1
|
Zhang Q, Le TC, Zhao S, Shang C, Hu M, Zhang S, Liu Y, Pan S. Advancements in Nanomaterial Dispersion and Stability and Thermophysical Properties of Nano-Enhanced Phase Change Materials for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1126. [PMID: 38998730 PMCID: PMC11243741 DOI: 10.3390/nano14131126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024]
Abstract
Phase change materials (PCMs) are materials that exhibit thermal response characteristics, allowing them to be utilized in the biological field for precise and controllable temperature regulation. Due to considerations of biosafety and the spatial limitations within human tissue, the amount of PCMs used in medical applications is relatively small. Therefore, researchers often augment PCMs with various materials to enhance their performance and increase their practical value. The dispersion of nanoparticles to modify the thermophysical properties of PCMs has emerged as a mature concept. This paper aims to elucidate the role of nanomaterials in addressing deficiencies and enhancing the performance of PCMs. Specifically, it discusses the dispersion methods and stabilization mechanisms of nanoparticles within PCMs, as well as their effects on thermophysical properties such as thermal conductivity, latent heat, and specific heat capacity. Furthermore, it explores how various nano-additives contribute to improved thermal conductivity and the mechanisms underlying enhanced latent heat and specific heat. Additionally, the potential applications of PCMs in biomedical fields are proposed. Finally, this paper provides a comprehensive analysis and offers suggestions for future research to maximize the utilization of nanomaterials in enhancing the thermophysical properties of PCMs for biomedical applications.
Collapse
Affiliation(s)
- Qian Zhang
- The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin 150001, China
- School of Stomatology, Harbin Medical University, No. 143 Yiman Street, Nangang District, Harbin 150001, China
| | - Tkhu Chang Le
- The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin 150001, China
- School of Stomatology, Harbin Medical University, No. 143 Yiman Street, Nangang District, Harbin 150001, China
| | - Shuang Zhao
- The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin 150001, China
- School of Stomatology, Harbin Medical University, No. 143 Yiman Street, Nangang District, Harbin 150001, China
| | - Chenxi Shang
- The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin 150001, China
- School of Stomatology, Harbin Medical University, No. 143 Yiman Street, Nangang District, Harbin 150001, China
| | - Menglin Hu
- The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin 150001, China
- School of Stomatology, Harbin Medical University, No. 143 Yiman Street, Nangang District, Harbin 150001, China
| | - Su Zhang
- The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin 150001, China
- School of Stomatology, Harbin Medical University, No. 143 Yiman Street, Nangang District, Harbin 150001, China
| | - Yushi Liu
- School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Shuang Pan
- The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin 150001, China
- School of Stomatology, Harbin Medical University, No. 143 Yiman Street, Nangang District, Harbin 150001, China
| |
Collapse
|
2
|
Wijesundera SA, Liyanage SH, Biswas P, Reuther JF, Yan M. Trehalose-Grafted Glycopolymer: Synthesis via the Staudinger Reaction and Capture of Mycobacteria. Biomacromolecules 2023; 24:238-245. [PMID: 36524824 DOI: 10.1021/acs.biomac.2c01096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A new trehalose-grafted poly(2-hydroxyethyl methacrylate) (HEMA) glycopolymer was synthesized via the perfluorophenyl azide (PFPA)-mediated Staudinger reaction between poly(HEMA-co-HEMA-PFPA) and a diphenylphosphine-derivatized trehalose. The reaction occurred rapidly at room temperature without the use of any catalyst, giving the trehalose glycopolymers over 68% yield after 1 h. The grafting density of trehalose can be controlled by the copolymer composition in poly(HEMA-co-HEMA-PFPA), resulting in 6.1% (TP1) or 37% (TP2) at 10:1 and 1:1 HEMA/HEMA-PFPA feed ratio, respectively. The trehalose glycopolymer was covalently attached on glass slides or silicon wafers using a thin film of poly(HEMA-co-HEMA-PFPA) as the adhesion layer, achieved through the C-H insertion reaction of the photogenerated singlet perfluorophenyl nitrene. To demonstrate the ability of the trehalose glycopolymer to capture mycobacteria, arrays of the trehalose glycopolymer were fabricated and treated with Mycobacterium smegmatis. Results from the optical, fluorescence, and scanning electron microscopy showed that mycobacteria were indeed captured on the trehalose glycopolymer. The amount of mycobacteria captured increased with the percent trehalose in the trehalose glycopolymer and also with the concentration of the trehalose glycopolymer. In addition, the captured bacteria could be visualized by the naked eye under the illumination of a hand-held UV lamp.
