation function, and primitive path analysis are employed to systematically characterize the structure and dynamics of these new PNCs. It is found that the dispersion of the NPs is enhanced with the increase of η, and the entanglement density reaches maximum, which both contribute to the greatest mechanical reinforcing effect. More significantly, it is found that the classical Payne effect, namely the storage as a function of the strain amplitude, decreases remarkably, and with a much smaller loss factor for these SSPN filled polymer nanocomposites, compared to conventional PNCs filled with rigid NPs. Furthermore, the change of the arm length of the SSPNs is found to exhibit the same effect on the mechanical and viscoelastic properties, as the variation of the number of the arms. In general, this work shows that these new SSPN filled polymer nanocomposites can exceed conventional PNCs, by manipulating the robustness of the SSPNs using, for example, the number and length of the arms. This research may provide guidelines for the investigation of the structure-property relationships of the topological structure of polymeric nanoparticles.
Collapse
Affiliation(s)
- Guanyi Hou
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| | - Sai Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China. .,Center of Advanced Elastomer Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Jun Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China. .,Center of Advanced Elastomer Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yunxuan Weng
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China. .,Center of Advanced Elastomer Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| |
Collapse
|
32
|
Tian C, Feng H, Qiu Y, Zhang G, Tan T, Zhang L. Facile strategy to incorporate amidoxime groups into elastomers toward self-crosslinking and self-reinforcement. Polym Chem 2022. [DOI: 10.1039/d2py00991a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amidoxime modification of NBR and the formation of a multi-crosslinking network structure by self-crosslinking of AO-NBR.
Collapse
Affiliation(s)
- Chenru Tian
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, No. 15 North Third Ring Road East, Chaoyang District, Beijing 100029, P. R. China
| | - Haoran Feng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, No. 15 North Third Ring Road East, Chaoyang District, Beijing 100029, P. R. China
| | - Yuchen Qiu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, No. 15 North Third Ring Road East, Chaoyang District, Beijing 100029, P. R. China
| | - Ganggang Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, No. 15 North Third Ring Road East, Chaoyang District, Beijing 100029, P. R. China
| | - Tianwei Tan
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, No. 15 North Third Ring Road East, Chaoyang District, Beijing 100029, P. R. China
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, No. 15 North Third Ring Road East, Chaoyang District, Beijing 100029, P. R. China
| |
Collapse
|
33
|
Zhao X, He F, Yu G, Feng Y, Li J. High-viscosity Pickering emulsion stabilized by amphiphilic alginate/SiO 2 via multiscale methodology for crude oil-spill remediation. Carbohydr Polym 2021; 273:118492. [PMID: 34560936 DOI: 10.1016/j.carbpol.2021.118492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/04/2021] [Accepted: 07/25/2021] [Indexed: 01/21/2023]
Abstract
The separation of crude oil from oily water and collection of the emulsion constituents has attracted significant attention. We demonstrate that the relationships between inherent dynamic factors and the performance of a Pickering emulsion stabilized by SiO2 particles with adsorbed hydrophobically modified sodium alginate derivatives (HMSA), a natural pH-sensitive polysaccharide, can be clarified via a multi-scale methodology. Functionalization of the silica surface with HMSA controls particle dispersibility, as verified by turbidity and stability analyses, the zeta potential, and transmission electron microscopy measurements. The interaction mechanism between HMSA and SiO2 nanoparticles was elucidated by both experimental adsorption measurements and computer simulations, which showed qualitative consistency. The aggregation/disaggregation of HMSA/SiO2 particles achieved by tuning the pH of the solution facilitated reversible dispersibility/collectability behavior. Overall, a high-viscosity Pickering emulsion system based on particle-particle and droplet-droplet interactions, which can be filtered for the recovery of spilled crude oil, was demonstrated.
