1
|
Design of Membrane Active Peptides Considering Multi-Objective Optimization for Biomedical Application. MEMBRANES 2022; 12:membranes12020180. [PMID: 35207101 PMCID: PMC8880019 DOI: 10.3390/membranes12020180] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023]
Abstract
A multitude of membrane active peptides exists that divides into subclasses, such as cell penetrating peptides (CPPs) capable to enter eukaryotic cells or antimicrobial peptides (AMPs) able to interact with prokaryotic cell envelops. Peptide membrane interactions arise from unique sequence motifs of the peptides that account for particular physicochemical properties. Membrane active peptides are mainly cationic, often primary or secondary amphipathic, and they interact with membranes depending on the composition of the bilayer lipids. Sequences of these peptides consist of short 5–30 amino acid sections derived from natural proteins or synthetic sources. Membrane active peptides can be designed using computational methods or can be identified in screenings of combinatorial libraries. This review focuses on strategies that were successfully applied to the design and optimization of membrane active peptides with respect to the fact that diverse features of successful peptide candidates are prerequisites for biomedical application. Not only membrane activity but also degradation stability in biological environments, propensity to induce resistances, and advantageous toxicological properties are crucial parameters that have to be considered in attempts to design useful membrane active peptides. Reliable assay systems to access the different biological characteristics of numerous membrane active peptides are essential tools for multi-objective peptide optimization.
Collapse
|
2
|
Imranpasha, Kumar B. Kinetics of interaction between antimicrobial peptide nisin and Langmuir monolayers of DPPC and DPPG molecules. Phys Rev E 2019; 100:032404. [PMID: 31640048 DOI: 10.1103/physreve.100.032404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Indexed: 11/07/2022]
Abstract
We have studied the kinetics of the interaction between antimicrobial peptide nisin and Langmuir monolayers of phospholipids DPPC and DPPG at the air-water interface using the surface manometry technique. The charge on the nisin and the lipid molecules is controlled by varying the pH of the subphase, and the interactions between them are studied by measuring the surface pressure of the lipid monolayer as a function of time after injecting the nisin in the subphase. A model based on the diffusion of particles under the influence of a constant force is developed to obtain an analytical expression for surface pressure as a function of time. The expression was found to fit well with the experimental data. The average hydrodynamic radius and the translational diffusion constant of the nisin molecules are calculated from the fit parameters for the different subphase pH solutions.
Collapse
Affiliation(s)
- Imranpasha
- Department of Physics, Central University of Karnataka, Kadaganchi-585367, Kalaburagi, Karnataka, India
| | - Bharat Kumar
- Department of Physics, Central University of Karnataka, Kadaganchi-585367, Kalaburagi, Karnataka, India
| |
Collapse
|
3
|
Lorenzón EN, Nobre TM, Caseli L, Cilli EM, da Hora GC, Soares TA, Oliveira ON. The “pre-assembled state” of magainin 2 lysine-linked dimer determines its enhanced antimicrobial activity. Colloids Surf B Biointerfaces 2018; 167:432-440. [DOI: 10.1016/j.colsurfb.2018.04.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/09/2018] [Accepted: 04/16/2018] [Indexed: 11/25/2022]
|
4
|
Revealing the sequence of interactions of PuroA peptide with Candida albicans cells by live-cell imaging. Sci Rep 2017; 7:43542. [PMID: 28252014 PMCID: PMC5333355 DOI: 10.1038/srep43542] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/27/2017] [Indexed: 01/09/2023] Open
Abstract
To determine the mechanism(s) of action of antimicrobial peptides (AMPs) it is desirable to provide details of their interaction kinetics with cellular, sub-cellular and molecular targets. The synthetic peptide, PuroA, displays potent antimicrobial activities which have been attributed to peptide-induced membrane destabilization, or intracellular mechanisms of action (DNA-binding) or both. We used time-lapse fluorescence microscopy and fluorescence lifetime imaging microscopy (FLIM) to directly monitor the localization and interaction kinetics of a FITC- PuroA peptide on single Candida albicans cells in real time. Our results reveal the sequence of events leading to cell death. Within 1 minute, FITC-PuroA was observed to interact with SYTO-labelled nucleic acids, resulting in a noticeable quenching in the fluorescence lifetime of the peptide label at the nucleus of yeast cells, and cell-cycle arrest. A propidium iodide (PI) influx assay confirmed that peptide translocation itself did not disrupt the cell membrane integrity; however, PI entry occurred 25–45 minutes later, which correlated with an increase in fractional fluorescence of pores and an overall loss of cell size. Our results clarify that membrane disruption appears to be the mechanism by which the C. albicans cells are killed and this occurs after FITC-PuroA translocation and binding to intracellular targets.
