1
|
Vo ATN, Murphy MA, Prabhu RK, Stone TW. Influence of phospholipid head and tail molecular structures on cell membrane mechanical response under tension. J Chem Phys 2024; 161:085103. [PMID: 39177086 DOI: 10.1063/5.0214893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/02/2024] [Indexed: 08/24/2024] Open
Abstract
Biological cell membranes are primarily comprised of a diverse lipid bilayer with multiple phospholipid (lipid) types, each of which is comprised of a hydrophilic headgroup and two hydrophobic hydrocarbon tails. The lipid type determines the molecular structure of head and tail groups, which can affect membrane mechanics at nanoscale and subsequently cell viability under mechanical loading. Hence, using molecular dynamics simulations, the current study investigated seven membrane phospholipids and the effect of their structural differences on physical deformation, mechanoporation damage, and mechanical failure of the membranes under tension. The inspected phospholipids showed similar yield stresses and strains, as well as pore evolution and damage, but significantly different failure strains. In general, failure occurred at a lower strain for lipids with a larger equilibrium area per lipid. The obtained results suggest that larger headgroup structure, greater degree of unsaturation, and tail-length asymmetry influenced the phospholipids' ability to pack against each other, increased the fluidity and equilibrium area per lipid of the membrane, and resulted in lower failure strain. Overall, this study provides insights on how different phospholipid structures affect membrane physical responses at the molecular level and serves as a reference for future studies of more complex membrane systems with intricate biophysical properties.
Collapse
Affiliation(s)
- Anh T N Vo
- Center for Advanced Vehicular Systems (CAVS), Mississippi State University, Starkville, Mississippi 39759, USA
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, Mississippi 39762, USA
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - Michael A Murphy
- Center for Advanced Vehicular Systems (CAVS), Mississippi State University, Starkville, Mississippi 39759, USA
| | - Raj K Prabhu
- NASA Johnson Space Center, 2101 NASA Parkway, Houston, Texas 77058, USA
| | - Tonya W Stone
- Center for Advanced Vehicular Systems (CAVS), Mississippi State University, Starkville, Mississippi 39759, USA
- Department of Mechanical Engineering, Mississippi State University, Mississippi State, Mississippi 39762, USA
| |
Collapse
|
2
|
Vo ATN, Murphy MA, Phan PK, Prabhu RK, Stone TW. Effect of Force Field Resolution on Membrane Mechanical Response and Mechanoporation Damage under Deformation Simulations. Mol Biotechnol 2024; 66:865-875. [PMID: 37016179 DOI: 10.1007/s12033-023-00726-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/19/2023] [Indexed: 04/06/2023]
Abstract
Damage induced by transient disruption and mechanoporation in an intact cell membrane is a vital nanoscale biomechanical mechanism that critically affects cell viability. To complement experimental studies of mechanical membrane damage and disruption, molecular dynamics (MD) simulations have been performed at different force field resolutions, each of which follows different parameterization strategies and thus may influence the properties and dynamics of membrane systems. Therefore, the current study performed tensile deformation MD simulations of bilayer membranes using all-atom (AA), united-atom (UA), and coarse-grained Martini (CG-M) models to investigate how the damage biomechanics differs across atomistic and coarse-grained (CG) simulations. The mechanical response and mechanoporation damage were qualitatively similar but quantitatively different in the three models, including some progressive changes based on the coarse-graining level. The membranes yielded and reached ultimate strength at similar strains; however, the coarser systems exhibited lower average yield stresses and failure strains. The average failure strain in the UA model was approximately 7% lower than the AA, and the CG-M was 20% lower than UA and 27% lower than AA. The CG systems also nucleated a higher number of pores and larger pores, which resulted in higher damage during the deformation process. Overall, the study provides insight on the impact of force field-a critical factor in modeling biomolecular systems and their interactions-in inspecting membrane mechanosensitive responses and serves as a reference for justifying the appropriate force field for future studies of more complex membranes and more diverse biomolecular assemblies.
Collapse
Affiliation(s)
- Anh T N Vo
- Center for Advanced Vehicular Systems (CAVS), Mississippi State University, 200 Research Blvd, Starkville, MS, 39759, USA.
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, Starkville, MS, 39762, USA.
| | - Michael A Murphy
- Center for Advanced Vehicular Systems (CAVS), Mississippi State University, 200 Research Blvd, Starkville, MS, 39759, USA
| | - Phong K Phan
- Center for Advanced Vehicular Systems (CAVS), Mississippi State University, 200 Research Blvd, Starkville, MS, 39759, USA
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, Starkville, MS, 39762, USA
| | - Raj K Prabhu
- NASA Johnson Space Center, 2101 NASA Parkway, Houston, TX, 77058, USA
| | - Tonya W Stone
- Center for Advanced Vehicular Systems (CAVS), Mississippi State University, 200 Research Blvd, Starkville, MS, 39759, USA
- Department of Mechanical Engineering, Mississippi State University, Mississippi State, Starkville, MS, 39762, USA
| |
Collapse
|
3
|
Capozza R, Caprettini V, Gonano CA, Bosca A, Moia F, Santoro F, De Angelis F. Cell Membrane Disruption by Vertical Micro-/Nanopillars: Role of Membrane Bending and Traction Forces. ACS APPLIED MATERIALS & INTERFACES 2018; 10:29107-29114. [PMID: 30081625 PMCID: PMC6117743 DOI: 10.1021/acsami.8b08218] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Gaining access to the cell interior is fundamental for many applications, such as electrical recording and drug and biomolecular delivery. A very promising technique consists of culturing cells on micro-/nanopillars. The tight adhesion and high local deformation of cells in contact with nanostructures can promote the permeabilization of lipids at the plasma membrane, providing access to the internal compartment. However, there is still much experimental controversy regarding when and how the intracellular environment is targeted and the role of the geometry and interactions with surfaces. Consequently, we investigated, by coarse-grained molecular dynamics simulations of the cell membrane, the mechanical properties of the lipid bilayer under high strain and bending conditions. We found out that a high curvature of the lipid bilayer dramatically lowers the traction force necessary to achieve membrane rupture. Afterward, we experimentally studied the permeabilization rate of the cell membrane by pillars with comparable aspect ratios but different sharpness values at the edges. The experimental data support the simulation results: even pillars with diameters in the micron range may cause local membrane disruption when their edges are sufficiently sharp. Therefore, the permeabilization likelihood is connected to the local geometric features of the pillars rather than diameter or aspect ratio. The present study can also provide significant contributions to the design of three-dimensional biointerfaces for tissue engineering and cellular growth.