Collapse
Affiliation(s)
- Xinyu Zhao
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou, Hainan 570228, China
| | - Furui He
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou, Hainan 570228, China
| | - Gaobo Yu
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou, Hainan 570228, China.
| | - Yuhong Feng
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou, Hainan 570228, China.
| | - Jiacheng Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou, Hainan 570228, China.
| |
Collapse
|
34
|
Nanocomposite of Fullerenes and Natural Rubbers: MARTINI Force Field Molecular Dynamics Simulations. Polymers (Basel) 2021; 13:polym13224044. [PMID: 34833344 PMCID: PMC8626026 DOI: 10.3390/polym13224044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
The mechanical properties of natural rubber (NR) composites depend on many factors, including the filler loading, filler size, filler dispersion, and filler-rubber interfacial interactions. Thus, NR composites with nano-sized fillers have attracted a great deal of attention for improving properties such as stiffness, chemical resistance, and high wear resistance. Here, a coarse-grained (CG) model based on the MARTINI force field version 2.1 has been developed and deployed for simulations of cis-1,4-polyisoprene (cis-PI). The model shows qualitative and quantitative agreement with the experiments and atomistic simulations. Interestingly, only a 0.5% difference with respect to the experimental result of the glass transition temperature (Tg) of the cis-PI in the melts was observed. In addition, the mechanical and thermodynamical properties of the cis-PI-fullerene(C60) composites were investigated. Coarse-grained molecular dynamics (MD) simulations of cis-PI-C60 composites with varying fullerene concentrations (0-32 parts per hundred of rubber; phr) were performed over 200 microseconds. The structural, mechanical, and thermal properties of the composites were determined. The density, bulk modulus, thermal expansion, heat capacity, and Tg of the NR composites were found to increase with increasing C60 concentration. The presence of C60 resulted in a slight increasing of the end-to-end distance and radius of the gyration of the cis-PI chains. The contribution of C60 and cis-PI interfacial interactions led to an enhancement of the bulk moduli of the composites. This model should be helpful in the investigations and design of effective fillers of NR-C60 composites for improving their properties.
Collapse
|
35
|
Razmgar K, Nasiraee M. Polyvinyl alcohol
‐based membranes for filtration of aqueous solutions: A comprehensive review. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kourosh Razmgar
- College of Science, Health, Engineering and Education Murdoch University Perth Western Australia Australia
| | - Mohammad Nasiraee
- Chemical Engineering Department, Faculty of Engineering Ferdowsi University of Mashhad Mashhad Iran
| |
Collapse
|
36
|
Incorporating silver nanoshell-coated mesoporous silica nanoparticles improves physicochemical and antimicrobial properties of chitosan films. Int J Biol Macromol 2021; 189:792-801. [PMID: 34455003 DOI: 10.1016/j.ijbiomac.2021.08.161] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/25/2021] [Accepted: 08/19/2021] [Indexed: 11/22/2022]
Abstract
Tailoring nanomaterials with tunable properties is of great importance to develop multifunctional candidates in the biomedical field. In the present study, we aimed to develop a promising nano-hybrid system composed of chitosan (CS) and mesoporous silica nanoparticles with a silver nanoshell coat (CS-AgMSNs). The physicochemical properties of CS-AgMSNs films were characterized using various techniques. Further, the mechanical properties of CS-AgMSNs were evaluated and compared with those of undoped CS film. Moreover, the antimicrobial activities of CS-AgMSNs (with different concentrations) were assessed against E-coli, S. aureus, C. albicans, and A. niger. Our results demonstrated that increasing the concentrations of doped AgMSNs (10 to 40 mg) in CS films lowered their transparency and blocked light transmission effectively. The measured elastic modulus of CS-AgMSNs films (20 and 30 mg) showed a decrease in the stiffness of CS films. Also, the elongation at break for CS-AgMSNs (40 mg) indicated a better flexibility. CS-AgMSNs films (10-40 mg) showed an enhanced antimicrobial activity in a concentration-dependent manner compared to undoped CS films. Collectively, the results suggest that our nano-hybrid CS-AgMSNs matrix has unique and promising properties, and holds potential for use in the biomedical field, food packaging, and textile industry.
