1
|
Singh P, Mahar R. Cyclodextrin in drug delivery: Exploring scaffolds, properties, and cutting-edge applications. Int J Pharm 2024; 662:124485. [PMID: 39029633 DOI: 10.1016/j.ijpharm.2024.124485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Cyclodextrins (CDs) are unique cyclic compounds that can form inclusion complexes via host-guest complexation with a wide range of molecules, thereby altering their physicochemical properties. These molecules offer the formation of inclusion complexes without the formation of covalent bonds, making them suitable for a variety of applications in pharmaceutical and biomedical fields. Due to their supramolecular host-guest properties, CDs are being utilized in the fabrication of biomaterials, metal-organic frameworks, and nano-drug carriers. Additionally, CDs in combination with biomolecules are biocompatible and can deliver nano to macromolecules at the site of drug actions. However, the availability of free hydroxyl groups and a simple crosslinking process for supramolecular fabrication show immense opportunities for researchers in the field of tissue engineering and biomedical applications. In this review article, we have covered the historical development, various types of chemical frameworks, unique chemical and physical properties, and important applications of CDs in drug delivery and biomedical sciences.
Collapse
Affiliation(s)
- Parbeen Singh
- Department of Mechanical Engineering, University of Connecticut, Connecticut, United States.
| | - Rohit Mahar
- Department of Chemistry, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Garhwal, Uttarakhand, India.
| |
Collapse
|
2
|
Zhang K, Zhou Y, Moreno S, Schwarz S, Boye S, Voit B, Appelhans D. Reversible crowdedness of pH-responsive and host-guest active polymersomes: Mimicking µm-sized cell structures. J Colloid Interface Sci 2024; 654:1469-1482. [PMID: 37858368 DOI: 10.1016/j.jcis.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/15/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023]
Abstract
The structure-function characteristics of isolated artificial organelles (AOs) in protocells are mainly known, but there are few reports on clustered or aggregated AOs. To imitate µm-sized complex and heterogeneous cell structures, approaches are needed that enable reversible changes in the aggregation state of colloidal structures in response to chemical, biological, and external stimuli. To construct adaptive organelle-like or cell-like reorganization characteristics, we present an advanced crosslinking strategy to fabricate clustered polymersomes as a platform based on host-guest interactions between azobenzene-containing polymersomes (Azo-Psomes) and a β-cyclodextrin-modified polymer (β-CD polymer) as a crosslinker. First, the reversible (dis)assembly of clustered Azo-Psomes is carried out by the alternating input of crosslinker and adamantane-PEG3000 as a decrosslinker. Moreover, cluster size dependence is demonstrated by environmental pH. These offer the controlled fabrication of various homogeneous and heterogeneous Azo-Psomes structures, including the size regulation and visualization of clustered AOs through a fluorescent enzymatic cascade reaction. Finally, a temperature-sensitive crosslinking agent with β-CD units can promote the coaggregation of Azo-Psomes mediated by temperature changes. Overall, these (co-)clustered Azo-Psomes and their successful transformation in AOs may provide new features for modelling biological systems for eukaryotic cells and systems biology.
Collapse
Affiliation(s)
- Kehu Zhang
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany; Chair of Organic Chemistry of Polymers, Technische Universität Dresden, Dresden 01062, Germany
| | - Yang Zhou
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany; Chair of Organic Chemistry of Polymers, Technische Universität Dresden, Dresden 01062, Germany
| | - Silvia Moreno
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany.
| | - Simona Schwarz
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany; Chair of Organic Chemistry of Polymers, Technische Universität Dresden, Dresden 01062, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany.
| |
Collapse
|
3
|
Wang P, Moreno S, Janke A, Boye S, Wang D, Schwarz S, Voit B, Appelhans D. Probing Crowdedness of Artificial Organelles by Clustering Polymersomes for Spatially Controlled and pH-Triggered Enzymatic Reactions. Biomacromolecules 2022; 23:3648-3662. [PMID: 35981858 DOI: 10.1021/acs.biomac.2c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Most sophisticated biological functions and features of cells are based on self-organization, and the coordination and connection between their cell organelles determines their key functions. Therefore, spatially ordered and controllable self-assembly of polymersomes to construct clusters to simulate complex intracellular biological functions has attracted widespread attention. Here, we present a simple one-step copper-free click strategy to cross-link nanoscale pH-responsive and photo-cross-linked polymersomes (less than 100 nm) to micron-level clusters (more than 90% in 0.5-2 μm range). Various influencing factors in the clustering process and subsequent purification methods were studied to obtain optimal clustered polymeric vesicles. Even when polymeric vesicles separately loaded with different enzymes (glucose oxidase and myoglobin) are coclustered, the overall permeability of the clusters can still be regulated through tuning the pH values on demand. Compared with simple blending of those enzyme-loaded polymersomes, the rate of enzymatic cascade reaction increased significantly due to the interconnected complex microstructure established. The connection of catalytic nanocompartments into clusters confining different enzymes of a cascade reaction provides an excellent platform for the development of artificial systems mimicking natural organelles or cells.
