1
|
Guari Y. Advanced Porous Nanomaterials: Synthesis, Properties, and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1602. [PMID: 39404329 PMCID: PMC11478733 DOI: 10.3390/nano14191602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024]
Abstract
Porous nanomaterials have emerged as one of the most versatile and valuable classes of materials, captivating the attention of both scientists and engineers due to their exceptional functional and structural properties [...].
Collapse
Affiliation(s)
- Yannick Guari
- ICGM, Université Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| |
Collapse
|
2
|
Saberi Afshar S, Mohammadi Ziarani G, Mohajer F, Badiei A. Fumed-Si-Pr-PNS as a Photoluminescence sensor for the Detection of Hg 2+ in Aqueous Media. J Fluoresc 2024; 34:2105-2113. [PMID: 37707711 DOI: 10.1007/s10895-023-03417-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023]
Abstract
Fumed silica was functionalized by piperazine followed by the reaction with 2- naphthalenesulfonyl chloride to prepare Fumed-Si-Pr-Piperazine-Naphthalenesulfonyl chloride (Fumed-Si-Pr-PNS), which was characterized to demonstrate the effective attachment on the surface of fumed silica. The optical sensing ability of Fumed-Si-Pr-PNS was studied via diverse metal ions in H2O solution by photoluminescence spectroscopy. The results showed that Fumed-Si-Pr-PNS detected selectively Hg2+ ions. The prepared sensor showed almost high absorption at different pH for Hg ion. After drawing various diagrams, The detection limits were calculated at about 12.45 × 10-6 M for Hg2+.
Collapse
Affiliation(s)
- Sepideh Saberi Afshar
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran, Iran
| | | | - Fatemeh Mohajer
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
3
|
Lv P, Chang S, Qin R, Zhou J, Wang W, Hong Q, Mei J, Yang S. Different roles of FeS and FeS 2 on magnetic FeS x for the selective adsorption of Hg 2+ from waste acids in smelters: Reaction mechanism, kinetics, and structure-activity relationship. CHEMOSPHERE 2024; 349:140917. [PMID: 38070609 DOI: 10.1016/j.chemosphere.2023.140917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/24/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
Magnetic FeSx was developed as a high-performance sorbent for selectively adsorbing Hg2+ from waste acids in smelters. However, further improvement of its ability for Hg2+ adsorption was extremely restricted due to the lack of reaction mechanisms and structure-activity relationships. In this study, the roles of FeS and FeS2 on magnetic FeSx for Hg2+ adsorption were investigated with alternate adsorption of Hg2+ without/with Cl-. The structure-activity relationship of magnetic FeSx for Hg2+ adsorption and the negative effect of acid erosion were elucidated using kinetic analysis. FeS can react with Hg2+ with 1:1 stoichiometric ratio to form HgS, while FeS2 can react with Hg2+ in the presence of Cl- with novel 1:3 stoichiometric ratio to form Hg3S2Cl2. The rate of magnetic FeSx for Hg2+ adsorption was related to the instantaneous amounts of FeS and threefold FeS2 on magnetic FeSx and the amount of Hg2+ adsorbed. Meanwhile, its capacity for Hg2+ adsorption was related to the initial sum of FeS amount and threefold FeS2 amount on the surface and their ratios by acid erosion. Then, magnetic FeSx-400 was devised with adsorption rate of 2.12 mg g-1 min-1 and capacity of 1092 mg g-1 to recover Hg2+ from waste acids for centralized control.
Collapse
Affiliation(s)
- Pengjian Lv
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Shuai Chang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Ruiyang Qin
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Jiajiong Zhou
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Weicheng Wang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Qianqian Hong
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Jian Mei
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Shijian Yang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China.
| |
Collapse
|
4
|
Ménard M, Ali LMA, Vardanyan A, Charnay C, Raehm L, Cunin F, Bessière A, Oliviero E, Theodossiou TA, Seisenbaeva GA, Gary-Bobo M, Durand JO. Upscale Synthesis of Magnetic Mesoporous Silica Nanoparticles and Application to Metal Ion Separation: Nanosafety Evaluation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3155. [PMID: 38133052 PMCID: PMC10745894 DOI: 10.3390/nano13243155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
The synthesis of core-shell magnetic mesoporous nanoparticles (MMSNs) through a phase transfer process is usually performed at the 100-250 mg scale. At the gram scale, nanoparticles without cores or with multicore systems are observed. Iron oxide core nanoparticles (IO) were synthesized through a thermal decomposition procedure of α-FeO(OH) in oleic acid. A phase transfer from chloroform to water was then performed in order to wrap the IO nanoparticles with a mesoporous silica shell through the sol-gel procedure. MMSNs were then functionalized with DTPA (diethylenetriaminepentacetic acid) and used for the separation of metal ions. Their toxicity was evaluated. The phase transfer procedure was crucial to obtaining MMSNs on a large scale. Three synthesis parameters were rigorously controlled: temperature, time and glassware. The homogeneous dispersion of MMSNs on the gram scale was successfully obtained. After functionalization with DTPA, the MMSN-DTPAs were shown to have a strong affinity for Ni ions. Furthermore, toxicity was evaluated in cells, zebrafish and seahorse cell metabolic assays, and the nanoparticles were found to be nontoxic. We developed a method of preparing MMSNs at the gram scale. After functionalization with DTPA, the nanoparticles were efficient in metal ion removal and separation; furthermore, no toxicity was noticed up to 125 µg mL-1 in zebrafish.
Collapse
Affiliation(s)
- Mathilde Ménard
- ICGM, Univ Montpellier, CNRS, ENSCM, 34193 Montpellier, France; (M.M.); (C.C.); (L.R.); (F.C.); (A.B.); (E.O.)
| | - Lamiaa M. A. Ali
- IBMM, Univ Montpellier, CNRS, ENSCM, 34193 Montpellier, France; (L.M.A.A.); (M.G.-B.)
- Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandria 21561, Egypt
| | - Ani Vardanyan
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden; (A.V.); (G.A.S.)
| | - Clarence Charnay
- ICGM, Univ Montpellier, CNRS, ENSCM, 34193 Montpellier, France; (M.M.); (C.C.); (L.R.); (F.C.); (A.B.); (E.O.)
| | - Laurence Raehm
- ICGM, Univ Montpellier, CNRS, ENSCM, 34193 Montpellier, France; (M.M.); (C.C.); (L.R.); (F.C.); (A.B.); (E.O.)
| | - Frédérique Cunin
- ICGM, Univ Montpellier, CNRS, ENSCM, 34193 Montpellier, France; (M.M.); (C.C.); (L.R.); (F.C.); (A.B.); (E.O.)
| | - Aurélie Bessière
- ICGM, Univ Montpellier, CNRS, ENSCM, 34193 Montpellier, France; (M.M.); (C.C.); (L.R.); (F.C.); (A.B.); (E.O.)
| | - Erwan Oliviero
- ICGM, Univ Montpellier, CNRS, ENSCM, 34193 Montpellier, France; (M.M.); (C.C.); (L.R.); (F.C.); (A.B.); (E.O.)
| | - Theodossis A. Theodossiou
- Department of Radiation Biology, Institute for Cancer Research, Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway;
| | - Gulaim A. Seisenbaeva
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden; (A.V.); (G.A.S.)
| | - Magali Gary-Bobo
- IBMM, Univ Montpellier, CNRS, ENSCM, 34193 Montpellier, France; (L.M.A.A.); (M.G.-B.)
| | - Jean-Olivier Durand
- ICGM, Univ Montpellier, CNRS, ENSCM, 34193 Montpellier, France; (M.M.); (C.C.); (L.R.); (F.C.); (A.B.); (E.O.)
| |
Collapse
|
5
|
Liu Z, Huang B, Liao X, Wang L, Yang X, Hu X. Salicylic acid doped silica nanoparticles as a fluorescent nanosensor for the detection of Fe 3+ in aqueous solution. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6404-6411. [PMID: 37861085 DOI: 10.1039/d3ay01464a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
A novel organic-inorganic hybrid nanosensor (SASP) was prepared by a one-step sol-gel method and characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, N2 adsorption-desorption, fluorescence spectroscopy, etc. The nanosensor showed almost 3-fold fluorescence emission quenching upon excitation with a 293 nm wavelength in the presence of 20 μM Fe3+ ions. The presence of 18 other metal ions had no observable effect on the sensitivity and selectivity of the nanosensor. A fluorescence analysis method based on the SASP for the selective detection of Fe3+ was established under optimal conditions. The results showed that there was a linear relationship between the log luminescence value and the concentration of Fe3+ over the range of 2.0 × 10-7-9.0 × 10-5 mol L-1 with a detection limit (3σ) of 2.5 × 10-8 mol L-1. Furthermore, the proposed method was successfully applied for the determination of trace Fe3+ in fetal bovine serum without the interference of other molecules and ions. Good recovery (96.5-104.5%) and a relative standard deviation of less than 8.6% were obtained from serum samples spiked with four levels of Fe3+. Additionally, the nanosensor showed a good reversibility; the fluorescence could be switched "off" and "on" in two ways, by adjusting the pH of the solution and adding metal chelating agent EDTA.
Collapse
Affiliation(s)
- Zhongyong Liu
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, School of Chemistry, South China Normal University, Guangzhou, P. R. China.
| | - Bomao Huang
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, School of Chemistry, South China Normal University, Guangzhou, P. R. China.
| | - Xianglin Liao
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, School of Chemistry, South China Normal University, Guangzhou, P. R. China.
| | - Li Wang
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, School of Chemistry, South China Normal University, Guangzhou, P. R. China.
| | - Xixiang Yang
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, School of Chemistry, South China Normal University, Guangzhou, P. R. China.
| | - Xiaogang Hu
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, School of Chemistry, South China Normal University, Guangzhou, P. R. China.
| |
Collapse
|
6
|
Li J, Suo R. On the modulation/energy competing of Tb(III)/Eu(III) emission in microporous MOF host for peroxide recognition. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122357. [PMID: 36657292 DOI: 10.1016/j.saa.2023.122357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/23/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Being an important chemical reagent having moderate oxidizability, peracitic acid (PAA) has been applied in modern industries and processing, as well as public safety. These versatile applications make PAA an important analyte to be precisely and sensitively detected. The present work chose the combination of rare-earth-based probe and a microporous host bio-MOF-1 ([Zn8(ad)4(BPDC)6O·2(Me2NH2)+]·G, ad = adenine, BPDC = 4,4'-biphenyl dicarboxylic acid, G = N,N-dimetylformamide and water). Two β-diketone ligands, 1,3-di(pyridin-3-yl)propane-1,3-dione (DPY) and 1,3-diphenylpropane-1,3-dione (DPP), were coordinated to Tb(III) and Eu(III) ions to form probe [RE(DPY/DPP)2]Cl which was loaded into bio-MOF-1 micropores with different loading contents via an ionic exchange operation. The resulting composite samples were fully characterized, including synthesis, morphology, composition, sensing performance and mechanism. The protonation/oxidization of DPY and DPP ligands adjusted their triplet energy level (T1) and consequently affected their energy transfer (ET) efficiency to RE ions, resulting in the variation of RE emission relative intensity. A new pathway for PAA optical sensing was thus proposed. Linear fitting equations were observed for DPY-based samples, showing fluorescence intensity ratio value of 8.80, response time of 9 s, and LOD of 8.08 μM within working region of 0-140 μM.
Collapse
Affiliation(s)
- Jin Li
- Department of Mining Engineering, Luliang University, Lvliang 033000, China; College of Mechanical Engineering, Taiyuan University of Science and Technology, TaiYuan 030024, China.
