1
|
Refinement of Singer-Nicolson fluid-mosaic model by microscopy imaging: Lipid rafts and actin-induced membrane compartmentalization. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184093. [PMID: 36423676 DOI: 10.1016/j.bbamem.2022.184093] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022]
Abstract
This year celebrates the 50th anniversary of the Singer-Nicolson fluid mosaic model for biological membranes. The next level of sophistication we have achieved for understanding plasma membrane (PM) structures, dynamics, and functions during these 50 years includes the PM interactions with cortical actin filaments and the partial demixing of membrane constituent molecules in the PM, particularly raft domains. Here, first, we summarize our current knowledge of these two structures and emphasize that they are interrelated. Second, we review the structure, molecular dynamics, and function of raft domains, with main focuses on raftophilic glycosylphosphatidylinositol-anchored proteins (GPI-APs) and their signal transduction mechanisms. We pay special attention to the results obtained by single-molecule imaging techniques and other advanced microscopy methods. We also clarify the limitations of present optical microscopy methods for visualizing raft domains, but emphasize that single-molecule imaging techniques can "detect" raft domains associated with molecules of interest in the PM.
Collapse
|
2
|
Rezende LG, Tasso TT, Candido PHS, Baptista MS. Assessing Photosensitized Membrane Damage: Available Tools and Comprehensive Mechanisms. Photochem Photobiol 2021; 98:572-590. [PMID: 34931324 DOI: 10.1111/php.13582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022]
Abstract
Lipids are important targets of the photosensitized oxidation reactions, forming important signaling molecules, disorganizing and permeabilizing membranes, and consequently inducing a variety of biological responses. Although the initial steps of the photosensitized oxidative damage in lipids are known to occur by both Type I and Type II mechanisms, the progression of the peroxidation reaction, which leads to important end-point biological responses, is poorly known. There are many experimental tools used to study the products of lipid oxidation, but neither the methods nor their resulting observations were critically compared. In this article, we will review the tools most frequently used and the key concepts raised by them in order to rationalize a comprehensive model for the initiation and the progression steps of the photoinduced lipid oxidation.
Collapse
Affiliation(s)
- Laura G Rezende
- Chemistry Department, Institute of Exact Sciences, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Thiago T Tasso
- Chemistry Department, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pedro H S Candido
- Biochemistry Department, Chemistry Institute, Universidade de São Paulo, Sao Paulo, Brazil
| | - Mauricio S Baptista
- Biochemistry Department, Chemistry Institute, Universidade de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
3
|
Staneva G, Watanabe C, Puff N, Yordanova V, Seigneuret M, Angelova MI. Amyloid-β Interactions with Lipid Rafts in Biomimetic Systems: A Review of Laboratory Methods. Methods Mol Biol 2021; 2187:47-86. [PMID: 32770501 DOI: 10.1007/978-1-0716-0814-2_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biomimetic lipid bilayer systems are a useful tool for modeling specific properties of cellular membranes in order to answer key questions about their structure and functions. This approach has prompted scientists from all over the world to create more and more sophisticated model systems in order to decipher the complex lateral and transverse organization of cellular plasma membranes. Among a variety of existing biomembrane domains, lipid rafts are defined as small, dynamic, and ordered assemblies of lipids and proteins, enriched in cholesterol and sphingolipids. Lipid rafts appear to be involved in the development of Alzheimer's disease (AD) by affecting the aggregation of the amyloid-β (Aβ) peptide at neuronal membranes thereby forming toxic oligomeric species. In this review, we summarize the laboratory methods which allow to study the interaction of Aβ with lipid rafts. We describe step by step protocols to form giant (GUVs) and large unilamellar vesicles (LUVs) containing raft-mimicking domains surrounded by membrane nonraft regions. Using fluorescence microscopy GUV imaging protocols, one can design experiments to visualize micron-scale raft-like domains, to determine the micron-scale demixing temperature of a given lipid mixture, construct phase diagram, and photogenerate domains in order to assess the dynamics of raft formation and raft size distribution. LUV fluorescence spectroscopy protocols with proper data analysis can be used to measure molecular packing of raft/nonraft regions of the membrane, to report on nanoscale raft formation and determine nanoscale demixing temperature. Because handling of the Aβ requires dedicated laboratory experience, we present illustrated protocols for Aβ-stock aliquoting, Aβ aqueous solubilization, oligomer preparation, determination of the Aβ concentration before and after filtration. Thioflavin binding, dynamic light scattering, and transmission electron microscopy protocols are described as complementary methods to detect Aβ aggregation kinetics, aggregate sizes, and morphologies of observed aggregates.