Collapse
|
37
|
Li X, Li Z, Shen J, Zheng Z, Liu J. Role of a nanoparticle network in polymer mechanical reinforcement: insights from molecular dynamics simulations. Phys Chem Chem Phys 2021; 23:21797-21807. [PMID: 34550123 DOI: 10.1039/d1cp03153h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Fully understanding the mechanism by which nanoparticles (NPs) strengthen polymer matrices is crucial for fabricating high-performance polymer nanocomposites (PNCs). Herein, coarse-grained molecular dynamics simulations were adopted to explicitly investigate the reinforcing effect of a NP network. Our results revealed that increasing the NP-NP interactions induced the self-assembly of NPs into a three-dimensional (3D) network that reinforced the polymer matrix. The reinforcing mechanism of NP-NP interactions was quite different from that of NP-polymer interactions. The latter promoted the orientation of polymer chains to transfer the external stress, while the former distributed the stress throughout the NP network. This work revealed the mechanism by which the NP network reinforced the polymer matrix at the molecular level and also provided guidelines for developing high performance PNCs via interfacial modification.
Collapse
Affiliation(s)
- Xiu Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China.
| | - Ziwei Li
- College of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Jianxiang Shen
- Department of Polymer Materials and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Zijian Zheng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China.
| | - Jun Liu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
38
|
Kim H, Zhang G, Wu M, Guo J, Nam C. Highly efficient and recyclable polyolefin-based magnetic sorbent for oils and organic solvents spill cleanup. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126485. [PMID: 34323724 DOI: 10.1016/j.jhazmat.2021.126485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/07/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
The oil dispersants have been applied in a broad oil pollution area, but the dispersed oil caused environmental problems during sedimentation. Unlike oil dispersants, flake type polyolefin-based oil absorbent (PA) is not emulsified and shows excellent swelling characteristic for oil removal. However, the sprayed PA flakes cannot be fully collected due to its tiny architectures, the uncollected flakes can cause unintentional secondary pollution. In this study, we develop a kind of flake type polyolefin-based magnetic absorbent (PMA) hybridized with magnetic nanoparticle, to facilitate the collection process. The magnetic nanoparticle is uniformly dispersed in PMA due to the hydrophobic functionalization of iron oxide nanoparticle. This enables the convenient collection of isolated sorbent flakes even when they were placed in the marine system and show a desirable oil recovery performance up to about 37 times for organic solvent. Moreover, oil-soaked PMA flakes can be fully converted into refined oil via a pyrolysis process. After pyrolysis, the thermally undecomposed compounds, which comprise of carbon residue and magnetic nanoparticle, can be also separated by a magnet. The as-prepared flake type PMA possesses good oil recovery performance, fast magnetic response, and efficient oil recycling, thus representing an environmentally promising method for oil spill cleanup.
Collapse
Affiliation(s)
- Hyeongoo Kim
- Organic Materials and Fiber Engineering, Jeonbuk National University, 567 Baekje-daero, Deogjin-dong, Deokjin-gu, Jeonju, Jeollabuk-do 54896, Republic of Korea
| | - Gang Zhang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, United States
| | - Min Wu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jinshan Guo
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Changwoo Nam
- Organic Materials and Fiber Engineering, Jeonbuk National University, 567 Baekje-daero, Deogjin-dong, Deokjin-gu, Jeonju, Jeollabuk-do 54896, Republic of Korea.
| |
Collapse
|
39
|
Sorichetti V, Hugouvieux V, Kob W. Dynamics of Nanoparticles in Polydisperse Polymer Networks: from Free Diffusion to Hopping. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Valerio Sorichetti
- Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS), CNRS, Université Paris-Saclay, F-91405 Orsay, France
- Laboratoire Charles Coulomb (L2C), Université Montpellier, CNRS, F-34095 Montpellier, France
- IATE, Université Montpellier, INRAE, Institut Agro, F-34060 Montpellier, France
| | - Virginie Hugouvieux
- IATE, Université Montpellier, INRAE, Institut Agro, F-34060 Montpellier, France
| | - Walter Kob
- Laboratoire Charles Coulomb (L2C), Université Montpellier, CNRS, F-34095 Montpellier, France
| |
Collapse
|
40
|
Li Y, Zhu G, Zhou K, Meng P, Wang G. Evaluation of graphene/crosslinked polyethylene for potential high voltage direct current cable insulation applications. Sci Rep 2021; 11:18139. [PMID: 34518571 PMCID: PMC8438012 DOI: 10.1038/s41598-021-97328-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/24/2021] [Indexed: 11/23/2022] Open
Abstract
This paper evaluates the potential usage of graphene/crosslinked polyethylene (graphene/XLPE) as the insulating material for high voltage direct current (HVDC) cables. Thermal, mechanical and electrical properties of blends with/without graphene were evaluated by differential scanning calorimetry (DSC), tensile strength, DC conductivity, space charge measurements and water tree aging test. The results indicate that 0.007–0.008% weight amount of graphene can improve the mechanical and electrical insulation properties of XLPE blends, namely higher tensile/yield strength, improved space charge distribution, and shorter/fewer water tree branches. The improvements mainly attribute to the high stiffness of graphene, deep traps introduced by the interaction zones of graphene and XLPE, and the blockage effect of graphene within XLPE. For thermal performance of XLPE blends, graphene nano-fillers have but limited improvement. The crystallinity of the blends barely changes with the addition of graphene. However, the crosslinking degree increases as the additive-like amounts of graphene doped. The above findings provide a guide for tailoring lightweight XLPE materials with excellent mechanical and electrical performances by doping them with a small amount of graphene.
