1
|
Shalygin AS. ATR-FTIR spectroscopic imaging with variable angles of incidence of crude oil deposits formed by flocculant flow. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 327:125310. [PMID: 39461083 DOI: 10.1016/j.saa.2024.125310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopic imaging is a method for spatially resolved analysis of materials that combines the capabilities of ATR-FTIR spectroscopy with the use of a focal plane array detector. This paper presents the methodological aspects of adapting the ATR accessory with variable single reflection angle to the FTIR spectroscopic imaging method. The use of a variable reflection angle allows the image to be studied at different sample depths. Using examples of BMIMPF6 ionic liquid and crude oil droplets placed on the working surface of an internal reflection element, the characteristics of image acquisition as the angle of reflection is varied are discussed. The possibility of obtaining crude oil deposits directly on the working surface of the internal reflection element under the influence of a flocculant flow (n-heptane, acetone) and their study by ATR-FTIR spectroscopic image was demonstrated. Crude oil deposits were obtained under different formation conditions (flow rates of flocculant) and their spectroscopic images were also obtained at different single reflection angles. This information gives an indication of the composition of the deposit's functional groups not only at spatial resolution but also at depth.
Collapse
Affiliation(s)
- Anton S Shalygin
- Zelinsky Institute of Organic Chemistry RAS, Leninsky Pr. 47, Moscow 119991, Russia.
| |
Collapse
|
2
|
Banks H, Surfaro F, Pastryk KF, Buchholz C, Zaluzhnyy IA, Gerlach A, Schreiber F. From adsorption to crystallization of proteins: Evidence for interface-assisted nucleation. Colloids Surf B Biointerfaces 2024; 241:114063. [PMID: 38954939 DOI: 10.1016/j.colsurfb.2024.114063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/26/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Protein crystallization is among the key processes in biomolecular research, but the underlying mechanisms are still elusive. Here, we address the role of inevitable interfaces for the nucleation process. Quartz crystal microbalance with dissipation monitoring (QCM-D) with simultaneously optical microscopy, confocal microscopy, and grazing-incidence small angle X-rays scattering (GISAXS) were employed to investigate the temporal behavior from the initial stage of protein adsorption to crystallization. Here we studied the crystallization of the Human Serum Albumin (HSA), the most abundant blood protein, in the presence of a charged surface and a trivalent salt. We found evidence for interface-assisted nucleation of crystals. The kinetic stages involved are initial adsorption followed by enhanced adsorption after longer times, subsequent nucleation, and finally crystal growth. The results highlight the importance of interfaces for protein phase behavior and in particular for nucleation.
Collapse
Affiliation(s)
- Hadra Banks
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, Tübingen 72076, Germany.
| | - Furio Surfaro
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, Tübingen 72076, Germany
| | - Kai-Florian Pastryk
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, Tübingen 72076, Germany
| | - Cara Buchholz
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, Tübingen 72076, Germany
| | - Ivan A Zaluzhnyy
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, Tübingen 72076, Germany
| | - Alexander Gerlach
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, Tübingen 72076, Germany
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, Tübingen 72076, Germany; Center for Light-Matter Interaction, Sensors & Analytics LISA+, Auf der Morgenstelle 15, Tübingen 72076, Germany
| |
Collapse
|
3
|
van Haaren C, Byrne B, Kazarian SG. Study of Monoclonal Antibody Aggregation at the Air-Liquid Interface under Flow by ATR-FTIR Spectroscopic Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5858-5868. [PMID: 38445553 PMCID: PMC10956494 DOI: 10.1021/acs.langmuir.3c03730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
Throughout bioprocessing, transportation, and storage, therapeutic monoclonal antibodies (mAbs) experience stress conditions that may cause protein unfolding and/or chemical modifications. Such structural changes may lead to the formation of aggregates, which reduce mAb potency and may cause harmful immunogenic responses in patients. Therefore, aggregates need to be detected and removed or ideally prevented from forming. Air-liquid interfaces, which arise during various stages of bioprocessing, are one of the stress factors causing mAb aggregation. In this study, the behavior of an immunoglobulin G (IgG) at the air-liquid interface was investigated under flow using macro attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopic imaging. This chemically specific imaging technique allows observation of adsorption of IgG to the air-liquid interface and detection of associated secondary structural changes. Chemical images revealed that IgG rapidly accumulated around an injected air bubble under flow at 45 °C; however, no such increase was observed at 25 °C. Analysis of the second derivative spectra of IgG at the air-liquid interface revealed changes in the protein secondary structure associated with increased intermolecular β-sheet content, indicative of aggregated IgG. The addition of 0.01% w/v polysorbate 80 (PS80) reduced the amount of IgG at the air-liquid interface in a static setup at 30 °C; however, this protective effect was lost at 45 °C. These results suggest that the presence of air-liquid interfaces under flow may be detrimental to mAb stability at elevated temperatures and demonstrate the power of ATR-FTIR spectroscopic imaging for studying the structural integrity of mAbs under bioprocessing conditions.