Collapse
Affiliation(s)
- Samurdhi A Wijesundera
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Sajani H Liyanage
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Priyanka Biswas
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - James F Reuther
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
3
|
Mueller M, Bandl C, Kern W. Surface-Immobilized Photoinitiators for Light Induced Polymerization and Coupling Reactions. Polymers (Basel) 2022; 14:608. [PMID: 35160597 PMCID: PMC8839765 DOI: 10.3390/polym14030608] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 12/10/2022] Open
Abstract
Straightforward and versatile surface modification, functionalization and coating have become a significant topic in material sciences. While physical modification suffers from severe drawbacks, such as insufficient stability, chemical induced grafting processes efficiently modify organic and inorganic materials and surfaces due to covalent linkage. These processes include the "grafting from" method, where polymer chains are directly grown from the surface in terms of a surface-initiated polymerization and the "grafting to" method where a preformed (macro)-molecule is introduced to a preliminary treated surface via a coupling reaction. Both methods require an initiating species that is immobilized at the surface and can be triggered either by heat or light, whereas light induced processes have recently received increasing interest. Therefore, a major challenge is the ongoing search for suitable anchor moieties that provide covalent linkage to the surface and include initiators for surface-initiated polymerization and coupling reactions, respectively. This review containing 205 references provides an overview on photoinitiators which are covalently coupled to different surfaces, and are utilized for subsequent photopolymerizations and photocoupling reactions. An emphasis is placed on the coupling strategies for different surfaces, including oxides, metals, and cellulosic materials, with a focus on surface coupled free radical photoinitiators (type I and type II). Furthermore, the concept of surface initiation mediated by photoiniferters (PIMP) is reviewed. Regarding controlled radical polymerization from surfaces, a large section of the paper reviews surface-tethered co-initiators, ATRP initiators, and RAFT agents. In combination with photoinitiators or photoredox catalysts, these compounds are employed for surface initiated photopolymerizations. Moreover, examples for coupled photoacids and photoacid generators are presented. Another large section of the article reviews photocoupling and photoclick techniques. Here, the focus is set on light sensitive groups, such as organic azides, tetrazoles and diazirines, which have proven useful in biochemistry, composite technology and many other fields.
Collapse
Affiliation(s)
- Matthias Mueller
- Montanuniversitaet Leoben, Institute of Chemistry of Polymeric Materials, Otto-Glöckel-Straße 2, A-8700 Leoben, Austria; (C.B.); (W.K.)
| | - Christine Bandl
- Montanuniversitaet Leoben, Institute of Chemistry of Polymeric Materials, Otto-Glöckel-Straße 2, A-8700 Leoben, Austria; (C.B.); (W.K.)
| | - Wolfgang Kern
- Montanuniversitaet Leoben, Institute of Chemistry of Polymeric Materials, Otto-Glöckel-Straße 2, A-8700 Leoben, Austria; (C.B.); (W.K.)
- Polymer Competence Center Leoben GmbH, Rosegger-Strasse 12, A-8700 Leoben, Austria
| |
Collapse
|
4
|
Yang X, Chen F, Kim MA, Liu H, Wolf LM, Yan M. On the Reactivity Enhancement of Graphene by Metallic Substrates towards Aryl Nitrene Cycloadditions. Chemistry 2021; 27:7887-7896. [PMID: 33778986 DOI: 10.1002/chem.202100227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 12/14/2022]
Abstract
Pristine graphene is fairly inert chemically, and as such, most application-driven studies use graphene oxide, or reduced graphene oxide. Using substrates to modulate the reactivity of graphene represents a unique strategy in the covalent functionalization of this otherwise fairly inert material. It was found that the reactivity of pristine graphene towards perfluorophenyl azide (PFPA) can be enhanced by a metal substrate on which graphene is supported. Results on the extent of functionalization, defect density, and reaction kinetics all show that graphene supported on Ni (G/Ni) has the highest reactivity toward PFPA, followed by G/Cu and then G/silicon wafer. DFT calculations suggest that the metal substrate stabilizes the physisorbed nitrene through enhanced electron transfer to the singlet nitrene from the graphene surface assisted by the electron rich metal substrate. The G/Ni substantially stabilizes the singlet nitrene relative to G/Cu and the free-standing graphene. The product structure is also predicted to be substrate dependent. These findings open up opportunities to enhance the reactivity of pristine graphene simply through the selection of the substrate. This also represents a new and powerful approach to increasing the reactivity of singlet nitrenes through direct electronic communication with graphene.