Collapse
Affiliation(s)
- Yuan Li
- College of Electrical Engineering, Sichuan University, Chengdu, 610065, China
| | - Guangya Zhu
- College of Electrical Engineering, Sichuan University, Chengdu, 610065, China
| | - Kai Zhou
- College of Electrical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Pengfei Meng
- College of Electrical Engineering, Sichuan University, Chengdu, 610065, China
| | - Guodong Wang
- College of Electrical Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
41
|
Asif M, Liaqat MA, Khan MA, Ahmed H, Quddusi M, Hussain Z, Liaqat U. Studying the effect of nHAP on the mechanical and surface properties of PBS matrix. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02711-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Rheological mechanism of polymer nanocomposites filled with spherical nanoparticles: Insight from molecular dynamics simulation. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
43
|
Olson E, Liu F, Blisko J, Li Y, Tsyrenova A, Mort R, Vorst K, Curtzwiler G, Yong X, Jiang S. Self-assembly in biobased nanocomposites for multifunctionality and improved performance. NANOSCALE ADVANCES 2021; 3:4321-4348. [PMID: 36133470 PMCID: PMC9418702 DOI: 10.1039/d1na00391g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/26/2021] [Indexed: 06/16/2023]
Abstract
Concerns of petroleum dependence and environmental pollution prompt an urgent need for new sustainable approaches in developing polymeric products. Biobased polymers provide a potential solution, and biobased nanocomposites further enhance the performance and functionality of biobased polymers. Here we summarize the unique challenges and review recent progress in this field with an emphasis on self-assembly of inorganic nanoparticles. The conventional wisdom is to fully disperse nanoparticles in the polymer matrix to optimize the performance. However, self-assembly of the nanoparticles into clusters, networks, and layered structures provides an opportunity to address performance challenges and create new functionality in biobased polymers. We introduce basic assembly principles through both blending and in situ synthesis, and identify key technologies that benefit from the nanoparticle assembly in the polymer matrix. The fundamental forces and biobased polymer conformations are discussed in detail to correlate the nanoscale interactions and morphology with the macroscale properties. Different types of nanoparticles, their assembly structures and corresponding applications are surveyed. Through this review we hope to inspire the community to consider utilizing self-assembly to elevate functionality and performance of biobased materials. Development in this area sets the foundation for a new era of designing sustainable polymers in many applications including packaging, construction chemicals, adhesives, foams, coatings, personal care products, and advanced manufacturing.