| | - Ruoqi Suo
- Department of Mining Engineering, Luliang University, Lvliang 033000, China
| |
Collapse
|
7
|
Tris(4-formyl phenyl)amine functionalized mesoporous silica for selective sensing of Al3+ and its separation. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
8
|
Chang S, Lv P, Qin R, Mei J, Hong Q, Yang S. Rapid and Selective Removal of Hg 2+ by Copper Sulfides under Strongly Acidic Conditions: Mechanism, Kinetics, and Its Application in Recovering Hg from Waste Acids of Smelters. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Shuai Chang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Pengjian Lv
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Ruiyang Qin
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Jian Mei
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Qianqian Hong
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Shijian Yang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
9
|
Li S, Zhang P, Zhao X, Liu Y. Green/red emission modulation via Tb/Eu co-doping in MOF host for the ratiometric sensing of peroxyacetic acid. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Sedaghat T, Aminian M, Abaee S, Hoveizi E, Tarassoli A, Beheshti A, Morales-Morales D. New organotin(IV) complexes with a bis-acyl-hydrazone ligand: synthesis, crystal structure and immobilization on magnetic mesoporous silica nanoparticles as a strategy in cancer therapy. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Feng H, Li M, Xing Z, Ouyang XK, Ling J. Efficient delivery of fucoxanthin using metal–polyphenol network-coated magnetic mesoporous silica. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
12
|
Qin R, Chang S, Mei J, Hong Q, Yang S. Selective removal of Hg 2+ from acidic wastewaters using sulfureted Fe 2TiO 5: Underlying mechanism and its application as a regenerable sorbent for recovering Hg from waste acids of smelters. WATER RESEARCH 2022; 221:118796. [PMID: 35780764 DOI: 10.1016/j.watres.2022.118796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
The selective removal of Hg2+ from waste acids containing high concentrations of other metal cations, such as Cu2+, Zn2+, and Cd2+, which are discharged from nonferrous metal smelting industries, is in great demand. Herein, sulfureted Fe2TiO5 was developed as a regenerable magnetic sorbent to recover Hg2+ from waste acids for centralized control. Sulfureted Fe2TiO5 exhibited an excellent ability for Hg2+ removal with the capacity of 292-317 mg g-1 and the rate of 49.5-57.6 mg g-1 h-1 at pH=2-4. Meanwhile, it exhibited an excellent selectivity for Hg2+ removal that not only the coexisting Cu2+, Zn2+, and Cd2+ can scarcely be adsorbed but also Hg2+ adsorption was hardly inhibited. The mechanism and kinetic studies indicated that the Fe2+ in the FeS2 coated on sulfureted Fe2TiO5 was exchanged with Hg2+ adsorbed at a Fe2+ to Hg2+ mole ratio of 1:2. Meanwhile, most of the Hg2+ removed by sulfureted Fe2TiO5 can be thermally desorbed primarily as ultra-high concentrations of gaseous Hg0, which can finally be recovered as liquid Hg0 for centralized control in combination with existing Hg0-recovery devices in smelters. Moreover, the spent sulfureted Fe2TiO5 could be regenerated for duty-cycle operations with re-sulfuration without a remarkable degradation of the Hg2+-removal performance. Therefore, Hg2+ recovery using sulfureted Fe2TiO5 may be a promising, low-cost, and environmentally friendly technology for the centralized control of Hg2+ in waste acids discharged from smelters.
Collapse
Affiliation(s)
- Ruiyang Qin
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Shuai Chang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Jian Mei
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Qianqian Hong
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Shijian Yang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
13
|
Grzelak J, Gázquez J, Grayston A, Teles M, Herranz F, Roher N, Rosell A, Roig A, Gich M. Magnetic Mesoporous Silica Nanorods Loaded with Ceria and Functionalized with Fluorophores for Multimodal Imaging. ACS APPLIED NANO MATERIALS 2022; 5:2113-2125. [PMID: 35252779 PMCID: PMC8886853 DOI: 10.1021/acsanm.1c03837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/26/2022] [Indexed: 05/12/2023]
Abstract
Multifunctional magnetic nanocomposites based on mesoporous silica have a wide range of potential applications in catalysis, biomedicine, or sensing. Such particles combine responsiveness to external magnetic fields with other functionalities endowed by the agents loaded inside the pores or conjugated to the particle surface. Different applications might benefit from specific particle morphologies. In the case of biomedical applications, mesoporous silica nanospheres have been extensively studied while nanorods, with a more challenging preparation, have attracted much less attention despite the positive impact on the therapeutic performance shown by seminal studies. Here, we report on a sol-gel synthesis of mesoporous rodlike silica particles of two distinct lengths (1.4 and 0.9 μm) and aspect ratios (4.7 and 2.2) using Pluronic P123 as a structure-directing template and rendering ∼1 g of rods per batch. Iron oxide nanoparticles have been synthesized within the pores yielding maghemite (γ-Fe2O3) nanocrystals of elongated shape (∼7 nm × 5 nm) with a [110] preferential orientation along the rod axis and a superparamagnetic character. The performance of the rods as T2-weighted MRI contrast agents has also been confirmed. In a subsequent step, the mesoporous silica rods were loaded with a cerium compound and their surface was functionalized with fluorophores (fluorescamine and Cyanine5) emitting at λ = 525 and 730 nm, respectively, thus highlighting the possibility of multiple imaging modalities. The biocompatibility of the rods was evaluated in vitro in a zebrafish (Danio rerio) liver cell line (ZFL), with results showing that neither long nor short rods with magnetic particles caused cytotoxicity in ZFL cells for concentrations up to 50 μg/ml. We advocate that such nanocomposites can find applications in medical imaging and therapy, where the influence of shape on performance can be also assessed.