Collapse
Affiliation(s)
- Peng Wang
- Leibniz Institute for Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany.,Organic Chemistry of Polymers, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Silvia Moreno
- Leibniz Institute for Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany
| | - Andreas Janke
- Leibniz Institute for Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany
| | - Susanne Boye
- Leibniz Institute for Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany
| | - Dishi Wang
- Leibniz Institute for Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany.,Organic Chemistry of Polymers, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Simona Schwarz
- Leibniz Institute for Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany
| | - Brigitte Voit
- Leibniz Institute for Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany.,Organic Chemistry of Polymers, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Dietmar Appelhans
- Leibniz Institute for Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany
| |
Collapse
|
4
|
Zhang J, Jiang J, Lin S, Cornel EJ, Li C, Du J. Polymersomes: from macromolecular self‐assembly to particle assembly. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiamin Zhang
- Department of Polymeric Materials School of Materials Science and Engineering, Tongji University 4800 Caoan Road Shanghai 201804 China
| | - Jinhui Jiang
- Department of Polymeric Materials School of Materials Science and Engineering, Tongji University 4800 Caoan Road Shanghai 201804 China
| | - Sha Lin
- Department of Polymeric Materials School of Materials Science and Engineering, Tongji University 4800 Caoan Road Shanghai 201804 China
| | - Erik Jan Cornel
- Department of Polymeric Materials School of Materials Science and Engineering, Tongji University 4800 Caoan Road Shanghai 201804 China
| | - Chang Li
- Department of Polymeric Materials School of Materials Science and Engineering, Tongji University 4800 Caoan Road Shanghai 201804 China
| | - Jianzhong Du
- Department of Polymeric Materials School of Materials Science and Engineering, Tongji University 4800 Caoan Road Shanghai 201804 China
- Department of Gynaecology and Obstetrics, Shanghai Fourth People's Hospital, School of Medicine Tongji University Shanghai 200434 China
| |
Collapse
|
5
|
Huang P, Qi M, Chen C, Xu F, Li S, Xu Q, Pan H, Wang Y, Yu C, Zhang S, Zhou Y. Asymmetric Vesicles Self-Assembled by Amphiphilic Sequence-Controlled Polymers. ACS Macro Lett 2021; 10:894-900. [PMID: 35549185 DOI: 10.1021/acsmacrolett.1c00301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The asymmetric distribution of lipids on the inner and outer membranes of a cell plays a pivotal role in the physiological and immunological activities of life. It has inspired the elaboration of synthetic asymmetric vesicles for the discovery of advanced materials and functions. The asymmetric vesicles were generally prepared by amphiphilic block copolymers. We herein report on the formation of asymmetric vesicles self-assembled by amphiphilic sequence-controlled polymers with two hydrophilic segments SU and TEO. We also developed an efficient fluorescence titration method with europium(III) ions (Eu3+) to determine the uneven distribution of SU and TEO. SU units are preferentially located on the outer membrane and TEO on the inner membrane of the resulting vesicles, which is facilitated by the electrostatic repulsion of SU and the U-shaped folding of the hydrophobic backbone of the resulting polymers. This work shows that sequence-controlled polymers with alternating monomer sequence provide a powerful toolbox for the elaboration of important yet challenging self-assembled structures for emerging functions and properties.
Collapse
Affiliation(s)
- Pei Huang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meiwei Qi
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuanshuang Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fugui Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shanlong Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingsong Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Pan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuling Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shaodong Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
6
|
Wang X, Tian L, Ren Y, Zhao Z, Du H, Zhang Z, Drinkwater BW, Mann S, Han X. Chemical Information Exchange in Organized Protocells and Natural Cell Assemblies with Controllable Spatial Positions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906394. [PMID: 32105404 DOI: 10.1002/smll.201906394] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/12/2020] [Indexed: 06/10/2023]
Abstract
An ultrasound-based platform is established to prepare homogenous arrays of giant unilamellar vesicles (GUVs) or red blood cell (RBCs), or hybrid assemblies of GUV/RBCs. Due to different responses to the modulation of the acoustic standing wave pressure field between the GUVs and RBCs, various types of protocell/natural cell hybrid assemblies are prepared with the ability to undergo reversible dynamic reconfigurations from vertical to horizontal alignments, or from 1D to 2D arrangements. A two-step enzymatic cascade reaction between transmitter glucose oxidase-containing GUVs and peroxidase-active receiver RBCs is used to implement chemical signal transduction in the different hybrid micro-arrays. Taken together, the obtained results suggest that the ultrasound-based micro-array technology can be used as an alternative platform to explore chemical communication pathways between protocells and natural cells, providing new opportunities for bottom-up synthetic biology.