Collapse
|
5
|
da Hora GCA, Archilha NL, Lopes JLS, Müller DM, Coutinho K, Itri R, Soares TA. Membrane negative curvature induced by a hybrid peptide from pediocin PA-1 and plantaricin 149 as revealed by atomistic molecular dynamics simulations. SOFT MATTER 2016; 12:8884-8898. [PMID: 27722742 DOI: 10.1039/c6sm01714b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Antimicrobial peptides (AMPs) are cationic peptides that kill bacteria with a broad spectrum of action, low toxicity to mammalian cells and exceptionally low rates of bacterial resistance. These features have led to considerable efforts in developing AMPs as an alternative antibacterial therapy. In vitro studies have shown that AMPs interfere with membrane bilayer integrity via several possible mechanisms, which are not entirely understood. We have performed the synthesis, membrane lysis measurements, and biophysical characterization of a novel hybrid peptide. These measurements show that PA-Pln149 does not form nanopores, but instead promotes membrane rupture. It causes fast rupture of the bacterial model membrane (POPG-rich) at concentrations 100-fold lower than that required for the disruption of mammalian model membranes (POPC-rich). Atomistic molecular dynamics (MD) simulations were performed for single and multiple copies of PA-Pln149 in the presence of mixed and pure POPC/POPG bilayers to investigate the concentration-dependent membrane disruption by the hybrid peptide. These simulations reproduced the experimental trend and provided a potential mechanism of action for PA-Pln149. It shows that the PA-Pln149 does not form nanopores, but instead promotes membrane destabilization through peptide aggregation and induction of membrane negative curvature with the collapse of the lamellar arrangement. The sequence of events depicted for PA-Pln149 may offer insights into the mechanism of action of AMPs previously shown to induce negative deformation of membrane curvature and often associated with peptide translocation via non-bilayer intermediate structures.
Collapse
Affiliation(s)
- G C A da Hora
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, 50740-560 Cidade Universitária, Recife, Brazil.
| | - N L Archilha
- Instituto de Física, Universidade de São Paulo, 05508-090 Cidade Universitária, São Paulo, Brazil.
| | - J L S Lopes
- Instituto de Física, Universidade de São Paulo, 05508-090 Cidade Universitária, São Paulo, Brazil.
| | - D M Müller
- Departamento de Química Orgánica, Facultad de Bioquímica y Cs. Biológicas, Universidad Nacional del Litoral (U.N.L). Ciudad Universitaria, C.C.242, (C.P:3000) Santa Fe, Argentina
| | - K Coutinho
- Instituto de Física, Universidade de São Paulo, 05508-090 Cidade Universitária, São Paulo, Brazil.
| | - R Itri
- Instituto de Física, Universidade de São Paulo, 05508-090 Cidade Universitária, São Paulo, Brazil.