Collapse
Affiliation(s)
- Jan Grzelak
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Catalonia, Spain
| | - Jaume Gázquez
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Catalonia, Spain
| | - Alba Grayston
- Neurovascular
Research Laboratory, Vall d’Hebron
Research Institute (VHIR), 08035, Barcelona, Catalonia, Spain
| | - Mariana Teles
- Institute
of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| | - Fernando Herranz
- Instituto
de Química Médica (IQM), Consejo
Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
| | - Nerea Roher
- Institute
of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| | - Anna Rosell
- Neurovascular
Research Laboratory, Vall d’Hebron
Research Institute (VHIR), 08035, Barcelona, Catalonia, Spain
| | - Anna Roig
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Catalonia, Spain
| | - Martí Gich
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Catalonia, Spain
| |
Collapse
|
14
|
Zhao X, Ye Y, Yue X, Ye X, Wang Q, Li R. A fluorescent chemosensor for Hg(II) optical recognition: Mesoporous MCM-41 functionalized with a covalently linked Eu(III) complex. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Ahmadi A, Sedaghat T, Azadi R. Pd(II)/Pd(0) Anchored on Magnetic Organic–Inorganic Hybrid Mesoporous Silica Nanoparticles: A Nanocatalyst for Suzuki–Miyaura and Heck–Mizoroki Coupling Reactions. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02045-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
A nano-sensing composite platform combining magnetic and emissive features: Fabrication and performance. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.113099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Miletto I, Gionco C, Paganini MC, Martinotti S, Ranzato E, Giamello E, Marchese L, Gianotti E. Vis-NIR luminescent lanthanide-doped core-shell nanoparticles for imaging and photodynamic therapy. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Ahmadi A, Sedaghat T, Motamedi H, Azadi R. Anchoring of Cu (II)‐Schiff base complex on magnetic mesoporous silica nanoparticles: catalytic efficacy in one‐pot synthesis of 5‐substituted‐1H‐tetrazoles, antibacterial activity evaluation and immobilization of α‐amylase. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5572] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ameneh Ahmadi
- Department of Chemistry, Faculty of ScienceShahid Chamran University of Ahvaz Ahvaz Iran
| | - Tahereh Sedaghat
- Department of Chemistry, Faculty of ScienceShahid Chamran University of Ahvaz Ahvaz Iran
| | - Hossein Motamedi
- Department of Biology, Faculty of ScienceShahid Chamran University of Ahvaz Ahvaz Iran
- Biotechnology and Biological Science Research CenterShahid Chamran University of Ahvaz Ahvaz Iran
| | - Roya Azadi
- Department of Chemistry, Faculty of ScienceShahid Chamran University of Ahvaz Ahvaz Iran
| |
Collapse
|
19
|
Fu Y, Sun Y, Chen Z, Ying S, Wang J, Hu J. Functionalized magnetic mesoporous silica/poly(m-aminothiophenol) nanocomposite for Hg(II) rapid uptake and high catalytic activity of spent Hg(II) adsorbent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 691:664-674. [PMID: 31325865 DOI: 10.1016/j.scitotenv.2019.07.153] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
Currently, magnetic mesoporous silica nanospheres have been employed widely as adsorbents due to their large surface area and easy recovery. Herein, the functionalized magnetic mesoporous silica/organic polymers nanocomposite (MMSP) was fabricated by the grafted poly(m-aminothiophenol) embedded the aminated magnetic mesoporous silica nanocomposite based on Fe3O4 magnetic core, which was shelled by mesoporous silica and further modified by (3-aminopropyl) triethoxysilane. The adsorption properties of as-developed MMSP were systematically explored by altering the experimental parameters. The results indicated that the adsorption capacity and removal percentage of the MMSP could reach 243.83 mg/g and 97.53% within only 10 min at pH 4.0, and the coexisting ions had no significant effect on the selective Hg(II) ions removal from aqueous solutions, meanwhile, the adsorbent recovered by a magnet still exhibited good adsorption performance after recycled 5 times. In addition, by analyzing experimental data, the adsorption process of Hg(II) ions belonged to spontaneous exothermic adsorption, and the possible adsorption mechanisms were proposed based on the pseudo-second-order model and Langmuir model. After adsorption study, the waste material adsorbed Hg(II) was developed as an efficient catalyst for transformation of phenylacetylene to acetophenone with yield of 97.06%. In this study, we designed an efficient and selective material for Hg(II) ions remove and provided a treatment of the post-adsorbed mercury adsorbent by converting the waste into an excellent catalyst, which reduced the economic and environmental impact from conventional adsorption techniques.
Collapse
Affiliation(s)
- Yong Fu
- Center for Molecular Science and Engineering, College of Sciences, Northeastern University, Shenyang 110819, PR China
| | - Yu Sun
- Center for Molecular Science and Engineering, College of Sciences, Northeastern University, Shenyang 110819, PR China
| | - Zhangpei Chen
- Center for Molecular Science and Engineering, College of Sciences, Northeastern University, Shenyang 110819, PR China
| | - Shaoming Ying
- Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, College of Chemistry and Materials, Ningde Normal University, PR China; Fujian Province University Engineering Research Center of Mindong She Medicine, College of Chemistry and Materials, Ningde Normal University, PR China
| | - Jiwei Wang
- Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, College of Chemistry and Materials, Ningde Normal University, PR China; Fujian Province University Engineering Research Center of Mindong She Medicine, College of Chemistry and Materials, Ningde Normal University, PR China.
| | - Jianshe Hu
- Center for Molecular Science and Engineering, College of Sciences, Northeastern University, Shenyang 110819, PR China.
| |
Collapse
|
20
|
Chatterjee S, Li XS, Liang F, Yang YW. Design of Multifunctional Fluorescent Hybrid Materials Based on SiO 2 Materials and Core-Shell Fe 3 O 4 @SiO 2 Nanoparticles for Metal Ion Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1904569. [PMID: 31573771 DOI: 10.1002/smll.201904569] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/17/2019] [Indexed: 05/12/2023]
Abstract
Hybrid fluorescent materials constructed from organic chelating fluorescent probes and inorganic solid supports by covalent interactions are a special type of hybrid sensing platform that has gained much interest in the context of metal ion sensing applications owing to their excellent advantages, recyclability, and solubility/dispersibility in particular, as compared with single organic fluorescent molecules. In recent decades, SiO2 materials and core-shell Fe3 O4 @SiO2 nanoparticles have become important inorganic solid materials and have been used as inorganic solid supports to hybridize with organic fluorescent receptors, resulting in multifunctional fluorescent hybrid systems for potential applications in sensing and related research fields. Therefore, recent progress in various fluorescent-group-functionalized SiO2 materials is reviewed, with a focus on mesoporous silica nanoparticles and core-shell Fe3 O4 @SiO2 nanoparticles, as interesting fluorescent organic-inorganic hybrid materials for sensing applications toward essential and toxic metal ions. Selective examples of other types of silica/silicon materials, such as periodic mesoporous organosilicas, solid SiO2 nanoparticles, fibrous silica spheres, silica nanowires, silica nanotubes, and silica hollow microspheres, are also mentioned. Finally, relevant perspectives of metal-ion-sensing-oriented silica-fluorescent probe hybrid materials are provided.