Collapse
Affiliation(s)
- Xiaojian Yang
- Chemistry Department, University of Massachusetts Lowell, One University Ave, Lowell, MA 01854, USA
| | - Feiran Chen
- Chemistry Department, University of Massachusetts Lowell, One University Ave, Lowell, MA 01854, USA
| | - Min A Kim
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, PA 15260, USA
| | - Haitao Liu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, PA 15260, USA
| | - Lawrence M Wolf
- Chemistry Department, University of Massachusetts Lowell, One University Ave, Lowell, MA 01854, USA
| | - Mingdi Yan
- Chemistry Department, University of Massachusetts Lowell, One University Ave, Lowell, MA 01854, USA
| |
Collapse
|
5
|
Kanao E, Kubo T, Otsuka K. Carbon-Based Nanomaterials for Separation Media. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190372] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Eisuke Kanao
- Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takuya Kubo
- Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Koji Otsuka
- Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
6
|
Kong N, Park J, Yang X, Ramström O, Yan M. Carbohydrate Functionalization of Few-Layer Graphene through Microwave-Assisted Reaction of Perfluorophenyl Azide. ACS APPLIED BIO MATERIALS 2018; 2:284-291. [DOI: 10.1021/acsabm.8b00597] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Na Kong
- Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, 201210 Shanghai, China
| | - JaeHyeung Park
- Department of Chemistry, University of Massachusetts Lowell, 1 University Ave., Lowell, Massachusetts 01854, United States
- Division of Advanced Materials Engineering, Dong-Eui University, Busan 47340, Korea
| | - Xiaojian Yang
- Department of Chemistry, University of Massachusetts Lowell, 1 University Ave., Lowell, Massachusetts 01854, United States
| | - Olof Ramström
- Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
- Department of Chemistry, University of Massachusetts Lowell, 1 University Ave., Lowell, Massachusetts 01854, United States
| | - Mingdi Yan
- Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
- Department of Chemistry, University of Massachusetts Lowell, 1 University Ave., Lowell, Massachusetts 01854, United States
| |
Collapse
|
7
|
Sundhoro M, Park J, Wu B, Yan M. Synthesis of Polyphosphazenes by a Fast Perfluoroaryl Azide-Mediated Staudinger Reaction. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00618] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Madanodaya Sundhoro
- University of
Massachusetts Lowell, 1 University Ave., Lowell, Massachusetts 01854, United States
| | - Jaehyeung Park
- University of
Massachusetts Lowell, 1 University Ave., Lowell, Massachusetts 01854, United States
- Division of Advanced Materials Engineering, Dong-Eui University, Busan 47340, Korea
| | - Bin Wu
- University of
Massachusetts Lowell, 1 University Ave., Lowell, Massachusetts 01854, United States
| | - Mingdi Yan
- University of
Massachusetts Lowell, 1 University Ave., Lowell, Massachusetts 01854, United States
| |
Collapse
|
8
|
Luetzow K, Hommes‐Schattmann PJ, Neffe AT, Ahmad B, Williams GR, Lendlein A. Perfluorophenyl azide functionalization of electrospun poly(
para
‐dioxanone). POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Karola Luetzow
- Institute of Biomaterial Science and Berlin‐Brandenburg Centre for Regenerative TherapiesHelmholtz‐Zentrum Geesthacht 14513 Teltow Germany
| | - Paul J. Hommes‐Schattmann
- Institute of Biomaterial Science and Berlin‐Brandenburg Centre for Regenerative TherapiesHelmholtz‐Zentrum Geesthacht 14513 Teltow Germany
| | - Axel T. Neffe
- Institute of Biomaterial Science and Berlin‐Brandenburg Centre for Regenerative TherapiesHelmholtz‐Zentrum Geesthacht 14513 Teltow Germany
- Institute of ChemistryUniversity of Potsdam 14476 Potsdam Germany
| | - Bilal Ahmad
- UCL School of PharmacyUniversity College London 29‐39 Brunswick Square London WC1N 1AX UK
| | - Gareth R. Williams
- UCL School of PharmacyUniversity College London 29‐39 Brunswick Square London WC1N 1AX UK
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin‐Brandenburg Centre for Regenerative TherapiesHelmholtz‐Zentrum Geesthacht 14513 Teltow Germany
- Institute of ChemistryUniversity of Potsdam 14476 Potsdam Germany
| |
Collapse
|
9
|
Sterner O, Karageorgaki C, Zürcher M, Zürcher S, Scales CW, Fadli Z, Spencer ND, Tosatti SGP. Reducing Friction in the Eye: A Comparative Study of Lubrication by Surface-Anchored Synthetic and Natural Ocular Mucin Analogues. ACS APPLIED MATERIALS & INTERFACES 2017; 9:20150-20160. [PMID: 28561563 DOI: 10.1021/acsami.6b16425] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Biomaterials used in the ocular environment should exhibit specific tribological behavior to avoid discomfort and stress-induced epithelial damage during blinking. In this study, two macromolecules that are commonly employed as ocular biomaterials, namely, poly(vinylpyrrolidone) (PVP) and hyaluronan (HA), are compared with two known model glycoproteins, namely bovine submaxillary mucin (BSM) and α1-acid glycoprotein (AGP), with regard to their nonfouling efficiency, wettability, and tribological properties when freely present in the lubricant, enabling spontaneous adsorption, and when chemisorbed under low contact pressures. Chemisorbed coatings were prepared by means of photochemically triggered nitrene insertion reactions. BSM and AGP provided boundary lubrication when spontaneously adsorbed in a hydrophobic contact with a coefficient of friction (CoF) of ∼0.03-0.04. PVP and HA were found to be excellent boundary lubricants when chemisorbed (CoF ≤ 0.01). Notably, high-molecular-weight PVP generated thick adlayers, typically around 14 nm, and was able to reduce the CoF below 0.005 when slid against a BSM-coated poly(dimethylsiloxane) pin in a tearlike fluid.