Collapse
Affiliation(s)
- Céline van Haaren
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Bernadette Byrne
- Department
of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Sergei G. Kazarian
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, London SW7 2AZ, U.K.
| |
Collapse
|
4
|
Su SY, Li EM, Li CX, Li B, Li F, He JB. Self-Motion of Water Droplets along a Spacing Gradient of Micropillar Arrays on Copper. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4111-4120. [PMID: 35312331 DOI: 10.1021/acs.langmuir.2c00185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Self-driven droplet transport along an open gradient surface is increasingly becoming popular for various microfluidics applications. In this work, a gradient copper oxide layer is formed on a copper sheet (as a bipolar electrode, BPE) in a KOH solution by bipolar electrochemistry. The deposits at different positions present a rich variety of colors, compositions, and microstructures along the longitudinal axis of the BPE. More than half the length of the anodic pole is covered by a Cu(OH)2/CuO composite layer of several micrometers thick, which is composed of dense micropillars with a decreasing spacing gradient to the anodic direction. The micropillar arrays are superhydrophilic, and after modified with 1-dodecanethiol, the tops of the dense micropillars constitute a hydrophobic and microscopically discontinuous surface with a wettability gradient. On such a gradient surface water droplets can move spontaneously to more hydrophilic direction at a velocity of about 16 mm s-1. The superhydrophobicity of the modified micropillar arrays is discussed through a comparison with the wax tubules on a lotus leaf. Theoretical analysis of the driving force reveals that the concave surface effect of water at the spacings between the micropillars is the critical factor for driving the rolling motion of the droplets along the gradient micropillar arrays.
Collapse
Affiliation(s)
- Sheng-Ying Su
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Er-Mei Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chao-Xiong Li
- Anhui Province Key Laboratory of Green Manufacturing of Power Battery, Tianneng, Fuyang, Jieshou 236500, China
| | - Bing Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Fang Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jian-Bo He
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
5
|
Chan KA, Shalygin AS, Martyanov ON, Welton T, Kazarian SG. High throughput study of ionic liquids in controlled environments with FTIR spectroscopic imaging. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Li Y, Huang J, Cheng J, Xu S, Pi P, Wen X. Enhanced Movement of Two-Component Droplets on a Wedge-Shaped Ag/Cu Surface by a Wettability Gradient. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15857-15865. [PMID: 33765767 DOI: 10.1021/acsami.1c00517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The wedge-shaped Ag/Cu surface with a contact angle (CA) [droplet of 30 vol % propylene glycol (PG)] of 18.6° in the wedge track and 64.6° at its periphery was fabricated through a facile gradient displacement reaction on the Cu substrate. The aqueous droplet of 30% PG could realize directed motion on the wedge track without back-end pinning, moving in a two-stage process of front-end spreading and subsequent back-end shrinking. A wettability gradient from 64.6 to 18.6° on the wedge surface could enhance the droplet motion, especially during the second stage. A favorable length of the wettability gradient (15 mm) was obtained, capable of moving the droplet the farthest displacement of 21.6 mm at a velocity of 0.53 mm/s on a wedge track with the wedge angle of α = 10° and length of 25 mm. The driving force arising from the wettability gradient during the second stage was evaluated theoretically to elucidate the effect of the length of the wettability gradient on the movement. Finally, three T-shaped self-driven surface micromixers composed of a mixing zone with uniform wettability and a transportation zone with different gradients were designed to test the drainage ability of droplets away from the surface. The wedge track combined with the wettability gradient was found to be capable of removing the mixed droplet completely out of the mixing region and flowing away, while the droplet would attach or stay in the mixing zone if actuated by the shape gradient or the wettability gradient alone.