Collapse
Affiliation(s)
- Xuejing Wang
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Liangfei Tian
- Faculty of Engineering, Queens Building, University of Bristol, Bristol, BS8 1TR, UK
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Yongshuo Ren
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhongyang Zhao
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Hang Du
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
- Marine Antifouling Engineering Technology Center of Shandong Province, Weihai, 264209, China
| | - Zhizhou Zhang
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
- Marine Antifouling Engineering Technology Center of Shandong Province, Weihai, 264209, China
| | - Bruce W Drinkwater
- Faculty of Engineering, Queens Building, University of Bristol, Bristol, BS8 1TR, UK
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
7
|
Nabeel F, Rasheed T, Mahmood MF, Khan SUD. Hyperbranched copolymer based photoluminescent vesicular probe conjugated with tetraphenylethene: Synthesis, aggregation-induced emission and explosive detection. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
8
|
Nabeel F, Rasheed T. Rhodol-conjugated polymersome sensor for visual and highly-sensitive detection of hydrazine in aqueous media. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121757. [PMID: 31818652 DOI: 10.1016/j.jhazmat.2019.121757] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/13/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
Hydrazine is a hazardous environmental pollutant, which contaminates land, air and water posturing a severe risk to human health. For the first-hand estimation, a qualitative approach (colorimetric) for recognition of hydrazine could suffice. However, for accurate measurement, under the threshold limit value (TLV), a quantitative technique is desired. We report the polymersome-based sensor for visual detection and quantification of hydrazine in water. The rhodol-functionalized amphiphilic hyperbranched multiarm copolymer (HSP-RDL) was self-assembled into vesicles. The HSP-RDL vesicle probe exhibited high sensitivity and selectivity for hydrazine recognition in presence of various competitive species such as cations, anions, and neutral species. The fast responsive pink color change from colorless could be visualized with naked eye due to spirolactone ring opening by hydrazinolysis triggered strong fluorescence emission. The vesicle probe could detect hydrazine in water with a limit of detection (LOD) value of 2 nM (0.0652 ppb), which is lower than TLV (10 ppb) given by USEPA (United States Environmental Protection Agency). Furthermore, the vesicle probe could quantify hydrazine (recovery ≥ 99 %) in a wastewater sample collected from Huangpu river. The membrane-permeable characteristics of HSP-RDL led hydrazine detection in live cells through confocal fluorescence microscopy.
Collapse
Affiliation(s)
- Faran Nabeel
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tahir Rasheed
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
9
|
Lu Y, Lin J, Wang L, Zhang L, Cai C. Self-Assembly of Copolymer Micelles: Higher-Level Assembly for Constructing Hierarchical Structure. Chem Rev 2020; 120:4111-4140. [DOI: 10.1021/acs.chemrev.9b00774] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yingqing Lu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liangshun Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
10
|
Gobbo P, Patil AJ, Li M, Harniman R, Briscoe WH, Mann S. Programmed assembly of synthetic protocells into thermoresponsive prototissues. NATURE MATERIALS 2018; 17:1145-1153. [PMID: 30297813 DOI: 10.1038/s41563-018-0183-5] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
Although several new types of synthetic cell-like entities are now available, their structural integration into spatially interlinked prototissues that communicate and display coordinated functions remains a considerable challenge. Here we describe the programmed assembly of synthetic prototissue constructs based on the bio-orthogonal adhesion of a spatially confined binary community of protein-polymer protocells, termed proteinosomes. The thermoresponsive properties of the interlinked proteinosomes are used collectively to generate prototissue spheroids capable of reversible contractions that can be enzymatically modulated and exploited for mechanochemical transduction. Overall, our methodology opens up a route to the fabrication of artificial tissue-like materials capable of collective behaviours, and addresses important emerging challenges in bottom-up synthetic biology and bioinspired engineering.
Collapse
Affiliation(s)
- Pierangelo Gobbo
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK
| | - Avinash J Patil
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK
| | - Mei Li
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK
| | - Robert Harniman
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK
| | - Wuge H Briscoe
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK.
| |
Collapse
|
11
|
Maiti S, Fortunati I, Sen A, Prins LJ. Spatially controlled clustering of nucleotide-stabilized vesicles. Chem Commun (Camb) 2018; 54:4818-4821. [DOI: 10.1039/c8cc02318b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A two-step hierarchical self-assembly process is presented relying on the GMP-induced formation of vesicles, which then cluster into large aggregates upon the addition of Ag+-ions.