Collapse
Affiliation(s)
- Olof Sterner
- SuSoS AG , Lagerstrasse 14, CH-8006 Dübendorf, Switzerland
| | | | | | - Stefan Zürcher
- SuSoS AG , Lagerstrasse 14, CH-8006 Dübendorf, Switzerland
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich , Vladimir-Prelog-Weg 5, CH-8093 Zurich, Switzerland
| | - Charles W Scales
- Johnson & Johnson Vision Care Inc. , Jacksonville, Florida 32256, United States
| | - Zohra Fadli
- Johnson & Johnson Vision Care Inc. , Jacksonville, Florida 32256, United States
| | - Nicholas D Spencer
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich , Vladimir-Prelog-Weg 5, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
10
|
Sundhoro M, Park J, Jayawardana KW, Chen X, Jayawardena HSN, Yan M. Poly(HEMA-co-HEMA-PFPA): Synthesis and preparation of stable micelles encapsulating imaging nanoparticles. J Colloid Interface Sci 2017; 500:1-8. [PMID: 28395159 DOI: 10.1016/j.jcis.2017.03.099] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 11/28/2022]
Abstract
We report the preparation of stable micelles from random copolymers of 2-hydroxyethyl methacrylate (HEMA) and perfluorophenyl azide (PFPA)-derivatized HEMA (HEMA-PFPA). The copolymers were synthesized by RAFT polymerization at room temperature under mild conditions without affecting the azide functionality. Upon addition of water to the copolymer solution in DMSO, the random copolymers self-assembled into micelles even at the percentage of HEMA-PFPA as low as 4.5%. The size of the micelles can be controlled by the molecular weight and the concentration of the copolymer, and the percentage of HEMA-PFPA in the copolymer. In addition, iron oxide nanoparticles and quantum dots were successfully encapsulated into the micelles with high encapsulation efficiency (∼80%). These nanoparticles, which were hydrophobic and formed agglomerates in water, became fully dispersed after encapsulating into the micelles. The micelles were stable and the size remained unchanged for at least 6months.
Collapse
Affiliation(s)
- Madanodaya Sundhoro
- Department of Chemistry, University of Massachusetts Lowell, 1 University Ave, Lowell, MA 01854, United States
| | - Jaehyeung Park
- Department of Chemistry, University of Massachusetts Lowell, 1 University Ave, Lowell, MA 01854, United States
| | - Kalana W Jayawardana
- Department of Chemistry, University of Massachusetts Lowell, 1 University Ave, Lowell, MA 01854, United States
| | - Xuan Chen
- Department of Chemistry, University of Massachusetts Lowell, 1 University Ave, Lowell, MA 01854, United States
| | - H Surangi N Jayawardena
- Department of Chemistry, University of Massachusetts Lowell, 1 University Ave, Lowell, MA 01854, United States
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, 1 University Ave, Lowell, MA 01854, United States; Department of Chemistry, KTH - Royal Institute of Technology, Teknikringen, 30, S-100 44 Stockholm, Sweden.
| |
Collapse
|
11
|
KANAO E, NAITO T, KUBO T, OTSUKA K. Development of a C 70-Fullerene Bonded Silica-Monolithic Capillary and Its Retention Characteristics in Liquid Chromatography. CHROMATOGRAPHY 2017. [DOI: 10.15583/jpchrom.2016.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Eisuke KANAO
- Graduate School of Engineering, Kyoto University
| | | | - Takuya KUBO
- Graduate School of Engineering, Kyoto University
| | - Koji OTSUKA
- Graduate School of Engineering, Kyoto University
| |
Collapse
|
12
|
Kubo T, Kanao E, Matsumoto T, Naito T, Sano T, Yan M, Otsuka K. Specific Intermolecular Interactions by the Localized π-Electrons in C70-fullerene. ChemistrySelect 2016. [DOI: 10.1002/slct.201601470] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Takuya Kubo
- Graduate School of Engineering; Kyoto University, Katsura Nishikyo-ku, Kyoto; 615-8510 Kyoto Japan
| | - Eisuke Kanao
- Graduate School of Engineering; Kyoto University, Katsura Nishikyo-ku, Kyoto; 615-8510 Kyoto Japan
| | - Takatoshi Matsumoto
- Institute of Multidisciplinary Research for Advanced Materials; Tohoku University, 2-1-1, Katahira, Aoba-ku; Sendai 980-8577 Japan
| | - Toyohiro Naito
- Graduate School of Engineering; Kyoto University, Katsura Nishikyo-ku, Kyoto; 615-8510 Kyoto Japan
| | - Tomoharu Sano
- Center for Environmental Measurement and Analysis; National Institute for Environmental Studies, Onogawa 16-2; Tsukuba, Ibaraki 305-8506 Japan
| | - Mingdi Yan
- Department of Chemistry; University of Massachusetts Lowell; One University Ave. Lowell, MA 01854 USA
| | - Koji Otsuka
- Graduate School of Engineering; Kyoto University, Katsura Nishikyo-ku, Kyoto; 615-8510 Kyoto Japan
| |
Collapse
|
13
|
Park J, Jin T, Liu C, Li G, Yan M. Three-Dimensional Graphene-TiO 2 Nanocomposite Photocatalyst Synthesized by Covalent Attachment. ACS OMEGA 2016; 1:351-356. [PMID: 31457133 PMCID: PMC6640790 DOI: 10.1021/acsomega.6b00113] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/16/2016] [Indexed: 05/28/2023]
Abstract
We report the synthesis of a three-dimensional graphene (3DG)-TiO2 nanocomposite by covalently attaching P25 TiO2 nanoparticles onto pristine 3DG through a perfluorophenyl azide-mediated coupling reaction. The TiO2 nanoparticles were robustly attached on the 3DG surface, with minimal particle agglomeration. In photocatalytic CO2 reduction, the 3DG-TiO2 nanocomposite demonstrated excellent activity, about 11 times higher than that of the P25 TiO2 nanoparticles. The enhanced activity can be partially attributed to the highly dispersed state of the P25 TiO2 nanoparticles on the 3DG substrate. This 3DG-based system offers a new platform for fabricating photocatalytic materials with enhanced activities.