Collapse
Affiliation(s)
- Yiliang Li
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China
| | - Jinmei Huang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China
| | - Jiang Cheng
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China
| | - Shouping Xu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China
| | - Pihui Pi
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China
| | - Xiufang Wen
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China
| |
Collapse
|
7
|
Tiernan H, Byrne B, Kazarian SG. Insight into Heterogeneous Distribution of Protein Aggregates at the Surface Layer Using Attenuated Total Reflection-Fourier Transform Infrared Spectroscopic Imaging. Anal Chem 2020; 92:4760-4764. [PMID: 32129602 DOI: 10.1021/acs.analchem.0c00250] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Monoclonal antibodies (mAbs) have been used as therapeutics for the last few decades. It is necessary to investigate the stability of these mAbs under stress conditions and to elucidate aggregation mechanisms as a means of developing approaches which minimize the problem. Attenuated total reflection (ATR)-FTIR spectroscopic imaging allows probing of a sample at a depth of penetration of around 0.5-5 μm, which makes it suitable for the study of aggregated proteins when accumulated as a layer close to the surface of the ZnSe internal reflection element (IRE). Here, macro ATR-FTIR spectroscopic imaging, along with a variable angle of incidence accessory, have been used to differentiate between the secondary structure of proteins in bulk solution and those that have precipitated onto or near the ZnSe IRE surface. IgG spectra obtained from protein samples in individual wells have been averaged, extracted, and preprocessed, and the Amide I bands of the protein samples were compared and further analyzed to reveal protein distribution at the ZnSe IRE surface. These findings show depth profiling of IgG aggregates at the ZnSe IRE surface (0.5-5 μm) and do not follow a trend of decreasing protein presence with an increasing angle of incidence or increasing depth of penetration, suggesting an irregular distribution of aggregates in the z-direction.
Collapse
Affiliation(s)
- Hannah Tiernan
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom.,Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Sergei G Kazarian
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
8
|
Dorrepaal RM, Lawless BM, Burton HE, Espino DM, Shepherd DE, Gowen AA. Hyperspectral chemical imaging reveals spatially varied degradation of polycarbonate urethane (PCU) biomaterials. Acta Biomater 2018; 73:81-89. [PMID: 29626697 DOI: 10.1016/j.actbio.2018.03.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 03/12/2018] [Accepted: 03/28/2018] [Indexed: 11/26/2022]
Abstract
Hyperspectral chemical imaging (HCI) is an emerging technique which combines spectroscopy with imaging. Unlike traditional point spectroscopy, which is used in the majority of polymer biomaterial degradation studies, HCI enables the acquisition of spatially localised spectra across the surface of a material in an objective manner. Here, we demonstrate that attenuated total reflectance Fourier transform infra-red (ATR-FTIR) HCI reveals spatial variation in the degradation of implantable polycarbonate urethane (PCU) biomaterials. It is also shown that HCI can detect possible defects in biomaterial formulation or specimen production; these spatially resolved images reveal regional or scattered spatial heterogeneity. Further, we demonstrate a map sampling method, which can be used in time-sensitive scenarios, allowing for the investigation of degradation across a larger component or component area. Unlike imaging, mapping does not produce a contiguous image, yet grants an insight into the spatial heterogeneity of the biomaterial across a larger area. These novel applications of HCI demonstrate its ability to assist in the detection of defective manufacturing components and lead to a deeper understanding of how a biomaterial's chemical structure changes due to implantation. STATEMENT OF SIGNIFICANCE The human body is an aggressive environment for implantable devices and their biomaterial components. Polycarbonate urethane (PCU) biomaterials in particular were investigated in this study. Traditionally one or a few points on the PCU surface are analysed using ATR-FTIR spectroscopy. However the selection of acquisition points is susceptible to operator bias and critical information can be lost. This study utilises hyperspectral chemical imaging (HCI) to demonstrate that the degradation of a biomaterial varies spatially. Further, HCI revealed spatial variations of biomaterials that were not subjected to oxidative degradation leading to the possibility of HCI being used in the assessment of biomaterial formulation and/or component production.