| | - T A Soares
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, 50740-560 Cidade Universitária, Recife, Brazil. and Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
6
|
Rapson AC, Gee ML, Clayton AHA, Smith TA. Interactions of a lytic peptide with supported lipid bilayers investigated by time-resolved evanescent wave-induced fluorescence spectroscopy. Methods Appl Fluoresc 2016; 4:044001. [DOI: 10.1088/2050-6120/4/4/044001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Burton MG, Huang QM, Hossain MA, Wade JD, Palombo EA, Gee ML, Clayton AHA. Direct Measurement of Pore Dynamics and Leakage Induced by a Model Antimicrobial Peptide in Single Vesicles and Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6496-6505. [PMID: 27281288 DOI: 10.1021/acs.langmuir.6b00596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Antimicrobial peptides are promising therapeutic alternatives to counter growing antimicrobial resistance. Their precise mechanism of action remains elusive, however, particularly with respect to live bacterial cells. We investigated the interaction of a fluorescent melittin analogue with single giant unilamellar vesicles, giant multilamellar vesicles, and bilamellar Gram-negative Escherichia coli (E. coli) bacteria. Time-lapse fluorescence lifetime imaging microscopy was employed to determine the population distribution of the fluorescent melittin analogue between pore state and membrane surface state, and simultaneously measure the leakage of entrapped fluorescent species from the vesicle (or bacterium) interior. In giant unilamellar vesicles, leakage from vesicle interior was correlated with an increase in level of pore states, consistent with a stable pore formation mechanism. In giant multilamellar vesicles, vesicle leakage occurred more gradually and did not appear to correlate with increased pore states. Instead pore levels remained at a low steady-state level, which is more in line with coupled equilibria. Finally, in single bacterial cells, significant increases in pore levels were observed over time, which were correlated with only partial loss of cytosolic contents. These observations suggested that pore formation, as opposed to complete dissolution of membrane, was responsible for the leakage of contents in these systems, and that the bacterial membrane has an adaptive capacity that resists peptide attack. We interpret the three distinct pore dynamics regimes in the context of the increasing physical and biological complexity of the membranes.
Collapse
Affiliation(s)
| | | | | | | | - Enzo A Palombo
- Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn, Victoria 3122, Australia
| | | | - Andrew H A Clayton
- Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn, Victoria 3122, Australia
| |
Collapse
|
8
|
Hirst DJ, Lee TH, Kulkarni K, Wilce JA, Aguilar MI. The impact of cell-penetrating peptides on membrane bilayer structure during binding and insertion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1841-9. [PMID: 27163492 DOI: 10.1016/j.bbamem.2016.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/27/2016] [Accepted: 05/03/2016] [Indexed: 11/29/2022]
Abstract
We have studied the effect of penetratin and a truncated analogue on the bilayer structure using dual polarisation interferometry, to simultaneously measure changes in mass per unit area and birefringence (an optical parameter representing bilayer order) with high sensitivity during the binding and dissociation from the membrane. Specifically, we studied penetratin (RQIKIWFQNRRMKWKK), along with a shortened and biotinylated version known as R8K-biotin (RRMKWKKK(Biotin)-NH2). Overall both peptides bound only weakly to the neutral DMPC and POPC bilayers, while much higher binding was observed for the anionic DMPC/DMPG and POPC/POPG. The binding of penetratin to gel-phase DMPC/DMPG was adequately represented by a two-state model, whereas on the fluid-phase POPC/POPG it exhibited a distinctly different binding pattern, best represented by a three-state kinetic model. However, R8K-biotin did not bind well to DMPC/DMPG and showed a more transitory and superficial binding to POPC/POPG. Comparing the modelling results for both peptides binding to POPC/POPG suggests an important role for a securely bound intermediate prior to penetratin insertion and translocation. Overall these results further elucidate the mechanism of penetratin, and provide another example of the significance of the ability of DPI to measure structural changes and the use of kinetic analysis to investigate the stages of peptide-membrane interactions.
Collapse
Affiliation(s)
- Daniel J Hirst
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne 3800,Australia
| | - Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne 3800,Australia
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne 3800,Australia
| | - Jacqueline A Wilce
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne 3800,Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne 3800,Australia.
| |
Collapse
|
9
|
Wang D, Cao Y, Chen C, Cao M, Sun Y, Wang J, Xu H. Fusion and leakage of catanionic surfactant vesicles induced by α-helical peptides: the effect of membrane charge. RSC Adv 2016. [DOI: 10.1039/c6ra22994h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Leakage and fusion of vesicles have triggered great interest because they are important steps in the transportation of materials in living systems.