Collapse
Affiliation(s)
- Emily Olson
- Mateirals Science and Engineering, Iowa State University Ames IA 50011 USA
- Polymer and Food Protection Consortium, Iowa State University Ames IA 50011 USA
| | - Fei Liu
- Mateirals Science and Engineering, Iowa State University Ames IA 50011 USA
| | - Jonathan Blisko
- Mechanical Engineering, Binghamton University Binghamton NY 13902 USA
| | - Yifan Li
- Mateirals Science and Engineering, Iowa State University Ames IA 50011 USA
| | - Ayuna Tsyrenova
- Mateirals Science and Engineering, Iowa State University Ames IA 50011 USA
| | - Rebecca Mort
- Mateirals Science and Engineering, Iowa State University Ames IA 50011 USA
- Polymer and Food Protection Consortium, Iowa State University Ames IA 50011 USA
| | - Keith Vorst
- Polymer and Food Protection Consortium, Iowa State University Ames IA 50011 USA
- Food Science and Human Nutrition, Iowa State University Ames IA 50011 USA
| | - Greg Curtzwiler
- Polymer and Food Protection Consortium, Iowa State University Ames IA 50011 USA
- Food Science and Human Nutrition, Iowa State University Ames IA 50011 USA
| | - Xin Yong
- Mechanical Engineering, Binghamton University Binghamton NY 13902 USA
| | - Shan Jiang
- Mateirals Science and Engineering, Iowa State University Ames IA 50011 USA
- Polymer and Food Protection Consortium, Iowa State University Ames IA 50011 USA
| |
Collapse
|
44
|
Chang Z, Wang Y, Zhang Z, Gao K, Hou G, Shen J, Zhang L, Liu J. Creep behavior of polymer nanocomposites: Insights from molecular dynamics simulation. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
45
|
Percolated Network of Mixed Nanoparticles with Different Sizes in Polymer Nanocomposites: A Coarse-Grained Molecular Dynamics Simulation. MATERIALS 2021; 14:ma14123301. [PMID: 34203759 PMCID: PMC8232767 DOI: 10.3390/ma14123301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 01/31/2023]
Abstract
The size of real nanoparticles (NPs) is polydisperse which can influence the electrical property of polymer nanocomposites (PNCs). Here, we explored the percolated network of mixed NPs with different sizes (small NPs and big NPs) by adopting a molecular dynamics simulation. The simulated results reveal that the big NPs are adverse to building the percolated network compared to the small NPs. Thus, the percolation threshold becomes higher along with increasing the mixing ratio, which denotes the concentration ratio of big NPs to the total NPs. For a better understanding of it, the dispersion state and the number and the size of clusters are employed to analyze the percolated network, which can explain the percolation threshold well. Furthermore, by adopting the Sun’s theory (Macromolecules, 2009, 42, 459–463), small and big NPs exhibit a weak antagonistic effect in the simulation if their total concentration is fixed. On the one hand, the number of small NPs is larger than that of big NPs at the same concentration. In addition, one big NP can connect to more others than one small NP. These two contrast effects are responsible for it. Interestingly, the shear flow leads to more contact aggregation structure of NPs which is beneficial to build the new percolated networks. Especially, the big NPs play a more important role in forming the percolated network than small NPs. Consequently, the percolation threshold is reduced at a higher shear rate. In total, our research work provides a further understanding of how the mixed NPs with different sizes form the percolated network in polymer matrix.
Collapse
|
46
|
Thermoplastic bio-nanocomposites: From measurement of fundamental properties to practical application. Adv Colloid Interface Sci 2021; 292:102419. [PMID: 33934003 DOI: 10.1016/j.cis.2021.102419] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 11/21/2022]
Abstract
Although the discovery of plastic has revolutionized materials used in many industries and by consumers, their non-biodegradable nature has led to one of the greatest problems of our times: plastic waste in the environment. Bioplastics which are biobased and biodegradable, have been suggested as alternatives for their fossil based counterparts, but their properties often do not meet the requirements that standard plastics would, and are in clear need of improvement. One way to do so is by the addition of nanoparticles which, when homogeneously dispersed, have been reported to result in great improvements. However, in practice, homogenous distribution of nanoparticles is not that trivial due to their tendency to aggregate, also after addition to the polymer matrix. Although theoretical frameworks to prevent this process are available, we feel that the options explored in practice are often rather trial and error in nature. For that reason, we review the theories available, aiming to facilitate the design of the nanocomposites for a sustainable future. We first discuss thermodynamic frameworks which revolve around nanoparticle aggregation. To minimize nanoparticle aggregation, the nanoparticle and polymer can be selected in such a way that they have similar polar and dispersive surface energies. The second part is dedicated to nanocomposite processing, where kinetic effects act on the nanocomposite material therewith influencing its final morphology, although it is good to point out that other factors such as reaggregation also affect the final nanocomposite morphology. The third section is dedicated to how nanoparticles affect the polymer matrix to which they are added. We describe how interactions at an atomic scale, result in the formation of an interphasial region which ultimately leads to changed bulk material properties. From these three sections, we conclude that three parameters are often overlooked when designing nanocomposites, namely the surface energies of the nanoparticles and polymers, the aggregation bond energy or strength, and the interphase region. Therefore, in the fourth section we provide an overview of techniques to identify these three parameters. We finish with a summery and outlook for the design of bio nanocomposites, where we bring all insights from the previous four sections together.