Collapse
Affiliation(s)
- Jaehyeung Park
- Department
of Chemistry, University of Massachusetts
at Lowell, Lowell, Massachusetts 01854, United States
| | - Tong Jin
- Department
of Chemistry and Materials Science Program, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Chao Liu
- Department
of Chemistry and Materials Science Program, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Gonghu Li
- Department
of Chemistry and Materials Science Program, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Mingdi Yan
- Department
of Chemistry, University of Massachusetts
at Lowell, Lowell, Massachusetts 01854, United States
- Department
of Chemistry, KTH - Royal Institute of Technology, S-10044 Stockholm, Sweden
| |
Collapse
|
14
|
|
15
|
Sundhoro M, Wang H, Boiko ST, Chen X, Jayawardena HSN, Park J, Yan M. Fabrication of carbohydrate microarrays on a poly(2-hydroxyethyl methacrylate)-based photoactive substrate. Org Biomol Chem 2016; 14:1124-30. [DOI: 10.1039/c5ob01417d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A carbohydrate microarray was fabricated on a PHEMA-based photoactive polymer. The arrays showed strong signals, and were used to probe carbohydrate-mediated interactions with lectin and bacteria.
Collapse
Affiliation(s)
| | - Hui Wang
- Department of Chemistry
- University of Massachusetts Lowell
- Lowell
- USA
| | - Scott T. Boiko
- Department of Biology
- University of Massachusetts Lowell
- Lowell
- USA
| | - Xuan Chen
- Department of Chemistry
- University of Massachusetts Lowell
- Lowell
- USA
| | | | - JaeHyeung Park
- Department of Chemistry
- University of Massachusetts Lowell
- Lowell
- USA
| | - Mingdi Yan
- Department of Chemistry
- University of Massachusetts Lowell
- Lowell
- USA
| |
Collapse
|
16
|
Unique Separation Behavior of a C60Fullerene-Bonded Silica Monolith Prepared by an Effective Thermal Coupling Agent. Chemistry 2015; 21:18095-8. [DOI: 10.1002/chem.201503898] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Indexed: 11/07/2022]
|
17
|
Uppalapati S, Kong N, Norberg O, Ramström O, Yan M. Ionization of covalent immobilized poly(4-vinylphenol) monolayers measured by ellipsometry, QCM and SPR. APPLIED SURFACE SCIENCE 2015; 343:166-171. [PMID: 26097271 PMCID: PMC4469237 DOI: 10.1016/j.apsusc.2015.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Covalently immobilized poly(4-vinylphenol) (PVP) monolayer films were fabricated by spin coating PVP on perfluorophenyl azide (PFPA)-functionalized surface followed by UV irradiation. The pH-responsive behavior of these PVP ultrathin films was evaluated by ellipsometry, quartz crystal microbalance (QCM) and surface plasmon resonance (SPR). By monitoring the responses of these films to pH in situ, the ionization constant of the monolayer thin films was obtained. The apparent pKa value of these covalently immobilized PVP monolayers, 13.4 by SPR, was 3 units higher than that of the free polymer in aqueous solution.