Collapse
Affiliation(s)
- Dong Wang
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- Qingdao
- P. R. China
| | - Yueying Cao
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- Qingdao
- P. R. China
| | - Cuixia Chen
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- Qingdao
- P. R. China
| | - Meiwen Cao
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- Qingdao
- P. R. China
| | - Yawei Sun
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- Qingdao
- P. R. China
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- Qingdao
- P. R. China
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- Qingdao
- P. R. China
| |
Collapse
|
10
|
Appadu A, Jelokhani-Niaraki M, DeBruin L. Conformational Changes and Association of Membrane-Interacting Peptides in Myelin Membrane Models: A Case of the C-Terminal Peptide of Proteolipid Protein and the Antimicrobial Peptide Melittin. J Phys Chem B 2015; 119:14821-30. [DOI: 10.1021/acs.jpcb.5b07375] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ashtina Appadu
- Department
of Chemistry and
Biochemistry, Wilfrid Laurier University, 75 University Ave. W., Waterloo, Ontario, Canada N2L 3C5
| | - Masoud Jelokhani-Niaraki
- Department
of Chemistry and
Biochemistry, Wilfrid Laurier University, 75 University Ave. W., Waterloo, Ontario, Canada N2L 3C5
| | - Lillian DeBruin
- Department
of Chemistry and
Biochemistry, Wilfrid Laurier University, 75 University Ave. W., Waterloo, Ontario, Canada N2L 3C5
| |
Collapse
|
11
|
Mularski A, Wilksch JJ, Wang H, Hossain MA, Wade JD, Separovic F, Strugnell RA, Gee ML. Atomic Force Microscopy Reveals the Mechanobiology of Lytic Peptide Action on Bacteria. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:6164-71. [PMID: 25978768 DOI: 10.1021/acs.langmuir.5b01011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Increasing rates of antimicrobial-resistant medically important bacteria require the development of new, effective therapeutics, of which antimicrobial peptides (AMPs) are among the promising candidates. Many AMPs are membrane-active, but their mode of action in killing bacteria or in inhibiting their growth remains elusive. This study used atomic force microscopy (AFM) to probe the mechanobiology of a model AMP (a derivative of melittin) on living Klebsiella pneumoniae bacterial cells. We performed in situ biophysical measurements to understand how the melittin peptide modulates various biophysical behaviors of individual bacteria, including the turgor pressure, cell wall elasticity, and bacterial capsule thickness and organization. Exposure of K. pneumoniae to the peptide had a significant effect on the turgor pressure and Young's modulus of the cell wall. The turgor pressure increased upon peptide addition followed by a later decrease, suggesting that cell lysis occurred and pressure was lost through destruction of the cell envelope. The Young's modulus also increased, indicating that interaction with the peptide increased the rigidity of the cell wall. The bacterial capsule did not prevent cell lysis by the peptide, and surprisingly, the capsule appeared unaffected by exposure to the peptide, as capsule thickness and inferred organization were within the control limits, determined by mechanical measurements. These data show that AFM measurements may provide valuable insights into the physical events that precede bacterial lysis by AMPs.
Collapse
Affiliation(s)
- Anna Mularski
- †School of Chemistry, ‡Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, and §Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jonathan J Wilksch
- †School of Chemistry, ‡Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, and §Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Huabin Wang
- †School of Chemistry, ‡Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, and §Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Mohammed Akhter Hossain
- †School of Chemistry, ‡Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, and §Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - John D Wade
- †School of Chemistry, ‡Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, and §Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Frances Separovic
- †School of Chemistry, ‡Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, and §Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Richard A Strugnell
- †School of Chemistry, ‡Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, and §Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Michelle L Gee
- †School of Chemistry, ‡Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, and §Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
12
|
Jamasbi E, Ciccotosto GD, Tailhades J, Robins-Browne RM, Ugalde CL, Sharples RA, Patil N, Wade JD, Hossain MA, Separovic F. Site of fluorescent label modifies interaction of melittin with live cells and model membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2031-9. [PMID: 26051124 DOI: 10.1016/j.bbamem.2015.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 05/30/2015] [Accepted: 06/02/2015] [Indexed: 02/01/2023]
Abstract
The mechanism of membrane disruption by melittin (MLT) of giant unilamellar vesicles (GUVs) and live cells was studied using fluorescence microscopy and two fluorescent synthetic analogues of MLT. The N-terminus of one of these was acylated with thiopropionic acid to enable labeling with maleimido-AlexaFluor 430 to study the interaction of MLT with live cells. It was compared with a second analogue labeled at P14C. The results indicated that the fluorescent peptides adhered to the membrane bilayer of phosphatidylcholine GUVs and inserted into the plasma membrane of HeLa cells. Fluorescence and light microscopy revealed changes in cell morphology after exposure to MLT peptides and showed bleb formation in the plasma membrane of HeLa cells. However, the membrane disruptive effect was dependent upon the location of the fluorescent label on the peptide and was greater when MLT was labeled at the N-terminus. Proline at position 14 appeared to be important for antimicrobial activity, hemolysis and cytotoxicity, but not essential for cell membrane disruption.