Collapse
Affiliation(s)
- Sobhan Chatterjee
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Xiang-Shuai Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| | - Ying-Wei Yang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
21
|
Magnetic Mesoporous Silica Nanocomposite Functionalized with Palladium Schiff Base Complex: Synthesis, Characterization, Catalytic Efficacy in the Suzuki–Miyaura Reaction and α-Amylase Immobilization. Catal Letters 2019. [DOI: 10.1007/s10562-019-02913-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Fang Z, Li X, Xu Z, Du F, Wang W, Shi R, Gao D. Hyaluronic acid-modified mesoporous silica-coated superparamagnetic Fe 3O 4 nanoparticles for targeted drug delivery. Int J Nanomedicine 2019; 14:5785-5797. [PMID: 31440047 PMCID: PMC6679701 DOI: 10.2147/ijn.s213974] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/06/2019] [Indexed: 12/21/2022] Open
Abstract
Introduction: The targeted delivery of anti-cancer drugs to tumor tissue has been recognized as a promising strategy to increase their therapeutic efficacy and reduce side effects. Mesoporous silica-coated superparamagnetic Fe3O4 nanoparticles (NH2-MSNs), a kind of nanocarrier, can passively enter tumor tissues to enhance the permeability and retention of drugs. However, NH2-MSNs do not specifically bind to cancer cells. This drawback encouraged us to develop a more efficient nanocarrier for cancer therapy. Methods: Herein, we describe the development of an effective nanocarrier based on NH2-MSNs, which were modified with hyaluronic acid on their surface (HA-MSNs) and loaded with doxorubicin (DOX). We have successfully fabricated uniform spherical HA-MSNs nanocarriers. The targeting ability of this delivery system was evaluated through specific uptake by cells and IVIS imaging. Results: DOX-HA-MSNs nanocarriers displayed more dramatic cytotoxic activity against 4T1 breast cancer cells compared to GES-1 gastric mucosa cells. In vivo results revealed that once DOX-HA-MSNs nanocarriers are exposed to an external magnetic field, they could be rapidly attracted to the magnet and effectively cross the cytoplasmic membrane via CD44 receptor-mediated transcytosis. This allows them to access the cancer cell cytoplasm and release DOX based on changes in the physiological environment. Both in vitro and in vivo results demonstrated that the HA-MSNs nanocarriers provided better therapeutic efficacy. Conclusion: The HA-MSNs nanocarriers represent an effective new paradigm to treat cancers due to active targeting to the tumor cells. Moreover, the specific uptake by the tumor effectively protects normal tissues to reduce off-target side effects. The reported findings support further investigation of HA-MSNs for cancer therapy.
Collapse
Affiliation(s)
- Zhengzou Fang
- Department of Pathogenic Microbiology and Immunology, Southeast University School of Medicine, Nanjing 210009, People's Republic of China
| | - Xinyuan Li
- Department of Clinical Laboratory, Huai'an Hospital Affiliated to Xuzhou Medical College and Huai'an Second Hospital, Huai'an, Jiangsu, People's Republic of China
| | - Zeyan Xu
- Department of Gastroenterology, Jiangsu University, School of Medicine, Zhenjiang 212013, People's Republic of China
| | - Fengyi Du
- Department of Gastroenterology, Jiangsu University, School of Medicine, Zhenjiang 212013, People's Republic of China
| | - Wendi Wang
- Department of Pathogenic Microbiology and Immunology, Southeast University School of Medicine, Nanjing 210009, People's Republic of China
| | - Ruihua Shi
- Department of Gastroenterology, Affiliated Zhongda Hospital, Southeast University, Nanjing 210009, People's Republic of China
| | - Daqing Gao
- Department of Pathogenic Microbiology and Immunology, Southeast University School of Medicine, Nanjing 210009, People's Republic of China
| |
Collapse
|
23
|
|
24
|
Cui X, Yuqing Z, Cui J, Zheng Q, Bo W. Synthesis, characterization and nitrite ion sensing performance of reclaimable composite samples through a core-shell structure. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 191:442-453. [PMID: 29078138 DOI: 10.1016/j.saa.2017.10.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 10/12/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
The following paper reported and discussed a nitrite ion optical sensing platform based on a core-shell structure, using superamagnetic nanoparticles as the core, a silica molecular sieve MCM-41 as the shell and two rhodamine derivatives as probe, respectively. This superamagnetic core made this sensing platform reclaimable after finishing nitrite ion sensing procedure. This sensing platform was carefully characterized by means of electron microscopy images, porous structure analysis, magnetic response, IR spectra and thermal stability analysis. Detailed analysis suggested that the emission of these composite samples was quenchable by nitrite ion, showing emission turn off effect. A static sensing mechanism based on an additive reaction between chemosensors and nitrite ion was proposed. These composite samples followed Demas quenching equation against different nitrite ion concentrations. Limit of detection value was obtained as low as 0.4μM. It was found that, after being quenched by nitrite ion, these composite samples could be reclaimed and recovered by sulphamic acid, confirming their recyclability.
Collapse
Affiliation(s)
- Xiao Cui
- Software Engineering College, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China.
| | - Zhao Yuqing
- School of Civil Engineering and Communication, North China University Of Water Resources and Electric Power, Zhengzhou 450045, Henan, PR China
| | - Jiantao Cui
- Software Engineering College, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Qian Zheng
- Software Engineering College, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Wang Bo
- Software Engineering College, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| |
Collapse
|
25
|
Vojoudi H, Badiei A, Amiri A, Banaei A, Ziarani G, Schenk-Joß K. Efficient device for the benign removal of organic pollutants from aqueous solutions using modified mesoporous magnetite nanostructures. JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS 2018; 113:210-219. [DOI: 10.1016/j.jpcs.2017.10.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
|
26
|
Liu MC, Liu B, Chen XL, Lin HC, Sun XY, Lu JZ, Li YY, Yan SQ, Zhang LY, Zhao P. Calcium carbonate end-capped, folate-mediated Fe 3O 4@mSiO 2 core-shell nanocarriers as targeted controlled-release drug delivery system. J Biomater Appl 2018; 32:1090-1104. [PMID: 29357775 DOI: 10.1177/0885328217752994] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Magnetic mesoporous silica nanospheres (MMSN) were prepared and the surface was modified with cancer cell-specific ligand folic acid. Calcium carbonate was then employed as acid-activated gatekeepers to cap the mesopores of the MMSN, namely, MMSN-FA-CaCO3. The formation of the MMSN-FA-CaCO3 was proved by several characterization techniques, viz. transmission electron microscopy, zeta potential measurement, Fourier transform infrared spectroscopy, BET surface area measurement, and UV-Vis spectroscopy. Daunomycin was successfully loaded in the MMSN-FA-CaCO3 and the system exhibited sensitive pH stimuli-responsive release characteristics under blood or tumor microenvironment. Cellular uptake by folate receptor (FR)-overexpressing HeLa cells of the MMSN-FA-CaCO3 was higher than that by non-folated-conjugated ones. Intracellular-uptake studies revealed preferential uptake of these nanoparticles into FR-positive [FR(+)] HeLa than FR-negative [FR(-)]A549 cell lines. DAPI stain experiment showed high apoptotic rate of MMSN-FA-DNM-CaCO3 to HeLa cells. The present data suggest that the CaCO3 coating and folic acid modification of MMSN are able to create a targeted, pH-sensitive template for drug delivery system with application in cancer therapy.