Collapse
Affiliation(s)
- Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Chiho Watanabe
- Komaba Institute for Science, The University of Tokyo, Tokyo, Japan
| | - Nicolas Puff
- Faculty of Science and Engineering, UFR 925 Physics, Sorbonne Université, Paris, France
- Laboratoire Matière et Systèmes Complexes (MSC) UMR 7057 CNRS, Université Paris Diderot - Paris 7, Université de Paris, Paris, France
| | - Vesela Yordanova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Michel Seigneuret
- Laboratoire Matière et Systèmes Complexes (MSC) UMR 7057 CNRS, Université Paris Diderot - Paris 7, Université de Paris, Paris, France
| | - Miglena I Angelova
- Faculty of Science and Engineering, UFR 925 Physics, Sorbonne Université, Paris, France
- Laboratoire Matière et Systèmes Complexes (MSC) UMR 7057 CNRS, Université Paris Diderot - Paris 7, Université de Paris, Paris, France
| |
Collapse
|
4
|
Abstract
Many critical biological events, including biochemical signaling, membrane traffic, and cell motility, originate at membrane surfaces. Each such event requires that members of a specific group of proteins and lipids rapidly assemble together at a specific site on the membrane surface. Understanding the biophysical mechanisms that stabilize these assemblies is critical to decoding and controlling cellular functions. In this article, we review progress toward a quantitative biophysical understanding of the mechanisms that drive membrane heterogeneity and organization. We begin from a physical perspective, reviewing the fundamental principles and key experimental evidence behind each proposed mechanism. We then shift to a biological perspective, presenting key examples of the role of heterogeneity in biology and asking which physical mechanisms may be responsible. We close with an applied perspective, noting that membrane heterogeneity provides a novel therapeutic target that is being exploited by a growing number of studies at the interface of biology, physics, and engineering.
Collapse
Affiliation(s)
- Wade F Zeno
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA;
| | - Kasey J Day
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA;
| | - Vernita D Gordon
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
- Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA;
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
5
|
Puff N, Staneva G, Angelova MI, Seigneuret M. Improved Characterization of Raft-Mimicking Phase-Separation Phenomena in Lipid Bilayers Using Laurdan Fluorescence with Log-Normal Multipeak Analysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4347-4356. [PMID: 32233510 DOI: 10.1021/acs.langmuir.0c00412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The study of biomimetic model membrane systems undergoing liquid-ordered (Lo)-liquid-disordered (Ld) phase separation using spectroscopic methods has played an important role in understanding the properties of lipid rafts in plasma membranes. In particular, the membrane-associated fluorescence probe Laurdan has proved to be a very efficient reporter of Lo-Ld phase separation in lipid bilayers using the general polarization (GP) parameter. A limitation of the GP approach is that it monitors only global average packing so that the contribution of each phase remains undetermined. The decomposition of Laurdan emission spectra has been proposed as an additional approach to overcoming this limitation. Here, further developments of this method for the study of Lo-Ld phase separation are described here for Laurdan in sphingomyelin-phosphatidylcholine-cholesterol large unilamellar vesicles. Lipid compositions corresponding to homogeneous Lo or Ld phases as well as undergoing thermally induced Lo-Ld phase separation were investigated. In addition, the occurrence of phase separation was checked by the fluorescence imaging of giant unilamellar vesicles. Decomposition into three log-normal components is used to show that an intermediate energy component is specifically associated with the occurrence of the Lo phase, with a small contribution from this component occurring above the phase-separation temperature being attributable to phase fluctuations. The ratio RX of the relative area of this intermediate-energy peak to that of the low-energy peak is shown to provide a straightforward index of Lo-Ld phase separation as a function of temperature, which is occasionally more sensitive than GP. It is also shown that RX can be used in conjunction with GP to gain further insight into Lo-Ld, the phase-separation processes. This latter feature is illustrated by the influence of the alcohol butanol on the Lo-Ld phase separation in sphingomyelin-phosphatidylcholine-cholesterol bilayers by showing that the effect of the alcohol occurs specifically at the onset of the phase separation, indicating a line tension mechanism. It is proposed that the three components of log-normal decomposition approaching Laurdan emission spectra provide a useful improvement for characterizing Lo-Ld phase-separation phenomena.