Collapse
Affiliation(s)
- Elaheh Jamasbi
- School of Chemistry, Bio21 Institute, The University of Melbourne, VIC 3010, Australia
| | | | - Julien Tailhades
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC 3010, Australia
| | - Roy M Robins-Browne
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC 3010, Australia; Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Cathryn L Ugalde
- Department of Biochemistry & Molecular Biology, Bio21 Institute, The University of Melbourne, VIC 3010, Australia
| | - Robyn A Sharples
- Department of Biochemistry & Molecular Biology, Bio21 Institute, The University of Melbourne, VIC 3010, Australia
| | - Nitin Patil
- School of Chemistry, Bio21 Institute, The University of Melbourne, VIC 3010, Australia; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC 3010, Australia
| | - John D Wade
- School of Chemistry, Bio21 Institute, The University of Melbourne, VIC 3010, Australia; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC 3010, Australia
| | - Mohammed Akhter Hossain
- School of Chemistry, Bio21 Institute, The University of Melbourne, VIC 3010, Australia; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC 3010, Australia
| | - Frances Separovic
- School of Chemistry, Bio21 Institute, The University of Melbourne, VIC 3010, Australia
| |
Collapse
|
13
|
Jamasbi E, Batinovic S, Sharples RA, Sani MA, Robins-Browne RM, Wade JD, Separovic F, Hossain MA. Melittin peptides exhibit different activity on different cells and model membranes. Amino Acids 2014; 46:2759-66. [DOI: 10.1007/s00726-014-1833-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 08/26/2014] [Indexed: 11/30/2022]
|
14
|
Burton MG, Huang QM, Hossain MA, Wade JD, Clayton AHA, Gee ML. Long-time-scale interaction dynamics between a model antimicrobial peptide and giant unilamellar vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:14613-14621. [PMID: 24168523 DOI: 10.1021/la403083m] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The interaction dynamics between a lytic peptide and a biomembrane was studied using time-lapse fluorescence lifetime imaging microscopy. The model membrane was 1,2-dipalmitoyl-sn-glycero-3-phosphochloine giant unilamellar vesicles (GUVs), and the peptide was the K14 derivative of melittin, to which the polarity-sensitive fluorescent probe AlexaFluor 430 was grafted. The interaction of the peptide with the GUVs resulted in a progressive quenching of the fluorescence lifetime over a period of minutes. From previous photophysics characterization of the peptide, we were able to deconvolve the contribution of three distinct peptide states to the lifetime trajectory and use this data to develop a kinetics model for the interaction process. It was found that the peptide-membrane interaction was well described by a two-step mechanism: peptide monomer adsorption followed by membrane surface migration, assembly, and insertion to form membrane pores. There was an equilibrium exchange between pore and surface monomers at all lipid/peptide (L/P) concentration ratios, suggesting that the fully inserted phase was reached, even at low peptide concentrations. In contrast to previous studies, there was no evidence of critical behavior; irrespective of L/P ratio, lytic pores were the dominant peptide state at equilibrium and were formed even at very low peptide concentrations. We suggest that this behavior is seen in GUVs because their low curvature means low Laplace pressure. Membrane elasticity is therefore relatively ineffective at damping the thermal fluctuations of lipid molecules that lead to random molecular-level lipid protrusions and membrane undulations. The transient local membrane deformations that result from these thermal fluctuations create the conditions necessary for facile peptide insertion.