Collapse
Affiliation(s)
- Min-Chao Liu
- 1 School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Bing Liu
- 2 School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xian-Li Chen
- 3 Medical College of Shaoguan University, Guangdong, China
| | - Hui-Chao Lin
- 1 School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiang-Yu Sun
- 1 School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jia-Zheng Lu
- 2 School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yan-Yu Li
- 1 School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Si-Qi Yan
- 1 School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lu-Yong Zhang
- 2 School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ping Zhao
- 1 School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
27
|
Mao H, Liu Z. Two emissive-magnetic composite platforms for Hg(II) sensing and removal: The combination of magnetic core, silica molecular sieve and rhodamine chemosensors. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 189:366-373. [PMID: 28830040 DOI: 10.1016/j.saa.2017.08.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/11/2017] [Accepted: 08/13/2017] [Indexed: 06/07/2023]
Abstract
In this paper, a composite sensing platform for Hg(II) optical sensing and removal was designed and reported. A core-shell structure was adopted, using magnetic Fe3O4 nanoparticles as the core, silica molecular sieve MCM-41 as the shell, respectively. Two rhodamine derivatives were synthesized as chemosensor and covalently immobilized into MCM-41 tunnels. Corresponding composite samples were characterized with SEM/TEM images, XRD analysis, IR spectra, thermogravimetry and N2 adsorption/desorption analysis, which confirmed their core-shell structure. Their emission was increased by Hg(II), showing emission turn on effect. High selectivity, linear working curves and recyclability were obtained from these composite samples.
Collapse
Affiliation(s)
- Hanping Mao
- Institute of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Zhongshou Liu
- Institute of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
28
|
Huang J, Sun C, Yao D, Wang CZ, Zhang L, Zhang Y, Chen L, Yuan CS. Novel surface imprinted magnetic mesoporous silica as artificial antibodies for efficient discovery and capture of candidate nNOS–PSD-95 uncouplers for stroke treatment. J Mater Chem B 2018; 6:1531-1542. [DOI: 10.1039/c7tb03044d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Magnetic mesoporous silica imprinted materials as artificial antibodies for the discovery and capture of candidate nNOS–PSD-95 uncouplers for stroke treatment.
Collapse
Affiliation(s)
- Jiaojiao Huang
- School of Pharmacy, Nanjing Medical University
- Nanjing 211166
- China
| | - Chenghong Sun
- School of Pharmacy, Nanjing Medical University
- Nanjing 211166
- China
| | - Dandan Yao
- School of Pharmacy, Nanjing Medical University
- Nanjing 211166
- China
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, and Department of Anesthesia & Critical Care, University of Chicago
- Chicago
- USA
| | - Lei Zhang
- School of Pharmacy, Nanjing Medical University
- Nanjing 211166
- China
| | - Yu Zhang
- School of Pharmacy, Nanjing Medical University
- Nanjing 211166
- China
| | - Lina Chen
- School of Pharmacy, Nanjing Medical University
- Nanjing 211166
- China
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, and Department of Anesthesia & Critical Care, University of Chicago
- Chicago
- USA
| |
Collapse
|
29
|
Recyclable nitrite ion sensing nanocomposites based on a magnetic-emissive core–shell structure: Characterization and performance. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.08.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Liu Z, Liu Y, Shen S, Wu D. Progress of recyclable magnetic particles for biomedical applications. J Mater Chem B 2018; 6:366-380. [DOI: 10.1039/c7tb02941a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The preparation, types, recycling methods, biomedical applications and outlook of recyclable magnetic particles have been reviewed.
Collapse
Affiliation(s)
- Zeying Liu
- Key Laboratory of Biomedical Information Engineering of Education Ministry
- School of Life Science and Technology
- Xi’an Jiaotong University
- Xi’an 710049
- P. R. China
| | - Yongchun Liu
- Key Laboratory of Biomedical Information Engineering of Education Ministry
- School of Life Science and Technology
- Xi’an Jiaotong University
- Xi’an 710049
- P. R. China
| | - Shihong Shen
- Key Laboratory of Biomedical Information Engineering of Education Ministry
- School of Life Science and Technology
- Xi’an Jiaotong University
- Xi’an 710049
- P. R. China
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of Education Ministry
- School of Life Science and Technology
- Xi’an Jiaotong University
- Xi’an 710049
- P. R. China
| |
Collapse
|
31
|
Vojoudi H, Badiei A, Bahar S, Mohammadi Ziarani G, Faridbod F, Ganjali MR. A new nano-sorbent for fast and efficient removal of heavy metals from aqueous solutions based on modification of magnetic mesoporous silica nanospheres. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS 2017; 441:193-203. [DOI: 10.1016/j.jmmm.2017.05.065] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
|
32
|
Effect of the magnetic core size of amino-functionalized Fe 3 O 4 -mesoporous SiO 2 core-shell nanoparticles on the removal of heavy metal ions. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.07.086] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
An expedient ‘click’ approach for the synthetic evaluation of ester‐triazole‐tethered organosilica conjugates. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.4028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
34
|
Yang Y, Liu L, Zha J, Yuan N. Nitrite sensing composite systems based on a core-shell emissive-superamagnetic structure: Construction, characterization and sensing behavior. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 177:125-134. [PMID: 28153809 DOI: 10.1016/j.saa.2017.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/18/2017] [Accepted: 01/24/2017] [Indexed: 06/06/2023]
Abstract
Two recyclable nitrite sensing composite samples were designed and constructed through a core-shell structure, with Fe3O4 nanoparticles as core, silica molecular sieve MCM-41 as shell and two rhodamine derivatives as chemosensors, respectively. These samples and their structure were identified with their electron microscopy images, N2 adsorption/desorption isotherms, magnetic response, IR spectra and thermogravimetric analysis. Their nitrite sensing behavior was discussed based on emission intensity quenching, their limit of detection was found as low as 1.2μM. Further analysis suggested a static sensing mechanism between nitrite and chemosensors through an additive reaction between NO+ and chemosensors. After finishing their nitrite sensing, these composite samples and their emission could be recycled and recovered by sulphamic acid.