Collapse
Affiliation(s)
- Nicolas Puff
- Sorbonne Université, Faculté des Sciences et Ingénierie, UFR 925 Physique, Paris F-75005, France
- Université Paris Diderot - Paris 7, Université de Paris, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, Paris F-75013, France
| | - Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Miglena I Angelova
- Sorbonne Université, Faculté des Sciences et Ingénierie, UFR 925 Physique, Paris F-75005, France
- Université Paris Diderot - Paris 7, Université de Paris, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, Paris F-75013, France
| | - Michel Seigneuret
- Université Paris Diderot - Paris 7, Université de Paris, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, Paris F-75013, France
| |
Collapse
|
6
|
Tsubone TM, Baptista MS, Itri R. Understanding membrane remodelling initiated by photosensitized lipid oxidation. Biophys Chem 2019; 254:106263. [DOI: 10.1016/j.bpc.2019.106263] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/13/2019] [Accepted: 09/03/2019] [Indexed: 12/19/2022]
|
7
|
Staneva G, Puff N, Stanimirov S, Tochev T, Angelova MI, Seigneuret M. The Alzheimer's disease amyloid-β peptide affects the size-dynamics of raft-mimicking Lo domains in GM1-containing lipid bilayers. SOFT MATTER 2018; 14:9609-9618. [PMID: 30457145 DOI: 10.1039/c8sm01636d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Alzheimer's disease (AD) is characterized by the overproduction of the amyloid-β peptide (Aβ) which forms fibrils under the influence of raft microdomains containing the ganglioside GM1. Raft-mimicking artificial liquid ordered (Lo) domains containing GM1 enhance amyloid-β polymerization. Other experiments suggest that Aβ binds preferably to the non-raft liquid disordered (Ld) phase rather than to the Lo phase in the presence of GM1. Here, the interaction of Aβ(1-42) with GM1-containing biphasic Lo-Ld giant vesicles was investigated. Fluorescence colocalisation experiments confirm that Aβ(1-42) binds preferentially to the Ld phase. The effect of Aβ(1-42) on the Lo-Ld size dynamics was studied using photoinduced spinodal decomposition which mimics the nanodomain-microdomain raft coalescence. Aβ affects the kinetics of the coarsening phase and the size of the resulting microdomains. The effect depends on which phase is in a majority: when the Lo microdomains are formed inside an Ld phase, their growth rate becomes slower and their final size smaller in the presence of Aβ(1-42), whereas when the Ld microdomains are formed inside an Lo phase, the growth rate becomes faster and the final size larger. Fluorimetric measurements on large vesicles using the probe Laurdan indicate that Aβ(1-42) binding respectively increases or decreases the packing of the Ld phase in the presence or absence of GM1. The differential effects of Aβ on spinodal decomposition are accordingly interpreted as resulting from distinct effects of the peptide on the Lo-Ld line tension modulated by GM1. Such modulating effect of Aβ on domain dynamics could be important for lipid rafts in signaling disorders in AD as well as in Aβ fibrillation.
Collapse
Affiliation(s)
- Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | | | | | | | | |
Collapse
|
8
|
Kurth F, Dittrich PS, Walde P, Seebach D. Influence of the Membrane Dye R18 and of DMSO on Cell Penetration of Guanidinium-Rich Peptides. Chem Biodivers 2018; 15:e1800302. [PMID: 30074284 PMCID: PMC6387783 DOI: 10.1002/cbdv.201800302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 07/23/2018] [Indexed: 01/26/2023]
Abstract
A quantitative analysis by confocal fluorescence microscopy of the entry into HEK293 and MCF-7 cells by fluorescein-labeled octaarginine (1) and by three octa-Adp derivatives (2 - 4, octamers of the β-Asp-Arg-dipeptide, derived from the biopolymer cyanophycin) is described, including the effects of the membrane dye R18 and of DMSO on cell penetration.