Collapse
Affiliation(s)
- Suji Uppalapati
- Department of Chemistry, University of Massachusetts Lowell, 1 University Ave., Lowell, MA 01854, United States
| | - Na Kong
- KTH-Royal Institute of Technology, Department of Chemistry, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Oscar Norberg
- KTH-Royal Institute of Technology, Department of Chemistry, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Olof Ramström
- KTH-Royal Institute of Technology, Department of Chemistry, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, 1 University Ave., Lowell, MA 01854, United States
- KTH-Royal Institute of Technology, Department of Chemistry, Teknikringen 30, S-10044 Stockholm, Sweden
| |
Collapse
|
18
|
Kamra T, Chaudhary S, Xu C, Johansson N, Montelius L, Schnadt J, Ye L. Covalent immobilization of molecularly imprinted polymer nanoparticles using an epoxy silane. J Colloid Interface Sci 2015; 445:277-284. [DOI: 10.1016/j.jcis.2014.12.086] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/20/2014] [Accepted: 12/25/2014] [Indexed: 01/26/2023]
|
19
|
Xie S, Fukumoto R, Ramström O, Yan M. Anilide formation from thioacids and perfluoroaryl azides. J Org Chem 2015; 80:4392-7. [PMID: 25837012 DOI: 10.1021/acs.joc.5b00240] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A metal-free method for fast and clean anilide formation from perfluoroaryl azide and thioacid is presented. The reaction proved highly efficient, displaying fast kinetics, high yield, and good chemoselectivity. The transformation was compatible with various solvents and tolerant to a wide variety of functional groups, and it showed high performance in polar protic/aprotic media, including aqueous buffer systems.
Collapse
Affiliation(s)
- Sheng Xie
- †Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 36, S-10044 Stockholm, Sweden
| | - Ryo Fukumoto
- †Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 36, S-10044 Stockholm, Sweden
| | - Olof Ramström
- †Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 36, S-10044 Stockholm, Sweden
| | - Mingdi Yan
- †Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 36, S-10044 Stockholm, Sweden.,‡Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, Massachusetts 01854, United States
| |
Collapse
|
20
|
KUBO T, MURAKAMI Y, NAITO T, OTSUKA K. C 60-Fullerene Bonded Silica Monolithic Capillary for Specific Separations of Aromatic Compounds. CHROMATOGRAPHY 2015. [DOI: 10.15583/jpchrom.2015.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Takuya KUBO
- Graduate School of Engineering, Kyoto University
| | | | | | - Koji OTSUKA
- Graduate School of Engineering, Kyoto University
| |
Collapse
|
21
|
Kubo T, Murakami Y, Tominaga Y, Naito T, Sueyoshi K, Yan M, Otsuka K. Development of a C60-fullerene bonded open-tubular capillary using a photo/thermal active agent for liquid chromatographic separations by π–π interactions. J Chromatogr A 2014; 1323:174-8. [DOI: 10.1016/j.chroma.2013.10.097] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/30/2013] [Accepted: 10/31/2013] [Indexed: 10/26/2022]
|
22
|
Xu C, Uddin KMA, Shen X, Jayawardena S, Yan M, Ye L. Photoconjugation of molecularly imprinted polymer with magnetic nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2013; 5:5208-13. [PMID: 23673293 PMCID: PMC3744836 DOI: 10.1021/am401042u] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Because of their synthetic accessibility, molecularly imprinted polymer (MIP) nanoparticles are ideal building blocks for preparing multifunctional composites. In this work, we developed a general photocoupling chemistry to enable simple conjugation of MIP nanoparticles with inorganic magnetic nanoparticles. We first synthesized MIP nanoparticles using propranolol as a model template and perfluorophenyl azide-modified silica-coated magnetic nanoparticles. Using a simple photoactivation followed by facile purification with a magnet, we obtained magnetic composite particles that showed selective uptake of propranolol. We characterized the nanoparticles and composite materials using FT-IR, TEM, fluorescence spectroscopy, and radioligand binding analysis. Through the high molecular selectivity of the magnetic composite, we demonstrated the nondestructive feature and the high efficiency of the photocoupling chemistry. The versatile photoconjugation method developed in this work should also be very useful for combining organic MIPs with other inorganic nanoparticles to enable new chemical sensors and high efficiency photocatalysts.