Collapse
Affiliation(s)
- Yan Yang
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou, Jiangsu 213000, China
| | - Liang Liu
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, Jiangsu 213000, China
| | - Jianhua Zha
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou, Jiangsu 213000, China
| | - Ningyi Yuan
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou, Jiangsu 213000, China.
| |
Collapse
|
35
|
Peng X, Wei X, Chen T. Towards recyclable optical nitrite sensing composite structures: Design, synthesis, characterization and sensing performance. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 173:950-959. [PMID: 27837738 DOI: 10.1016/j.saa.2016.10.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 06/06/2023]
Abstract
Two site-specific nanocomposite samples were designed and prepared for nitrite sensing. A core-shell structure was applied in them, using Fe3O4 nanoparticles as core, silica molecular sieve MCM-41 as shell and two rhodamine derivatives as chemosensor, respectively. These two composite samples and their core-shell structure were investigated by electron microscopy images, N2 adsorption/desorption, magnetic property, IR spectra and thermogravimetric analysis. Nitrite sensing performance of these two composite samples was evaluated with their emission quenching. Limit of detection was determined as 1.1μM. Further analysis indicated that our chemosensors followed a static sensing mechanism based on an additive reaction between NO+ and chemosensors. These two composite samples showed recyclability after being quenched by nitrite.
Collapse
Affiliation(s)
- Xing Peng
- Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xian Wei
- Department of Pharmacy, Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Tieyu Chen
- Guangxi Medical University, Nanning 530021, Guangxi, China.
| |
Collapse
|
36
|
Lin C, Zhigang F. RETRACTED: A magnetic core-shell composite structure modified with Ru-based chemosensor for site-specific oxygen sensing: Design strategy, characterization and performance. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Kadeerhazi M, Ali A, Bekhit AED. On two site-specific nitrite-sensing nanocomposites having a core-shell structure: Construction, characterization and sensing performance. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 171:361-368. [PMID: 27569768 DOI: 10.1016/j.saa.2016.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/09/2016] [Accepted: 08/17/2016] [Indexed: 06/06/2023]
Abstract
This paper reported two site-specific nitrite-sensing nanocomposite samples having a core-shell structure, where Fe3O4 nanoparticles were used as core, two rhodamine derivatives served as chemosensor and MCM-41 was applied as supporting host, respectively. These composite samples and their structure were analyzed and confirmed SEM/TEM, XRD, N2 adsorption/desorption, magnetic feature, IR and thermogravimetric analysis. Their nitrite sensing performance was discussed based on emission quenching, with limit of detection as low as 1.2μM. Detailed analysis suggested that these composite samples followed a static sensing mechanism based on an additive reaction between NO+ and chemosensors. After being quenched by nitrite, these samples could be recovered by sulphamic acid.
Collapse
Affiliation(s)
- Muhetaer Kadeerhazi
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Azam Ali
- Department of Applied Science, University of Otago, Dunedin 9054, New Zealand
| | - Alaa El-Din Bekhit
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
38
|
Li F, Liu Y, Ma T, Xu D, Li X, Gong G. Catalysis of the hydrodechlorination of 4-chlorophenol and the reduction of 4-nitrophenol by Pd/Fe3O4@C. NEW J CHEM 2017. [DOI: 10.1039/c6nj04045d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A recyclable and efficient magnetic core–shell Pd/Fe3O4@C nanocatalyst is applied in the HDC of 4-CP and hydrogenation of 4-NP.
Collapse
Affiliation(s)
- Fuchong Li
- Lanzhou Petrochemical Research Center
- Lanzhou
- P. R. China
| | - Yansheng Liu
- Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University
- Lanzhou
- P. R. China
| | - Tianqiong Ma
- Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University
- Lanzhou
- P. R. China
| | - Dianhong Xu
- Lanzhou Petrochemical Research Center
- Lanzhou
- P. R. China
| | - Xu Li
- Lanzhou Petrochemical Research Center
- Lanzhou
- P. R. China
| | - Guangbi Gong
- Lanzhou Petrochemical Research Center
- Lanzhou
- P. R. China
| |
Collapse
|
39
|
Mahata P, Mondal SK, Singha DK, Majee P. Luminescent rare-earth-based MOFs as optical sensors. Dalton Trans 2017; 46:301-328. [DOI: 10.1039/c6dt03419e] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This perspective article highlights the basics and applications of luminescence-based sensing of hazardous chemicals, pH, and temperature using rare-earth-based metal–organic frameworks.
Collapse
Affiliation(s)
- Partha Mahata
- Department of Chemistry
- Suri Vidyasagar College
- Birbhum
- India
| | - Sudip Kumar Mondal
- Department of Chemistry
- Siksha-Bhavana
- Visva-Bharati University
- Santiniketan-731235
- India
| | | | - Prakash Majee
- Department of Chemistry
- Siksha-Bhavana
- Visva-Bharati University
- Santiniketan-731235
- India
| |
Collapse
|
40
|
Silica-based optical chemosensors for detection and removal of metal ions. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2017. [DOI: 10.1007/s13738-016-0967-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
41
|
Radhakrishnan K, Panneerselvam P, Ravikumar A. A hybrid magnetic core–shell fibrous silica nanocomposite for a chemosensor-based highly effective fluorescent detection of Cu(ii). RSC Adv 2017. [DOI: 10.1039/c7ra08821c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Herein, a novel hybrid magnetic core–shell fibrous silica nanocomposite (RhB–Fe3O4/MnO2/SiO2/KCC-1) probe-based chemosensor was designed and its behaviour towards Cu(ii) metal ion was investigated using a fluorescence spectrometer.