Collapse
Affiliation(s)
- Felix Kurth
- Department of Biosystems Science and Engineering, ETH Zürich, BSD H 368, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Petra S. Dittrich
- Department of Biosystems Science and Engineering, ETH Zürich, BSD H 368, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Peter Walde
- Departement Materialwissenschaft, ETH-Zürich, Hönggerberg HCI, Vladimir-Prelog-Weg 5, CH-8093 Zürich, Switzerland
| | - Dieter Seebach
- Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH-Zürich, Hönggerberg HCI, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| |
Collapse
|
9
|
Hunter CD, Guo T, Daskhan G, Richards MR, Cairo CW. Synthetic Strategies for Modified Glycosphingolipids and Their Design as Probes. Chem Rev 2018; 118:8188-8241. [DOI: 10.1021/acs.chemrev.8b00070] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Carmanah D. Hunter
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Tianlin Guo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Gour Daskhan
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Michele R. Richards
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Christopher W. Cairo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
10
|
Angelova MI, Bitbol AF, Seigneuret M, Staneva G, Kodama A, Sakuma Y, Kawakatsu T, Imai M, Puff N. pH sensing by lipids in membranes: The fundamentals of pH-driven migration, polarization and deformations of lipid bilayer assemblies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2042-2063. [PMID: 29501601 DOI: 10.1016/j.bbamem.2018.02.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/22/2018] [Accepted: 02/24/2018] [Indexed: 01/27/2023]
Abstract
Most biological molecules contain acido-basic groups that modulate their structure and interactions. A consequence is that pH gradients, local heterogeneities and dynamic variations are used by cells and organisms to drive or regulate specific biological functions including energetic metabolism, vesicular traffic, migration and spatial patterning of tissues in development. While the direct or regulatory role of pH in protein function is well documented, the role of hydrogen and hydroxyl ions in modulating the properties of lipid assemblies such as bilayer membranes is only beginning to be understood. Here, we review approaches using artificial lipid vesicles that have been instrumental in providing an understanding of the influence of pH gradients and local variations on membrane vectorial motional processes: migration, membrane curvature effects promoting global or local deformations, crowding generation by segregative polarization processes. In the case of pH induced local deformations, an extensive theoretical framework is given and an application to a specific biological issue, namely the structure and stability of mitochondrial cristae, is described. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo.
Collapse
Affiliation(s)
- Miglena I Angelova
- Sorbonne University, Faculty of Science and Engineering, UFR 925 Physics, Paris F-75005, France; University Paris Diderot - Paris 7, Sorbonne Paris Cité, Laboratory Matière et Systèmes Complexes (MSC) UMR 7057 CNRS, Paris F-75013, France.
| | - Anne-Florence Bitbol
- Sorbonne University, Faculty of Science and Engineering, Laboratory Jean Perrin, UMR 8237 CNRS, Paris F-75005, France
| | - Michel Seigneuret
- University Paris Diderot - Paris 7, Sorbonne Paris Cité, Laboratory Matière et Systèmes Complexes (MSC) UMR 7057 CNRS, Paris F-75013, France
| | - Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Atsuji Kodama
- Department of Physics, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Yuka Sakuma
- Department of Physics, Tohoku University, Aoba, Sendai 980-8578, Japan
| | | | - Masayuki Imai
- Department of Physics, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Nicolas Puff
- Sorbonne University, Faculty of Science and Engineering, UFR 925 Physics, Paris F-75005, France; University Paris Diderot - Paris 7, Sorbonne Paris Cité, Laboratory Matière et Systèmes Complexes (MSC) UMR 7057 CNRS, Paris F-75013, France
| |
Collapse
|
11
|
Watanabe C, Puff N, Staneva G, Seigneuret M, Angelova MI. Antagonism and synergy of single chain sphingolipids sphingosine and sphingosine-1-phosphate toward lipid bilayer properties. Consequences for their role as cell fate regulators. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:13956-13963. [PMID: 25386673 DOI: 10.1021/la5039816] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A recurring question in membrane biological chemistry is whether bioactive signaling lipids act only as second messenger ligands or also through an effect on bilayer physical properties. Sphingosine (Sph) and sphingosine-1-phosphate (S1P) are single-chained charged sphingolipids that have antagonistic functions in the "sphingolipid rheostat" which determines cell fate. Sph and S1P respectively promote apoptosis and cell growth. In the present study, potential effects of these bioactive lipids on physicochemical properties of the lipid bilayer of cell membranes were evaluated. We have investigated the effect of both sphingolipids, incorporated separately or, for the first time, together, in large or giant phosphadidylcholine (PC) unilamellar vesicles. Three bilayer properties were examined: membrane surface charge, lipid packing, and formation of membrane microdomains. Sph and S1P appear to have distinct, when not inverse, effects on all three properties. Besides, when both sphingolipids are mixed together, their effects on lipid packing are synergistic, whereas their effects on microdomain formation and zeta-potential are mostly antagonistic. These results are interpreted as arising from different electrostatic interactions between lipid headgroups. In particular, Sph and S1P may interact together electrostatically and form a complex. These mostly inverse and opposing effects of both single-chain phospholipids on membrane physical properties might be involved in their antagonistic role in regulating cell fate. Particularly, the mutual interaction between Sph and S1P as a complex might be able to sequester both molecules in a biologically inactive form and therefore to promote a mutual regulation of their biological activities, depending on their ratio, consistent with the sphingolipid rheostat.