Collapse
Affiliation(s)
- Changgang Xu
- Division of Pure and Applied Biochemistry, Lund University, Box 124, 22100 Lund, Sweden
| | | | - Xiantao Shen
- Division of Pure and Applied Biochemistry, Lund University, Box 124, 22100 Lund, Sweden
| | - Surangi Jayawardena
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| | - Lei Ye
- Division of Pure and Applied Biochemistry, Lund University, Box 124, 22100 Lund, Sweden
| |
Collapse
|
23
|
|
24
|
Tasdelen MA, Yagci Y. Light-Induced Click Reactions. Angew Chem Int Ed Engl 2013; 52:5930-8. [DOI: 10.1002/anie.201208741] [Citation(s) in RCA: 347] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/06/2013] [Indexed: 01/28/2023]
|
25
|
Chattopadhyay S, Kaur A, Jain S, Singh H. Sensitive detection of food-borne pathogen Salmonella by modified PAN fibers-immunoassay. Biosens Bioelectron 2013; 45:274-80. [PMID: 23500375 DOI: 10.1016/j.bios.2013.01.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 01/17/2013] [Indexed: 10/27/2022]
Abstract
Sensitive and rapid detection of Salmonella is a key to the prevention and identification of problems associated with human health and safety. Enzyme Linked Immunosorbent Assays (ELISAs) are popular and widely implemented technique to detect pathogenic bacteria in routine analysis but a typical ELISA yields a sensitivity of 10(6)-10(7)cfu/mL. The present study consecrates on the applicability of surface modified polyacrylonitrile (PAN) fibers as a novel matrix of immunoassay for the detection of Salmonella typhimurium in a sandwich ELISA format. Affinity purified antibody against Salmonella common structural antigen (CSA-1-Ab) was immobilized on modified PAN (mPAN) fibers using covalent immobilization via amine-glutaraldehyde chemistry and inactivated S. typhimurium were captured from various samples and detected colorimetrically using peroxidase-labelled common structural antibody (CSA-1-Ab-HRP) against Salmonella. The performance of the developed immunoassay was compared with commercially available immunomagnetic microbeads (Dynabeads(®) anti-Salmonella), polystyrene (PS) microtitre plate and glutaraldehyde activated PS plate. Limit of detection (LOD) was found to be 10, 10(5), 10(6) and 10(7)cells/mL of bacteria for mPAN, Dynabeads(®), glu-plate and PS plate respectively without any pre-enrichment step. The assay was specific for the targeted bacteria when investigated with other cross-reactant food and water-borne pathogens. The developed immunoassay offered undisputed advantages of being simple, sensitive and specific for the detection of S. typhimurium.
Collapse
Affiliation(s)
- Sruti Chattopadhyay
- Center for Biomedical Engineering, Indian Institute of Technology, Delhi, India.
| | | | | | | |
Collapse
|
26
|
Abstract
Graphene, a material made exclusively of sp(2) carbon atoms with its π electrons delocalized over the entire 2D network, is somewhat chemically inert. Covalent functionalization can enhance graphene's properties including opening its band gap, tuning conductivity, and improving solubility and stability. Covalent functionalization of pristine graphene typically requires reactive species that can form covalent adducts with the sp(2) carbon structures in graphene. In this Account, we describe graphene functionalization reactions using reactive intermediates of radicals, nitrenes, carbenes, and arynes. These reactive species covalently modify graphene through free radical addition, CH insertion, or cycloaddition reactions. Free radical additions are among the most common reaction, and these radicals can be generated from diazonium salts and benzoyl peroxide. Electron transfer from graphene to aryl diazonium ion or photoactivation of benzoyl peroxide yields aryl radicals that subsequently add to graphene to form covalent adducts. Nitrenes, electron-deficient species generated by thermal or photochemical activation of organic azides, can functionalize graphene very efficiently. Because perfluorophenyl nitrenes show enhanced bimolecular reactions compared with alkyl or phenyl nitrenes, perfluorophenyl azides are especially effective. Carbenes are used less frequently than nitrenes, but they undergo CH insertion and C═C cycloaddition reactions with graphene. In addition, arynes can serve as a dienophile in a Diels-Alder type reaction with graphene. Further study is needed to understand and exploit the chemistry of graphene. The generation of highly reactive intermediates in these reactions leads to side products that complicate the product composition and analysis. Fundamental questions remain about the reactivity and regioselectivity of graphene. The differences in the basal plane and the undercoordinated edges of graphene and the zigzag versus arm-chair configurations warrant comprehensive studies. The availability of well-defined pristine graphene starting materials in large quantities remains a key obstacle to the advancement of synthetic graphene chemistry.
Collapse
Affiliation(s)
- Jaehyeung Park
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, Massachusetts 01854, United States
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, Massachusetts 01854, United States
| |
Collapse
|
27
|
Abstract
We report that proteins labeled with fluorescein-doped silica nanoparticles (FSNPs) showed drastically different fouling behavior than those labeled with the fluorescein dye. Arrays of polymer films were covalently immobilized on silicon wafers and were treated with protein conjugated on FSNPs. Fluorescence imaging showed that the protein-FSNP conjugate adsorbed strongly on hydrophilic polymers such as poly(ethylene oxide) (PEO) and weakly on hydrophobic polymers such as polystyrene (PS), and the extent of adsorption decreased with increasing hydrophobicity of the polymer film. Thus, carbohydrate microarrays probed with FSNP-labeled lectin showed significantly enhanced signals when PS was used as the antifouling coating than when PEO was used, or when using bovine serum albumin as the blocking agent.