Collapse
Affiliation(s)
| | | | - A. Ravikumar
- Department of Chemistry
- SRM University
- Chennai
- India
| |
Collapse
|
42
|
Zhang Y, Li B, Ma H, Zhang L, Zheng Y. Rapid and facile ratiometric detection of an anthrax biomarker by regulating energy transfer process in bio-metal-organic framework. Biosens Bioelectron 2016; 85:287-293. [DOI: 10.1016/j.bios.2016.05.020] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/25/2016] [Accepted: 05/03/2016] [Indexed: 12/12/2022]
|
43
|
Towards a core–shell composite structure loaded with a Ru-based sensing probe and its improved site-specific oxygen sensing performance. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.05.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Chen D, Awut T, Liu B, Ma Y, Wang T, Nurulla I. Functionalized magnetic Fe3O4 nanoparticles for removal of heavy metal ions from aqueous solutions. E-POLYMERS 2016. [DOI: 10.1515/epoly-2016-0043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
AbstractFe3O4 nanoparticles (MNP) were coated with 3-aminopropyltriethoxy-silane (APTES), resulting in anchoring of primary amine groups on the surface of the particles, then four kinds of novel magnetic adsorbents (Fe3O4@SiO2-NH-HCGs) were formed by grafting of different heterocyclic groups (HCG) on amino groups via substitution reaction. These Fe3O4@SiO2-NH-HCGs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and energy disperse spectroscopy (EDS). The results confirmed the formation of Fe3O4@SiO2-NH-HCGs nanoparticles and the Fe3O4 core possessed superparamagnetism. Batch experiments were performed to evaluate adsorption conditions of Cu2+, Hg2+, Pb2+ and Cd2+. Under normal temperature and neutral condition, just 20 min, the removal efficiency of any Fe3O4@SiO2-NH-HCGs is more than 96%. In addition, these Fe3O4@SiO2-NH-HCGs have good stability and reusability. Their removal efficiency has no obvious decrease after being used seven times. After the experiments were finished, Fe3O4@SiO2-NH-HCGs were conveniently separated via an external magnetic field due to superparamagnetism. These results indicate that these Fe3O4@SiO2-NH-HCGs are potentially attractive materials for the removal of heavy metal ions from industrial wastewater.
Collapse
Affiliation(s)
| | - Tunsagnl Awut
- 1Key Laboratory of Oil and Gas Fine Chemicals, Educational Ministry of China, School of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, P.R. China
| | - Bin Liu
- 2Xinjiang Education Institute, Urumqi 830043, P.R. China
| | | | - Tao Wang
- 3Institute of Applied Chemistry, Xinjiang University, Urumqi 830046, P.R. China
| | - Ismayil Nurulla
- 4Key Laboratory of Oil and Gas Fine Chemicals, Educational Ministry of China, School of Chemistry and Chemical Engineering, Xinjiang University, 14 Shengli road, Urumqi, Xinjiang 830046, P.R. China, Phone: +86 0991 8583575, Fax: +86 0991 8583575
| |
Collapse
|
45
|
Pérez-Quintanilla D, Sánchez A, Sierra I. Preparation of hybrid organic-inorganic mesoporous silicas applied to mercury removal from aqueous media: Influence of the synthesis route on adsorption capacity and efficiency. J Colloid Interface Sci 2016; 472:126-34. [DOI: 10.1016/j.jcis.2016.03.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 03/18/2016] [Accepted: 03/22/2016] [Indexed: 11/28/2022]
|
46
|
Zhang Y, Su Z, Li B, Zhang L, Fan D, Ma H. Recyclable Magnetic Mesoporous Nanocomposite with Improved Sensing Performance toward Nitrite. ACS APPLIED MATERIALS & INTERFACES 2016; 8:12344-12351. [PMID: 27115527 DOI: 10.1021/acsami.6b02133] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A magnetic nanomaterial for nitrite ion detection was demonstrated in the present study. This nanomaterial was prepared by grafting a rhodamine 6G derivative (denoted as Rh 6G-OH) into the channels of core-shell magnetic mesoporous silica nanospheres. The nanocomposite (denoted as Fe3O4@Rh 6G) showed large surface area and improved fluorescent performance to accumulate and recognize NO2(-), and its superparamagnetic behavior played an important role in reusability. The fluorescent intensity decreased linearly along with the NO2(-) concentration in the range of 1-50 μM, and the detection limit was estimated to be 0.8 μM, which was much lower than the maximum limit of nitrite ion in drinking water (65 μM) recommended by World Health Organization. Importantly, Fe3O4@Rh 6G could be magnetically collected and effectively reutilized after six test cycles.
Collapse
Affiliation(s)
- Yihe Zhang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics Fine Mechanics and Physics, Chinese Academy of Sciences , Changchun 130033, P. R. China
- University of Chinese Academy of Sciences , Beijing 100039, P. R. China
| | - Zisheng Su
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics Fine Mechanics and Physics, Chinese Academy of Sciences , Changchun 130033, P. R. China
| | - Bin Li
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics Fine Mechanics and Physics, Chinese Academy of Sciences , Changchun 130033, P. R. China
| | - Liming Zhang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics Fine Mechanics and Physics, Chinese Academy of Sciences , Changchun 130033, P. R. China
| | - Di Fan
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics Fine Mechanics and Physics, Chinese Academy of Sciences , Changchun 130033, P. R. China
| | - Heping Ma
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics Fine Mechanics and Physics, Chinese Academy of Sciences , Changchun 130033, P. R. China
| |
Collapse
|
47
|
Modifying a composite based on silica molecular sieve and a Ru(II)-based probe with Fe3O4 particles: Construction and oxygen sensing performance. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.02.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Li J, Yang C, Wu Y, Wang B, Sun W, Shao T. On a magnetic-mesoporous composite loaded with emissive Ru(II) complex for oxygen sensing application: Construction, characterization and emission response to oxygen molecules. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2015.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
49
|
Synthesis, characterization, and application of pyrite for removal of mercury. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2015.11.057] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Li J, Yang C, Wu Y, Wang B, Sun W, Shao T. A strategy for optical site-specific oxygen sensing: Construction and characterization of a Ru(II)-modified magnetic-luminescent hybrid composite. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2015.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|