Collapse
Affiliation(s)
- Rosario Capozza
- Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Valeria Caprettini
- Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
- Università
degli studi di Genova, Genova 16126, Italy
| | - Carlo A. Gonano
- Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Alessandro Bosca
- Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Fabio Moia
- Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Francesca Santoro
- Center
for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, 80125 Napoli, Italy
| | | |
Collapse
|
4
|
Shigematsu T, Koshiyama K, Wada S. Stretch-Induced Interdigitation of a Phospholipid/Cholesterol Bilayer. J Phys Chem B 2018; 122:2556-2563. [DOI: 10.1021/acs.jpcb.7b10633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Taiki Shigematsu
- Global Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kenichiro Koshiyama
- Department of Mechanical Science & Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Shigeo Wada
- Department of Mechanical Science & Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
5
|
Effects of Stretching Speed on Mechanical Rupture of Phospholipid/Cholesterol Bilayers: Molecular Dynamics Simulation. Sci Rep 2015; 5:15369. [PMID: 26471872 PMCID: PMC4607938 DOI: 10.1038/srep15369] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/24/2015] [Indexed: 11/09/2022] Open
Abstract
Rupture of biological cell membrane under mechanical stresses is critical for cell viability. It is triggered by local rearrangements of membrane molecules. We investigated the effects of stretching speed on mechanical rupture of phospholipid/cholesterol bilayers using unsteady molecular dynamics simulations. We focused on pore formation, the trigger of rupture, in a 40 mol% cholesterol-including bilayer. The unsteady stretching was modeled by proportional and temporal scaling of atom positions at stretching speeds from 0.025 to 30 m/s. The effects of the stretching speed on the critical areal strain, where the pore forms, is composed of two regimes. At low speeds (<1.0 m/s), the critical areal strain is insensitive to speed, whereas it significantly increases at higher speeds. Also, the strain is larger than that of a pure bilayer, regardless of the stretching speeds, which qualitatively agrees with available experimental data. Transient recovery of the cholesterol and phospholipid molecular orientations was evident at lower speeds, suggesting the formation of a stretch-induced interdigitated gel-like phase. However, this recovery was not confirmed at higher speeds or for the pure bilayer. The different responses of the molecular orientations may help explain the two regimes for the effect of stretching speed on pore formation.
Collapse
|
6
|
Kuhlmann JW, Mey IP, Steinem C. Modulating the lateral tension of solvent-free pore-spanning membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:8186-8192. [PMID: 24950370 DOI: 10.1021/la5019086] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The plasma membrane of animal cells is attached to the cytoskeleton, which significantly contributes to the lateral tension of the membrane. Lateral membrane tension has been shown to be an important physical regulator of cellular processes such as cell motility and morphology as well as exo- and endocytosis. Here, we report on lipid bilayers spanning highly ordered pore arrays, where we can control the lateral membrane tension by chemically varying the surface functionalization of the porous substrate. Surface functionalization was achieved by a gold coating on top of the pore rims of the hexagonal array of pores in silicon nitride substrates with pore radii of 600 nm followed by subsequent incubation with various n-propanolic mixtures of 6-mercapto-1-hexanol (6MH) and O-cholesteryl N-(8'-mercapto-3',6'-dioxaoctyl)carbamate (CPEO3). Pore-spanning membranes composed of 1,2-diphytanoyl-sn-glycero-3-phosphocholine were prepared by spreading giant unilamellar vesicles on these functionalized porous silicon nitride substrates. Different mixtures of 6MH and CPEO3 provided self-assembled monolayers (SAMs) with different compositions as analyzed by contact angle and PM-IRRAS measurements. Site specific force-indentation experiments on the pore-spanning membranes attached to the different SAMs revealed a clear dependence of the amount of CPEO3 in the monolayer on the lateral membrane tension. While bilayers on pure 6MH monolayers show an average lateral membrane tension of 1.4 mN m(-1), a mixed monolayer of CPEO3 and 6MH obtained from a solution with 9.1 mol % CPEO3 exhibits a lateral tension of 5.0 mN m(-1). From contact angle and PM-IRRAS results, the mole fraction of CPEO3 in solution can be roughly translated into a CPEO3 surface concentration of 40 mol %. Our results clearly demonstrate that the free energy difference between the supported and freestanding part of the membrane depends on the chemical composition of the SAM, which controls the lateral membrane tension.
Collapse
Affiliation(s)
- Jan W Kuhlmann
- Institute of Organic and Biomolecular Chemistry, University of Göttingen , Tammannstraße 2, 37077 Göttingen, Germany
| | | | | |
Collapse
|
7
|
Mey I, Steinem C, Janshoff A. Biomimetic functionalization of porous substrates: towards model systems for cellular membranes. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm31737k] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|