Collapse
|
9
|
Collinson MM, Higgins DA. Organosilane Chemical Gradients: Progress, Properties, and Promise. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13719-13732. [PMID: 28849936 DOI: 10.1021/acs.langmuir.7b02259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Chemical gradients play an important role in nature, driving many different phenomena critical to life, including the transport of chemical species across membranes and the transport, attachment, and assembly of cells. Taking a cue from these natural processes, scientists and engineers are now working to develop synthetic chemical gradients for use in a broad range of applications, such as in high-throughput investigations of surface properties, as means to guide the motions and/or assembly of liquid droplets, vesicles, nanoparticles, and cells and as new media for stationary-phase-gradient chemical separations. Our groups have been working to develop new methods for preparing chemical gradients from organoalkoxysilane and organochlorosilane precursors and to obtain a better understanding of their properties on macroscopic to microscopic length scales. This review highlights our recent work on the development of controlled-rate infusion and infusion-withdrawal dip-coating methods for the preparation of gradients on planar glass and silicon substrates, on thin-layer chromatography plates, and in capillaries and monoliths for liquid chromatography. We also cover the new knowledge gained from the characterization of our gradients using sessile drop and Wilhelmy plate dynamic water contact angle measurements, X-ray photoelectron spectroscopy mapping, and single-molecule tracking and spectroscopy. Our studies reveal important evidence of phase separation and cooperative interactions occurring along multicomponent gradients. Emerging concepts and new directions in the preparation and characterization of organosilane-based chemical gradients are also discussed.
Collapse
Affiliation(s)
- Maryanne M Collinson
- Department of Chemistry, Virginia Commonwealth University , 1001 West Main Street, Richmond, Virginia 23284-2006, United States
| | - Daniel A Higgins
- Department of Chemistry, Kansas State University , 1212 Mid-Campus Drive North, Manhattan, Kansas 66506-0401, United States
| |
Collapse
|
10
|
Gao M, Sun L, Guo Y, Shi J, Zhang J. Modification of polyethylene terephthalate (PET) films surface with gradient roughness and homogenous surface chemistry by dielectric barrier discharge plasma. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Abdulagatov AI, Orudzhev FF, Rabadanov MK, Abdulagatov IM. Copper nanowire arrays surface wettability control using atomic layer deposition of TiO2. RUSS J APPL CHEM+ 2016. [DOI: 10.1134/s1070427216080085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Boulet-Audet M, Kazarian SG, Byrne B. In-column ATR-FTIR spectroscopy to monitor affinity chromatography purification of monoclonal antibodies. Sci Rep 2016; 6:30526. [PMID: 27470880 PMCID: PMC4965771 DOI: 10.1038/srep30526] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/04/2016] [Indexed: 11/18/2022] Open
Abstract
In recent years many monoclonal antibodies (mAb) have entered the biotherapeutics market, offering new treatments for chronic and life-threatening diseases. Protein A resin captures monoclonal antibody (mAb) effectively, but the binding capacity decays over repeated purification cycles. On an industrial scale, replacing fouled Protein A affinity chromatography resin accounts for a large proportion of the raw material cost. Cleaning-in-place (CIP) procedures were developed to extend Protein A resin lifespan, but chromatograms cannot reliably quantify any remaining contaminants over repeated cycles. To study resin fouling in situ, we coupled affinity chromatography and Fourier transform infrared (FTIR) spectroscopy for the first time, by embedding an attenuated total reflection (ATR) sensor inside a micro-scale column while measuring the UV 280 nm and conductivity. Our approach quantified the in-column protein concentration in the resin bed and determined protein conformation. Our results show that Protein A ligand leached during CIP. We also found that host cell proteins bound to the Protein A resin even more strongly than mAbs and that typical CIP conditions do not remove all fouling contaminants. The insights derived from in-column ATR-FTIR spectroscopic monitoring could contribute to mAb purification quality assurance as well as guide the development of more effective CIP conditions to optimise resin lifespan.