Collapse
Affiliation(s)
- Subhabrata Maiti
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
- Department of Chemistry
| | - Ilaria Fortunati
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
| | - Ayusman Sen
- Department of Chemistry
- The Pennsylvania State University
- University Park
- USA
| | - Leonard J. Prins
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
| |
Collapse
|
12
|
Pal S, Dalal C, Jana NR. Supramolecular Host-Guest Chemistry-Based Folate/Riboflavin Functionalization and Cancer Cell Labeling of Nanoparticles. ACS OMEGA 2017; 2:8948-8958. [PMID: 30023595 PMCID: PMC6045387 DOI: 10.1021/acsomega.7b01506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 11/30/2017] [Indexed: 05/30/2023]
Abstract
Nanoparticle-based cellular probes are commonly designed via covalent conjugation with affinity biomolecules. Those nanobioconjugates selectively interact with cell surface receptors and induce endocytosis followed by intracellular trafficking. However, this approach requires functional modification of biomolecules that may alter their biochemical activity. Here, we show that supramolecular host-guest chemistry can be utilized as an alternative approach in nanoparticle functionalization and selective cell labeling. We have used cyclodextrin-conjugated quantum dots (QDs) for supramolecular host-guest interaction-based functionalization with folate (QD-folate) and riboflavin (QD-riboflavin), where cyclodextrin acts as a host for the folate/riboflavin guest. We demonstrate that QD-folate and QD-riboflavin selectively label cells that have over-expressed folate/riboflavin receptors and induce the endocytosis pathway similar to covalently conjugated folate-/riboflavin-based nanoprobes. However, labeling is highly sensitive to the molar ratio of folate/riboflavin to cyclodextrin and incubation time. The presented functionalization/labeling approach is unique as it does not require covalent conjugation and may be extended for in vivo targeting application via simultaneous delivery of host and guest molecules.
Collapse
Affiliation(s)
- Suman Pal
- Centre for Advanced Materials, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Chumki Dalal
- Centre for Advanced Materials, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Nikhil R. Jana
- Centre for Advanced Materials, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
13
|
Pei Q, Hu X, Wang L, Liu S, Jing X, Xie Z. Cyclodextrin/Paclitaxel Dimer Assembling Vesicles: Reversible Morphology Transition and Cargo Delivery. ACS APPLIED MATERIALS & INTERFACES 2017; 9:26740-26748. [PMID: 28763197 DOI: 10.1021/acsami.7b08110] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Here, we developed stable supramolecular binary vesicles on the basis of the host-guest interaction between β-cyclodextrins (β-CDs) and paclitaxel (PTX) dimer. The inclusion complexation between PTX dimer and β-CDs in water was studied by proton nuclear magnetic resonance spectroscopy and two-dimensional rotating-frame Overhauser effect spectroscopy. The resulting inclusion complex was amphiphilic and could self-assemble into vesicles with average diameter of 230 nm. The vesicles could evolve to nanoparticles (NPs) by adding competitive binding guest amantadine hydrochloride or by digesting β-CDs through α-amylase. Moreover, this process was reversible, and the NPs could also transform to vesicles by adding enough β-CDs again. The obtained hollow supramolecular vesicles were further explored to load hydrophilic dye indocyanine green molecule or hydrophobic anticancer drug doxorobicin for their controlled release under external stimulus. This work provides a new strategy for the design of supramolecular systems by using prodrug as building blocks.
Collapse
Affiliation(s)
- Qing Pei
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, People's Republic of China
- University of Science and Technology of China , Hefei, Anhui 230026, People's Republic of China
| | - Xiuli Hu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, People's Republic of China
| | - Lei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, People's Republic of China
| | - Shi Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, People's Republic of China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, People's Republic of China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, People's Republic of China
| |
Collapse
|
14
|
Wang G, Peng Y, Lou L, Xing P, Du G. Selective vesicle aggregation achieved via the self-assembly of terpyridine-based building blocks. SOFT MATTER 2017; 13:3847-3852. [PMID: 28492660 DOI: 10.1039/c7sm00504k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Herein, we report the self-assembly of a mono terpyridine-based building block modified with long alkyl chains, which gives rise to vesicular aggregates in aqueous media. The vesicles are responsive to transition metal ions, and form different kinds of aggregates after metal-ligand coordination. In particular, Ni(ii) shows a unique influence on morphological transitions, whereby vesicles aggregate and fuse upon the addition of Ni(ii) ions. Spectroscopic and morphological studies are highlighted in this work. Furthermore, the formed vesicles could behave as a matrix for encapsulating fluorescent dyes with similar molecular structure via co-assembly, enabling more accurate observation of vesicle aggregation via confocal laser scanning techniques.
Collapse
Affiliation(s)
- Guiping Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, No. 8 Xindu Avenue, Xindu District, Chengdu City, Sichuan Province 610500, People's Republic of China.