Collapse
Affiliation(s)
- Hui Wang
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854
| | - Qi Tong
- Department of Chemistry, Portland State University, Portland, OR 97207
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854
| |
Collapse
|
28
|
Li L, Li J, Kulkarni A, Liu S. Polyurethane (PU)-derived photoactive and copper-free clickable surface based on perfluorophenyl azide (PFPA) chemistry. J Mater Chem B 2013; 1:571-582. [DOI: 10.1039/c2tb00248e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Snell KE, Ismaili H, Workentin MS. Photoactivated Nitrene Chemistry to Prepare Gold Nanoparticle Hybrids with Carbonaceous Materials. Chemphyschem 2012; 13:3185-93. [DOI: 10.1002/cphc.201200240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 05/30/2012] [Indexed: 12/14/2022]
|
30
|
Zhao Y, Xu Z, Wang X, Lin T. Photoreactive azido-containing silica nanoparticle/polycation multilayers: durable superhydrophobic coating on cotton fabrics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:6328-6335. [PMID: 22462539 DOI: 10.1021/la300281q] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this study, we report the functionalization of silica nanoparticles with highly photoreactive phenyl azido groups and their utility as a negatively charged building block for layer-by-layer (LbL) electrostatic assembly to produce a stable silica nanoparticle coating. Azido-terminated silica nanoparticles were prepared by the functionalization of bare silica nanoparticles with 3-aminopropyltrimethoxysilane followed by the reaction with 4-azidobenzoic acid. The azido functionalization was confirmed by FTIR and XPS. Poly(allylamine hydrochloride) was also grafted with phenyl azido groups and used as photoreactive polycations for LbL assembly. For the photoreactive silica nanoparticle/polycation multilayers, UV irradiation can induce the covalent cross-linking within the multilayers as well as the anchoring of the multilayer film onto the organic substrate, through azido photochemical reactions including C-H insertion/abstraction reactions with surrounding molecules and dimerization of azido groups. Our results show that the stability of the silica nanoparticle/polycation multilayer film was greatly improved after UV irradiation. Combined with a fluoroalkylsilane post-treatment, the photoreactive LbL multilayers were used as a coating for superhydrophobic modification of cotton fabrics. Herein the LbL assembly method enables us to tailor the number of the coated silica nanoparticles through the assembly cycles. The superhydrophobicity of cotton fabrics was durable against acids, bases, and organic solvents, as well as repeated machine wash. Because of the unique azido photochemistry, the approach used here to anchor silica nanoparticles is applicable to almost any organic substrate.
Collapse
Affiliation(s)
- Yan Zhao
- Australian Future Fibres Research and Innovation Centre, Deakin University, Geelong VIC 3217, Australia
| | | | | | | |
Collapse
|
31
|
Abstract
We report a new type of microarray, based on glyconanoparticles (GNPs), to study glycan-lectin interactions. GNPs, synthesized by conjugating carbohydrate ligands on silica nanoparticles, were printed on a photoactive surface followed by covalent immobilization by light activation. The GNP microarrays could be probed by lectins labeled with fluorescein as well as fluorescein-doped silica nanoparticles (FSNPs). Results showed that FSNP as the label enhanced the signals for the higher affinity ligands than the lower ones.
Collapse
Affiliation(s)
- Qi Tong
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, OR 97207
| | - Xin Wang
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, OR 97207
| | - Hui Wang
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, OR 97207
- Department of Chemistry, University of Massachusetts Lowell, 1 University Ave., Lowell, MA 01854
| | - Takuya Kubo
- Graduate School of Environment Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aobaku, Sendai 9808579, Japan
| | - Mingdi Yan
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, OR 97207
- Department of Chemistry, University of Massachusetts Lowell, 1 University Ave., Lowell, MA 01854
| |
Collapse
|
32
|
Wang H, Li L, Tong Q, Yan M. Evaluation of photochemically immobilized poly(2-ethyl-2-oxazoline) thin films as protein-resistant surfaces. ACS APPLIED MATERIALS & INTERFACES 2011; 3:3463-71. [PMID: 21834589 PMCID: PMC3184304 DOI: 10.1021/am200690s] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Poly(2-ethyl-2-oxazoline) (PEOX) of various molecular weights were covalently immobilized on silicon wafers and gold slides to form protein-resistant surfaces via a fast and general photocoupling chemistry based on the CH insertion reaction of light-activated perfluorophenyl azide (PFPA). The thicknesses of the immobilized PEOX films ranged from 23 to 80 Å for molecular weight of 5000 to 500,000, and the grafting density reached 3.2 × 10(-3) Å(-2) for PEOX 5000. The protein-resistant property of the films was studied using bovine serum albumin (BSA) by fluorescence imaging, ellipsometry, and surface plasmon resonance imaging (SPRi). The fluorescence imaging and ellipsometry studies showed the largest amount of BSA adsorbed on PEOX 5000 and the smallest on PEOX 500,000. This was consistent with the kinetic analysis of BSA adsorption by SPRi showing that PEOX 5000 exhibited the fastest association rate and the slowest dissociation rate whereas PEOX 500,000 had the slowest association rate and the fastest dissociation rate. The PEOX film was then applied in the fabrication of carbohydrate microarrays to reduce the nonspecific adsorption of lectins and thus the background noises. Results showed that the microarray signals were significantly enhanced when the PEOX film was used.
Collapse
Affiliation(s)
- Hui Wang
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, OR 97207-0751
| | - Liling Li
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, OR 97207-0751
| | - Qi Tong
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, OR 97207-0751
| | - Mingdi Yan
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, OR 97207-0751
| |
Collapse
|