Collapse
Affiliation(s)
- Matthew G Burton
- School of Chemistry and ‡Florey Department of Neuroscience and Mental Health, Centre for Neuroscience Research Chemistry, University of Melbourne , Parkville, Victoria 3010, Australia
| | | | | | | | | | | |
Collapse
|
15
|
Arouri A, Dathe M, Blume A. The helical propensity of KLA amphipathic peptides enhances their binding to gel-state lipid membranes. Biophys Chem 2013; 180-181:10-21. [DOI: 10.1016/j.bpc.2013.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/17/2013] [Accepted: 05/18/2013] [Indexed: 12/18/2022]
|
16
|
Gee ML, Burton M, Grevis-James A, Hossain MA, McArthur S, Palombo EA, Wade JD, Clayton AHA. Imaging the action of antimicrobial peptides on living bacterial cells. Sci Rep 2013; 3:1557. [PMID: 23532056 PMCID: PMC3609022 DOI: 10.1038/srep01557] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 03/06/2013] [Indexed: 12/28/2022] Open
Abstract
Antimicrobial peptides hold promise as broad-spectrum alternatives to conventional antibiotics. The mechanism of action of this class of peptide is a topical area of research focused predominantly on their interaction with artificial membranes. Here we compare the interaction mechanism of a model antimicrobial peptide with single artificial membranes and live bacterial cells. The interaction kinetics was imaged using time-lapse fluorescence lifetime imaging of a fluorescently-tagged melittin derivative. Interaction with the synthetic membranes resulted in membrane pore formation. In contrast, the interaction with bacteria led to transient membrane disruption and corresponding leakage of the cytoplasm, but surprisingly with a much reduced level of pore formation. The discovery that pore formation is a less significant part of lipid-peptide interaction in live bacteria highlights the mechanistic complexity of these interactions in living cells compared to simple artificial systems.
Collapse
Affiliation(s)
- Michelle L Gee
- School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Hirst DJ, Lee TH, Swann MJ, Aguilar MI. Combined mass and structural kinetic analysis of multistate antimicrobial peptide-membrane interactions. Anal Chem 2013; 85:9296-304. [PMID: 23998643 DOI: 10.1021/ac402148v] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Kinetic analysis of peptide-membrane interactions generally involves a curve fitting process with no information about what the different curves may physically correspond to. Given the multistep process of peptide-membrane interactions, a computational method that utilizes physical parameters that relate to both peptide binding and membrane structure would provide new insight into this complex process. In this study, kinetic models accounting for two-state and three-state mechanisms were fitted to our previously reported simultaneous real-time measurements of mass and birefringence during the binding and dissociation of the peptide HPA3 (Hirst, D.; Lee, T.-H.; Swann, M.; Unabia, S.; Park, Y.; Hahm, K.-S.; Aguilar, M. Eur. Biophys. J. 2011, 40, 503-514); significantly, the mass and birefringence are constrained by the same set of kinetic constants, allowing the unification of peptide binding patterns with membrane structure changes. For the saturated phospholipid dimyristoyl-phosphatidylcholine (DMPC) the two-state model was sufficient to account for the observed changes in mass and birefringence, whereas for the unsaturated phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) the two-state model was found to be inadequate and a three-state model gave a significantly better fit. The third state of interaction for POPC was found to disrupt the bilayer much more than the previous two states. We propose a hypothesis for the mechanism of membrane permeabilization based on the results featuring a loosely bound first state, a tightly bound second state, and a highly membrane-disrupting third state. The results demonstrate the importance of the difference in membrane fluidity between the gel phase DMPC and the liquid crystal phase POPC for peptide-membrane interactions and establish the combination of DPI and kinetic modeling as a powerful tool for revealing features of peptide-membrane interaction mechanisms, including intermediate states between initial binding and full membrane disruption.