| | | | | | | | | |
Collapse
|
15
|
Whitehead SA, McNitt CD, Mattern-Schain SI, Carr AJ, Alam S, Popik VV, Best MD. Artificial Membrane Fusion Triggered by Strain-Promoted Alkyne-Azide Cycloaddition. Bioconjug Chem 2017; 28:923-932. [PMID: 28248084 PMCID: PMC5990007 DOI: 10.1021/acs.bioconjchem.6b00578] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Artificial systems for controlled membrane fusion applicable for drug delivery would ideally use triggers that are orthogonal to biology. To apply the strain-promoted alkyne-azide cycloaddition (SPAAC) to drive membrane fusion, oxo-dibenzocyclooctyne (ODIBO)-lipid 1 was designed, synthesized, and studied alongside azadibenzocyclooctyne (ADIBO)-lipids 2-4 to assess fusion with liposomes containing azido-lipid 5. Lipids 1-2 were first shown to be effective for liposome derivatization. Next, fusion was evaluated using liposomes containing 1 and varying ratios of PC and PE via a FRET dilution fusion assay, and a 1:1 PC-to-PE ratio yielded the greatest signal change attributed to fusion. Finally, lipids 1-4 were compared, and 1 yielded the greatest triggering of fusion, while 2-4 yielded varying efficacies depending on the structural features of each lipid. Fusion was further validated through STEM studies showing larger multilamellar assemblies after liposome mixing, and FRET assay results supporting the mixing of liposome aqueous contents. This work provides a platform for triggered fusion toward drug delivery applications and an understanding of the effects of lipid structure and membrane composition on fusion.
Collapse
Affiliation(s)
- Stuart A Whitehead
- Department of Chemistry, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Christopher D McNitt
- Department of Chemistry, The University of Georgia , Athens, Georgia 30602, United States
| | - Samuel I Mattern-Schain
- Department of Chemistry, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Adam J Carr
- Department of Chemistry, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Shahrina Alam
- Department of Chemistry, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Vladimir V Popik
- Department of Chemistry, The University of Georgia , Athens, Georgia 30602, United States
| | - Michael D Best
- Department of Chemistry, University of Tennessee , Knoxville, Tennessee 37996, United States
| |
Collapse
|
16
|
Li H, Liu Y, Huang T, Qi M, Ni Y, Wang J, Zheng Y, Zhou Y, Yan D. Construction of Light-Harvesting Polymeric Vesicles in Aqueous Solution with Spatially Separated Donors and Acceptors. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201600818] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 01/24/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Huimei Li
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Yannan Liu
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Tong Huang
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Meiwei Qi
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Yunzhou Ni
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Jie Wang
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Yongli Zheng
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| |
Collapse
|
17
|
Fernandez-Trillo F, Grover LM, Stephenson-Brown A, Harrison P, Mendes PM. Vesicles in Nature and the Laboratory: Elucidation of Their Biological Properties and Synthesis of Increasingly Complex Synthetic Vesicles. Angew Chem Int Ed Engl 2017; 56:3142-3160. [DOI: 10.1002/anie.201607825] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/12/2016] [Indexed: 12/19/2022]
Affiliation(s)
| | - Liam M. Grover
- School of Chemical Engineering; University of Birmingham; Edgbaston Birmingham B15 2TT UK
| | - Alex Stephenson-Brown
- School of Chemical Engineering; University of Birmingham; Edgbaston Birmingham B15 2TT UK
| | - Paul Harrison
- Institute of Inflammation and Ageing (IIA); University of Birmingham; Edgbaston Birmingham B15 2TT UK
| | - Paula M. Mendes
- School of Chemical Engineering; University of Birmingham; Edgbaston Birmingham B15 2TT UK
| |
Collapse
|
18
|
Fernandez-Trillo F, Grover LM, Stephenson-Brown A, Harrison P, Mendes PM. Vesikel in der Natur und im Labor: die Aufklärung der biologischen Eigenschaften und die Synthese zunehmend komplexer synthetischer Vesikel. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201607825] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
| | - Liam M. Grover
- School of Chemical Engineering; University of Birmingham; Edgbaston Birmingham B15 2TT Großbritannien
| | - Alex Stephenson-Brown
- School of Chemical Engineering; University of Birmingham; Edgbaston Birmingham B15 2TT Großbritannien
| | - Paul Harrison
- Institute of Inflammation and Ageing (IIA); University of Birmingham; Edgbaston Birmingham B15 2TT Großbritannien
| | - Paula M. Mendes
- School of Chemical Engineering; University of Birmingham; Edgbaston Birmingham B15 2TT Großbritannien
| |
Collapse
|
19
|
Zheng Y, Wyman IW. Supramolecular Nanostructures Based on Cyclodextrin and Poly(ethylene oxide): Syntheses, Structural Characterizations and Applications for Drug Delivery. Polymers (Basel) 2016; 8:E198. [PMID: 30979290 PMCID: PMC6431930 DOI: 10.3390/polym8050198] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/10/2016] [Accepted: 05/10/2016] [Indexed: 11/16/2022] Open
Abstract
Cyclodextrins (CDs) have been extensively studied as drug delivery carriers through host⁻guest interactions. CD-based poly(pseudo)rotaxanes, which are composed of one or more CD rings threading on the polymer chain with or without bulky groups (or stoppers), have attracted great interest in the development of supramolecular biomaterials. Poly(ethylene oxide) (PEO) is a water-soluble, biocompatible polymer. Depending on the molecular weight, PEO can be used as a plasticizer or as a toughening agent. Moreover, the hydrogels of PEO are also extensively studied because of their outstanding characteristics in biological drug delivery systems. These biomaterials based on CD and PEO for controlled drug delivery have received increasing attention in recent years. In this review, we summarize the recent progress in supramolecular architectures, focusing on poly(pseudo)rotaxanes, vesicles and supramolecular hydrogels based on CDs and PEO for drug delivery. Particular focus will be devoted to the structures and properties of supramolecular copolymers based on these materials as well as their use for the design and synthesis of supramolecular hydrogels. Moreover, the various applications of drug delivery techniques such as drug absorption, controlled release and drug targeting based CD/PEO supramolecular complexes, are also discussed.