Collapse
Affiliation(s)
- Maxime Boulet-Audet
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.,Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Sergei G Kazarian
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| |
Collapse
|
13
|
Kimber JA, Gerst M, Kazarian SG. Fast drying and film formation of latex dispersions studied with FTIR spectroscopic imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:13588-13595. [PMID: 25343527 DOI: 10.1021/la5035257] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Drying of thin latex films (∼20 μm) at high drying speeds (of the order of seconds) has been studied by fast chemical imaging. ATR-FTIR spectroscopic imaging combined with a fast "kinetic" mode was used to acquire spectral images without coaddition, enabling the amount of water and homogeneity of the drying film to be studied over time. Drying profiles, constructed from analyzing the water content in each image, show two stages of drying, a fast and a slow region. The formulation of latex dispersions affects the onset of slow drying and the volume fraction of water remaining at the onset of slow drying. In this work, the effect of physical properties, film thickness and glass transition temperature (Tg), were investigated, as well as the effect of monomer composition where two monomoers, 2-ethylhexyl acrylate and n-butyl acrylate, and the amount of hydrophilic comonomer, methyl methacrylate (MMA), were varied. It was found that thicker films produced slower overall drying and that the formulation with a Tg above the minimum film formation temperature did not dry evenly, exhibiting cracking. However, the drying kinetics of high and low Tg films were similar, highlighting the advantage of using a spatially-resolved spectroscopic approach. Formulations containing more MMA dried faster than those with less. This was due to the hydrophilicity of MMA and the increase in Tg of the dispersion from the addition of MMA. Overall, FTIR spectroscopic imaging was shown to be a suitable approach in measuring film drying at high speeds as both chemical changes and chemical distribution could be analyzed over time.
Collapse
Affiliation(s)
- James A Kimber
- Department of Chemical Engineering, Imperial College London , London SW7 2AZ, United Kingdom
| | | | | |
Collapse
|
14
|
Boulet-Audet M, Byrne B, Kazarian SG. High-throughput thermal stability analysis of a monoclonal antibody by attenuated total reflection FT-IR spectroscopic imaging. Anal Chem 2014; 86:9786-93. [PMID: 25221926 PMCID: PMC4218712 DOI: 10.1021/ac502529q] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/15/2014] [Indexed: 01/03/2023]
Abstract
The use of biotherapeutics, such as monoclonal antibodies, has markedly increased in recent years. It is thus essential that biotherapeutic production pipelines are as efficient as possible. For the production process, one of the major concerns is the propensity of a biotherapeutic antibody to aggregate. In addition to reducing bioactive material recovery, protein aggregation can have major effects on drug potency and cause highly undesirable immunological effects. It is thus essential to identify processing conditions which maximize recovery while avoiding aggregation. Heat resistance is a proxy for long-term aggregation propensity. Thermal stability assays are routinely performed using various spectroscopic and scattering detection methods. Here, we evaluated the potential of macro attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectroscopic imaging as a novel method for the high-throughput thermal stability assay of a monoclonal antibody. This chemically specific visualization method has the distinct advantage of being able to discriminate between monomeric and aggregated protein. Attenuated total reflection is particularly suitable for selectively probing the bottom of vessels, where precipitated aggregates accumulate. With focal plane array detection, we tested 12 different buffer conditions simultaneously to assess the effect of pH and ionic strength on protein thermal stability. Applying the Finke model to our imaging kinetics allowed us to determine the rate constants of nucleation and autocatalytic growth. This analysis demonstrated the greater stability of our immunoglobulin at higher pH and moderate ionic strength, revealing the key role of electrostatic interactions. The high-throughput approach presented here has significant potential for analyzing the stability of biotherapeutics as well as any other biological molecules prone to aggregation.