Collapse
Affiliation(s)
- Chiho Watanabe
- Matière et Systèmes Complexes, UMR 7057, Université Paris 7 Diderot & CNRS , Paris, France
| | | | | | | | | |
Collapse
|
12
|
Puff N, Watanabe C, Seigneuret M, Angelova MI, Staneva G. Lo/Ld phase coexistence modulation induced by GM1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2105-14. [DOI: 10.1016/j.bbamem.2014.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 04/30/2014] [Accepted: 05/03/2014] [Indexed: 01/31/2023]
|
13
|
Phan HTT, Yoda T, Chahal B, Morita M, Takagi M, Vestergaard MC. Structure-dependent interactions of polyphenols with a biomimetic membrane system. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2670-7. [PMID: 25016053 DOI: 10.1016/j.bbamem.2014.07.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/13/2014] [Accepted: 07/01/2014] [Indexed: 02/05/2023]
Abstract
Polyphenols are naturally-occurring compounds, reported to be biologically active, and through their interactions with cell membranes. Although association of the polyphenols with the bilayer has been reported, the detailed mechanism of interaction is not yet well elucidated. We report on spatio-temporal real-time membrane dynamics observed in the presence of polyphenols. Two distinct membrane dynamics, corresponding to the two classes of polyphenols used, were observed. Flavonoids (epi-gallocatechin-3-gallate, gallocatechin, theaflavin and theaflavin-3-gallate) caused lipid membrane aggregation and rigidification. As simple structural modification through opening of the aromatic C-ring into an olefin bond, present in trans-stilbenes (resveratrol and picead), completely changed the membrane properties, increasing fluidity and inducing fluctuation. There were differences in the membrane transformations within the same class of polyphenols. Structure-dependent classification of membrane dynamics may contribute to a better understanding of the physicochemical mechanism involved in the bioactivity of polyphenols. In general, an increase in the number of hydrophilic side chains (galloyl, hydroxyl, glucoside, gallate) increased the reactivity of the polyphenols. Most notable was the difference observed through a simple addition of the gallate group. Unraveling the importance of these polyphenols, at a functional group level further opens the key to tailored design of bioactive compounds as potential drug candidates.
Collapse
Affiliation(s)
- Huong T T Phan
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi City, Ishikawa 923-1292, Japan
| | - Tsuyoshi Yoda
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi City, Ishikawa 923-1292, Japan
| | - Bindu Chahal
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi City, Ishikawa 923-1292, Japan; M. Tech. Chemical Synthesis and Process Technologies, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Masamune Morita
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi City, Ishikawa 923-1292, Japan
| | - Masahiro Takagi
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi City, Ishikawa 923-1292, Japan
| | - Mun'delanji C Vestergaard
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi City, Ishikawa 923-1292, Japan.
| |
Collapse
|
14
|
Staneva G, Puff N, Seigneuret M, Conjeaud H, Angelova MI. Segregative clustering of Lo and Ld membrane microdomains induced by local pH gradients in GM1-containing giant vesicles: a lipid model for cellular polarization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:16327-37. [PMID: 23121205 DOI: 10.1021/la3031107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Several cell polarization processes are coupled to local pH gradients at the membrane surface. We have investigated the involvement of a lipid-mediated effect in such coupling. The influence of lateral pH gradients along the membrane surface on lipid microdomain dynamics in giant unilamellar vesicles containing phosphatidylcholine, sphingomyelin, cholesterol, and the ganglioside GM1 was studied. Lo/Ld phase separation was generated by photosensitization. A lateral pH gradient was established along the external membrane surface by acid local microinjection. The gradient promotes the segregation of microdomains: Lo domains within an Ld phase move toward the higher pH side, whereas Ld domains within an Lo phase move toward the lower pH side. This results in a polarization of the vesicle membrane into Lo and Ld phases poles in the axis of the proton source. A secondary effect is inward tubulation in the Ld phase. None of these processes occurs without GM1 or with the analog asialo-GM1. These are therefore related to the acidic character of the GM1 headgroup. LAURDAN fluorescence experiments on large unilamellar vesicles indicated that, with GM1, an increase in lipid packing occurs with decreasing pH, attributed to the lowering of repulsion between GM1 molecules. Packing increase is much higher for Ld phase vesicles than for Lo phase vesicles. It is proposed that the driving forces for domain vectorial segregative clustering and vesicle polarization are related to such differences in packing variations with pH decrease between the Lo and Ld phases. Such pH-driven domain clustering might play a role in cellular membrane polarization processes in which local lateral pH gradients are known to be important, such as migrating cells and epithelial cells.
Collapse
Affiliation(s)
- Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | | | | | | |
Collapse
|