Collapse
Affiliation(s)
- Yue Zheng
- Department of internal medicine, The First Hospital in Qinhuangdao Affiliated to Hebei Medical University, Qinhuangdao 066004, China.
| | - Ian W Wyman
- Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
20
|
Zhao MR, Wang LS, Liu HW, Wang YJ, Yang H. Preparation, physicochemical characterization and in vitro dissolution studies of azithromycin-cyclodextrin inclusion complexes. J INCL PHENOM MACRO 2016. [DOI: 10.1007/s10847-016-0613-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Abstract
Dendritic molecules are an exciting research topic because of their highly branched architecture, multiple functional groups on the periphery, and very pertinent features for various applications. Self-assembling dendritic amphiphiles have produced different nanostructures with unique morphologies and properties. Since their self-assembly in water is greatly relevant for biomedical applications, researchers have been looking for a way to rationally design dendritic amphiphiles for the last few decades. We review here some recent developments from investigations on the self-assembly of dendritic amphiphiles into various nanostructures in water on the molecular level. The main content of the review is divided into sections according to the different nanostructure morphologies resulting from the dendritic amphiphiles' self-assembly. Finally, we conclude with some remarks that highlight the self-assembling features of these dendritic amphiphiles.
Collapse
Affiliation(s)
- Bala N S Thota
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Berlin 14195, Germany
| | - Leonhard H Urner
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Berlin 14195, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Berlin 14195, Germany
| |
Collapse
|
22
|
Deng J, Liu X, Zhang S, Cheng C, Nie C, Zhao C. Versatile and Rapid Postfunctionalization from Cyclodextrin Modified Host Polymeric Membrane Substrate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:9665-9674. [PMID: 26301434 DOI: 10.1021/acs.langmuir.5b02038] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Surface modification has long been of great interest to impart desired functionalities to the bioimplants. However, due to the limitations of recent technologies in surface modification, it is highly desirable to explore novel protocols, which can advantageously and efficiently endow the inert material surfaces with versatile biofunctionalities. Herein, to achieve versatile and rapid postfunctionalization of polymeric membrane, we demonstrate a new strategy for the fabrication of β-cyclodextrin (β-CD) modified host membrane substrate that can recognize a series of well-designed guest macromolecules. The surface assembly procedure was driven by the host-guest interaction between adamantane (Ad) and β-CD. β-CD immobilized host membrane was fabricated via two steps: (1) epoxy groups enriched poly(ether sulfone) (PES) membrane was first prepared via in situ cross-linking polymerization and subsequently phase separation; (2) mono-6-deoxy-6-ethylenediamine-β-CD (EDA-β-CD) was then anchored onto the surface of the epoxy functionalized PES membrane to obtain PES-CD. Subsequently, three types of Ad-terminated polymers, including Ad-poly(styrenesulfonate-co-sodium acrylate) (Ad-PSA), Ad-methoxypoly(ethylene glycol) (Ad-PEG), and Ad-poly(methyl chloride-quaternized 2-(dimethylamino)ethyl methacrylate (Ad-PMT), were separately assembled onto the β-CD immobilized surfaces to endow the membranes with anticoagulant, antifouling, and antibacterial capability, respectively. Activated partial thromboplastin time (APTT), thrombin time (TT), and prothrombin time (PT) measurements were carried out to explore the anticoagulant activity. The antifouling capability was evaluated via protein adsorption and platelet adhesion measurements. Moreover, Staphyllococcous aureus (S. aureus) was selected as model bacteria to evaluate the antibacterial ability of the functionalized membranes. The results indicated that well-regulated blood compatibility, antifouling capability, and bactericidal activity could be achieved by the proposed rapid postfunctionalization on polymeric membranes. This approach of versatile and rapid postfunctionalization is promising for the preparation of multifunctional polymeric membrane materials to meet with various demands for the further applications.
Collapse
Affiliation(s)
- Jie Deng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, China
| | - Xinyue Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, China
| | - Shuqing Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, China
| | - Chuanxiong Nie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, China
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, China
| |
Collapse
|
23
|
Liu BW, Zhou H, Zhou ST, Yuan JY. Macromolecules based on recognition between cyclodextrin and guest molecules: Synthesis, properties and functions. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.01.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Jiang W, Zhou Y, Yan D. Hyperbranched polymer vesicles: from self-assembly, characterization, mechanisms, and properties to applications. Chem Soc Rev 2015; 44:3874-89. [DOI: 10.1039/c4cs00274a] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This tutorial review summarizes the first 10 years of work on hyperbranched polymer vesicles from syntheses, self-assembly, and properties to applications.