Collapse
|
47
|
Zhang Z, Wang Y, Liu P, Chen T, Hou G, Xu L, Wang X, Hu Z, Liu J, Zhang L. Quantitatively predicting the mechanical behavior of elastomers via fully atomistic molecular dynamics simulation. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
48
|
Ghamgosar Khorshidi Z, Jallab M, Moghbelli E, Goudarzi A, Ghaffari M. Photocatalytic Analysis of a Hydrophilic Acrylic Coating/ Zinc Oxide Nanocomposite on Glass Substrate. POLYM-PLAST TECH MAT 2021. [DOI: 10.1080/25740881.2021.1888986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Mojtaba Jallab
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran
| | - Ehsan Moghbelli
- Polymer Technology Center, Department of Materials Science and Engineering, Texas A&M University, College Station, Texas, USA
| | - Alireza Goudarzi
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran
| | - Mehdi Ghaffari
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran
| |
Collapse
|
49
|
Wang Y, Liu Q, Zhen Z, Liu J, Qiao R, He W. Effects of mica modification with ethylene‐vinyl acetate wax on the water vapor barrier and mechanical properties of poly‐(butylene adipate‐co‐terephthalate) nanocomposite films. J Appl Polym Sci 2021. [DOI: 10.1002/app.50610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yue Wang
- National Engineering Laboratory for Crop Efficient Water Use and Disaster Mitigation, Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences Beijing China
| | - Qi Liu
- National Engineering Laboratory for Crop Efficient Water Use and Disaster Mitigation, Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences Beijing China
| | - Zhi‐Chao Zhen
- Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing China
| | - Jia‐Lei Liu
- National Engineering Laboratory for Crop Efficient Water Use and Disaster Mitigation, Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences Beijing China
| | - Run‐Meng Qiao
- National Engineering Laboratory for Crop Efficient Water Use and Disaster Mitigation, Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences Beijing China
| | - Wen‐Qing He
- National Engineering Laboratory for Crop Efficient Water Use and Disaster Mitigation, Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences Beijing China
| |
Collapse
|
50
|
Yue T, Li S, Zhang Z, Chen Y, Zhang L, Liu J. Optimizing the heterogeneous network structure to achieve polymer nanocomposites with excellent mechanical properties. Phys Chem Chem Phys 2021; 23:4437-4452. [PMID: 33595012 DOI: 10.1039/d0cp06532c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Designing and optimizing the polymer network structure at the molecular level to manipulate its mechanical properties are of great scientific significance. Although heterogeneous multi-network structures have been extensively investigated, little effort has been devoted to investigating heterogeneous single-networks with a well-defined interface. Herein, through coarse-grained molecular dynamics simulation, we successfully fabricated a heterogeneous single-network, which was divided into several regions with different crosslink densities. Firstly, we found that there is an optimal crosslink density ratio between high and low crosslink density regions to obtain the best stress-strain behavior. Secondly, the effect of the regularity of the network topology (by changing the distribution of two-phase regions) on mechanical properties was also studied. It was clearly observed that the polymer network showed better elastic response and mechanical properties as the distribution of two-phase regions became uniform. Finally, we investigated the effect of the selective distribution of nanoparticles (NPs) on mechanical properties by introducing NPs into a pre-designed multiphase network. Results showed that the selective distribution of NPs in the high crosslink density region had a more significant effect on the mechanical reinforcement. Generally, our simulated results may provide some guidelines to design polymer network structures to achieve high-performance polymer nanocomposites with excellent mechanical properties.
Collapse
Affiliation(s)
- Tongkui Yue
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, People's Republic of China.
| | - Sai Li
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, People's Republic of China.
| | - Zhiyu Zhang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, People's Republic of China.
| | - Yulong Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, People's Republic of China
| | - Liqun Zhang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, People's Republic of China. and Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, People's Republic of China and State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, People's Republic of China
| | - Jun Liu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, People's Republic of China. and Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, People's Republic of China and State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, People's Republic of China
| |
Collapse
|