Collapse
Affiliation(s)
- Daniel J Hirst
- Department of Biochemistry and Molecular Biology, Monash University , Clayton, Victoria 3800, Australia
| | | | | | | |
Collapse
|
18
|
Multiple membrane interactions and versatile vesicle deformations elicited by melittin. Toxins (Basel) 2013; 5:637-64. [PMID: 23594437 PMCID: PMC3705284 DOI: 10.3390/toxins5040637] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/02/2013] [Accepted: 04/10/2013] [Indexed: 01/11/2023] Open
Abstract
Melittin induces various reactions in membranes and has been widely studied as a model for membrane-interacting peptide; however, the mechanism whereby melittin elicits its effects remains unclear. Here, we observed melittin-induced changes in individual giant liposomes using direct real-time imaging by dark-field optical microscopy, and the mechanisms involved were correlated with results obtained using circular dichroism, cosedimentation, fluorescence quenching of tryptophan residues, and electron microscopy. Depending on the concentration of negatively charged phospholipids in the membrane and the molecular ratio between lipid and melittin, melittin induced the “increasing membrane area”, “phased shrinkage”, or “solubilization” of liposomes. In phased shrinkage, liposomes formed small particles on their surface and rapidly decreased in size. Under conditions in which the increasing membrane area, phased shrinkage, or solubilization were mainly observed, the secondary structure of melittin was primarily estimated as an α-helix, β-like, or disordered structure, respectively. When the increasing membrane area or phased shrinkage occurred, almost all melittin was bound to the membranes and reached more hydrophobic regions of the membranes than when solubilization occurred. These results indicate that the various effects of melittin result from its ability to adopt various structures and membrane-binding states depending on the conditions.
Collapse
|
19
|
Murase T, Yoshihara T, Yamada K, Tobita S. Fluorescent Peptides Labeled with Environment-Sensitive 7-Aminocoumarins and Their Interactions with Lipid Bilayer Membranes and Living Cells. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2013. [DOI: 10.1246/bcsj.20120314] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tokiko Murase
- Department of Chemistry and Chemical Biology, Gunma University
| | | | - Keiichi Yamada
- Department of Chemistry and Chemical Biology, Gunma University
| | - Seiji Tobita
- Department of Chemistry and Chemical Biology, Gunma University
| |
Collapse
|
20
|
Piper-Feldkamp AR, Wegner M, Brzezinski P, Reed SM. Mixtures of supported and hybrid lipid membranes on heterogeneously modified silica nanoparticles. J Phys Chem B 2013; 117:2113-22. [PMID: 23387352 PMCID: PMC3935798 DOI: 10.1021/jp308305y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Simple supported lipid bilayers do not accurately reflect the complex heterogeneity of cellular membranes; however, surface modification makes it possible to tune membrane properties to better mimic biological systems. Here, 3-[2-(2-aminoethylamino)ethylamino]propyl-trimethoxysilane (DETAS), a silica modifier, facilitated formation of supported lipid bilayers on silica nanoparticles. Evidence for a stable supported bilayer came from the successful entrapment of a soluble fluorophore within an interstitial water layer. A fluorescence-quenching assay that utilized a pore-forming peptide was used to demonstrate the existence of two separate lipid leaflets. In this assay, fluorescence was quenched by dithionite in roughly equal proportions prior to and after addition of melittin. When a hydrophobic modifier, octadecyltriethoxysilane, was codeposited on the nanoparticles with DETAS, there was a decrease in the amount of supported bilayer on the nanoparticles and an increase in the quantity of hybrid membrane. This allowed for a controlled mixture of two distinct types of membranes on a single substrate, one separated by a water cushion and the other anchored directly on the surface, thereby providing a new mimic of cellular membranes.
Collapse
Affiliation(s)
- Aundrea R. Piper-Feldkamp
- Department of Chemistry, University of Colorado Denver, Campus Box 194, P.O. Box 173364, Denver, CO 80217 3364, Office: 303.556.6260, Fax: 303.556.4776,
| | - Maria Wegner
- Department of Biochemistry and Biophysics, Stockholm Univ., Svante Arrhenius väg 16, SE-106 91, Stockholm, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, Stockholm Univ., Svante Arrhenius väg 16, SE-106 91, Stockholm, Sweden
| | - Scott M. Reed
- Department of Chemistry, University of Colorado Denver, Campus Box 194, P.O. Box 173364, Denver, CO 80217 3364, Office: 303.556.6260, Fax: 303.556.4776,
| |
Collapse
|