Collapse
Affiliation(s)
- Wenfeng Jiang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- China
| |
Collapse
|
25
|
Abstract
The recent research progress in biological and biomedical applications of hyperbranched polymers has been summarized in this review.
Collapse
Affiliation(s)
- Dali Wang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Tianyu Zhao
- Charles Institute of Dermatology
- School of Medicine and Medical Science
- University College Dublin
- Dublin 4
- Ireland
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Wenxin Wang
- Charles Institute of Dermatology
- School of Medicine and Medical Science
- University College Dublin
- Dublin 4
- Ireland
| |
Collapse
|
26
|
Zheng Y, Li S, Weng Z, Gao C. Hyperbranched polymers: advances from synthesis to applications. Chem Soc Rev 2015; 44:4091-130. [DOI: 10.1039/c4cs00528g] [Citation(s) in RCA: 498] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review summarizes the advances in hyperbranched polymers from the viewpoint of structure, click synthesis and functionalization towards their applications in the last decade.
Collapse
Affiliation(s)
- Yaochen Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Sipei Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Zhulin Weng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Chao Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- P. R. China
| |
Collapse
|
27
|
Ma X, Zhao Y. Biomedical Applications of Supramolecular Systems Based on Host–Guest Interactions. Chem Rev 2014; 115:7794-839. [DOI: 10.1021/cr500392w] [Citation(s) in RCA: 792] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xing Ma
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- School
of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yanli Zhao
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- School
of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
28
|
Wang Y, Li B, Jin H, Zhou Y, Lu Z, Yan D. Dissipative Particle Dynamics Simulation Study on Vesicles Self-Assembled from Amphiphilic Hyperbranched Multiarm Copolymers. Chem Asian J 2014; 9:2281-8. [DOI: 10.1002/asia.201402146] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/27/2014] [Indexed: 11/06/2022]
|
29
|
Feng A, Yuan J. Smart Nanocontainers: Progress on Novel Stimuli-Responsive Polymer Vesicles. Macromol Rapid Commun 2014; 35:767-79. [DOI: 10.1002/marc.201300866] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 12/23/2013] [Indexed: 01/15/2023]
Affiliation(s)
- Anchao Feng
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University; Beijing 100084 P. R. China
| | - Jinying Yuan
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University; Beijing 100084 P. R. China
| |
Collapse
|
30
|
Jin H, Zhou Y, Huang W, Zheng Y, Zhu X, Yan D. Three-component vesicle aggregation driven by adhesion interactions between Au nanoparticles and polydopamine-coated nanotubes. Chem Commun (Camb) 2014; 50:6157-60. [DOI: 10.1039/c4cc00609g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Large-scale and robust vesicle aggregates were obtained through three-component molecular recognition among cell-sized polymer vesicles, carbon nanotubes and Au nanoparticles driven by adhesion interactions between Au and polydopamine.
Collapse
Affiliation(s)
- Haibao Jin
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240, China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240, China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
| | - Wei Huang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240, China
| | - Yongli Zheng
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240, China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
| | - Deyue Yan
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240, China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
| |
Collapse
|
31
|
Qu F, Liu N, Bu W. Vesicle fusion intermediates obtained from the self-assembly of a cationic platinum(ii) complex with sulfonate terminated polystyrenes. RSC Adv 2014. [DOI: 10.1039/c3ra45574b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
32
|
Zhao Y, Sakai F, Su L, Liu Y, Wei K, Chen G, Jiang M. Progressive macromolecular self-assembly: from biomimetic chemistry to bio-inspired materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:5215-5256. [PMID: 24022921 DOI: 10.1002/adma.201302215] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/08/2013] [Indexed: 06/02/2023]
Abstract
Macromolecular self-assembly (MSA) has been an active and fruitful research field since the 1980s, especially in this new century, which is promoted by the remarkable developments in controlled radical polymerization in polymer chemistry, etc. and driven by the demands in bio-related investigations and applications. In this review, we try to summarize the trends and recent progress in MSA in relation to biomimetic chemistry and bio-inspired materials. Our paper covers representative achievements in the fabrication of artificial building blocks for life, cell-inspired biomimetic materials, and macromolecular assemblies mimicking the functions of natural materials and their applications. It is true that the current status of the deliberately designed and obtained nano-objects based on MSA including a variety of micelles, multicompartment vesicles, and some hybrid and complex nano-objects is at their very first stage to mimic nature, but significant and encouraging progress has been made in achieving a certain similarity in morphologies or properties to that of natural ones. Such achievements also demonstrate that MSA has played an important and irreplaceable role in the grand and long-standing research of biomimetic and bio-inspired materials, the future success of which depends on mutual and persistent efforts in polymer science, material science, supramolecular chemistry, and biology.
Collapse
Affiliation(s)
- Yu Zhao
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Paolino M, Ennen F, Lamponi S, Cernescu M, Voit B, Cappelli A, Appelhans D, Komber H. Cyclodextrin-Adamantane Host–Guest Interactions on the Surface of Biocompatible Adamantyl-Modified Glycodendrimers. Macromolecules 2013. [DOI: 10.1021/ma400352m] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Marco Paolino
- Dipartimento di Biotecnologie,
Chimica e Farmacia and European Research Centre for Drug Discovery
and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden,
Germany
| | - Franka Ennen
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden,
Germany
- Organic Chemistry
of Polymers, Technische Universität Dresden, 01062 Dresden,
Germany
| | - Stefania Lamponi
- Dipartimento di Biotecnologie,
Chimica e Farmacia and European Research Centre for Drug Discovery
and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy
| | - Mihaela Cernescu
- Institute of Physical
and Theoretical
Chemistry, Johann-Wolfgang-Goethe University, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
| | - Brigitte Voit
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden,
Germany
- Organic Chemistry
of Polymers, Technische Universität Dresden, 01062 Dresden,
Germany
| | - Andrea Cappelli
- Dipartimento di Biotecnologie,
Chimica e Farmacia and European Research Centre for Drug Discovery
and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy
| | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden,
Germany
| | - Hartmut Komber
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden,
Germany
| |
Collapse
|
34
|
He L, Bi S, Wang H, Ma B, Liu W, Bu W. Fusogenic metallosupramolecular brush vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:14164-14171. [PMID: 22974505 DOI: 10.1021/la303008c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The electrostatic combination of a cationic metallosupramolecular polyelectrolyte (Fe-MSP) with sulfonate-terminated polymers leads to the formation of metallosupramolecular brushes (MSBs). The resulting MSBs can self-assemble into vesicular structures in chloroform/methanol (v/v = 1:1) mixture solvents. The rigid-rod Fe-MSP chain has to bend for the formation of the vesicles, which accompanies the presence of a lateral tension and thus induces a spontaneous vesicle fusion with an hour-scale fusion time. For this much longer fusion process, the arrow-like protrusion, stalk-like intermediate, and hemifusion diaphragm are clearly observed by transmission electron microscopy. The complete fusion into larger vesicles significantly releases the lateral tension.
Collapse
Affiliation(s)
- Lipeng He
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou City, Gansu Province, China
| | | | | | | | | | | |
Collapse
|
35
|
Jin H, Huang W, Zheng Y, Zhou Y, Yan D. Construction of Macroscopic Cytomimetic Vesicle Aggregates Based on Click Chemistry: Controllable Vesicle Fusion and Phase Separation. Chemistry 2012; 18:8641-6. [DOI: 10.1002/chem.201201401] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Indexed: 12/31/2022]
|
36
|
Yhaya F, Binauld S, Callari M, Stenzel MH. One-Pot Endgroup-Modification of Hydrophobic RAFT Polymers with Cyclodextrin by Thiol-ene Chemistry and the Subsequent Formation of Dynamic Core–Shell Nanoparticles Using Supramolecular Host–Guest Chemistry. Aust J Chem 2012. [DOI: 10.1071/ch12158] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Poly(methyl methacrylate) PMMA, synthesized using reversible addition fragmentation chain transfer (RAFT) polymerization, was heated in a solvent at 100°C for 24 h leading to the loss of the RAFT endfunctionality and the complete conversion into a vinyl group. Mono(6-deoxy-6-mercapto)-β-cyclodextrin (β-CD-SH) was subsequently clicked onto the polymer by a thiol-ene reaction leading to PMMA with one β-CD as a terminal group (PMMA70–β-CD). Meanwhile, a RAFT agent with an adamantyl group has been prepared for the polymerization of 2-hydroxyethyl acrylate (HEA) leading to PHEA95–Ada. Two processes were employed to generate core–shell nanoparticles from these two polymers: a one-step approach that employs a solution of both polymers at stoichiometric amounts in DMF, followed by the addition of water, and a two step process that uses PMMA solid particles with surface enriched with β-CD in water, which have a strong tendency to aggregate, followed by the addition of PHEA95–Ada in water. Both pathways led to stable core–shell nanoparticles of ~150 nm in size. Addition of free β-CD competed with the polymer bound β-CD releasing the PHEA hairs from the particle surface. As a result, the PMMA particles started agglomerating resulting in a cloudy solution. A similar effect was observed when heating the solution. Since the equilibrium constant between β-CD and adamantane decreases with increasing temperature, the stabilizing PHEA chains cleaved from the surface and the solution turned cloudy due to the aggregation of the naked PMMA spheres. This process was reversible and with decreasing temperature the core–shell nanoparticles formed again leading to a clear solution.
Collapse
|
37
|
Jin H, Huang W, Zhu X, Zhou Y, Yan D. Biocompatible or biodegradable hyperbranched polymers: from self-assembly to cytomimetic applications. Chem Soc Rev 2012; 41:5986-97. [DOI: 10.1039/c2cs35130g] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|