Collapse
Affiliation(s)
- Maxime Boulet-Audet
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, London, SW7 2AZ, United
Kingdom
- Department
of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Bernadette Byrne
- Department
of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Sergei G. Kazarian
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, London, SW7 2AZ, United
Kingdom
| |
Collapse
|
15
|
Woods DA, Bain CD. Total internal reflection spectroscopy for studying soft matter. SOFT MATTER 2014; 10:1071-1096. [PMID: 24651911 DOI: 10.1039/c3sm52817k] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Total internal reflection (TIR) spectroscopy is a widely used technique to study soft matter at interfaces. This tutorial review aims to provide researchers with an overview of the principles, experimental design and applications of TIR spectroscopy to enable them to understand how this class of techniques might be used in their research. It also highlights limitations and pitfalls of TIR techniques, which will assist readers in critically analysing the literature. Techniques covered include attenuated total reflection infrared spectroscopy (ATR-IR), TIR fluorescence, TIR Raman scattering and cavity-enhanced techniques. Other related techniques are briefly described.
Collapse
Affiliation(s)
- David A Woods
- Department of Chemistry, Durham University, South Road, Durham, UKDH1 3LE.
| | | |
Collapse
|
16
|
Lai Y, Chen J, Zhang T, Gu D, Zhang C, Li Z, Lin S, Fu X, Schultze-Mosgau S. Effect of 3D microgroove surface topography on plasma and cellular fibronectin of human gingival fibroblasts. J Dent 2013; 41:1109-21. [PMID: 23948393 DOI: 10.1016/j.jdent.2013.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/02/2013] [Accepted: 08/03/2013] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Fibronectin (FN), an extracellular matrix (ECM) glycoprotein, is a key factor in the compatibility of dental implant materials. Our objective was to determine the optimal dimensions of microgrooves in the transmucosal part of a dental implant, for optimal absorption of plasma FN and expression of cellular FN by human gingival fibroblasts (HGFs). METHODS Microgroove titanium surfaces were fabricated by photolithography with parallel grooves: 15μm, 30μm, or 60μm in width and 5μm or 10μm in depth. Smooth titanium surfaces were used as controls. Surface hydrophilicity, plasma FN adsorption and cellular FN expression by HGFs were measured for both microgroove and control samples. RESULTS We found that narrower and deeper microgrooves amplified surface hydrophobicity. A 15-μm wide microgroove was the most hydrophobic surface and a 60-μm wide microgroove was the most hydrophilic. The latter had more expression of cellular FN than any other surface, but less absorption of plasma FN than 15-μm wide microgrooves. Variation in microgroove depth did not appear to effect FN absorption or expression unless the groove was narrow (∼15 or 30μm). In those instances, the shallower depths resulted in greater expression of cellular FN. CONCLUSIONS Our microgrooves improved expression of cellular FN, which functionally compensated for plasma FN. A microgroove width of 60μm and depth of 5 or 10μm appears to be optimal for the transmucosal part of the dental implant.
Collapse
Affiliation(s)
- Yingzhen Lai
- School of Stomatology, Fujian Medical University, Fuzhou, Fujian 350000, China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Glassford SE, Byrne B, Kazarian SG. Recent applications of ATR FTIR spectroscopy and imaging to proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2849-58. [PMID: 23928299 DOI: 10.1016/j.bbapap.2013.07.015] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/24/2013] [Accepted: 07/27/2013] [Indexed: 11/25/2022]
Abstract
Attenuated Total Reflection (ATR) Fourier Transform Infrared (FTIR) spectroscopy is a label-free, non-destructive analytical technique that can be used extensively to study a wide variety of different molecules in a range of different conditions. The aim of this review is to discuss and highlight the recent advances in the applications of ATR FTIR spectroscopic imaging to proteins. It briefly covers the basic principles of ATR FTIR spectroscopy and ATR FTIR spectroscopic imaging as well as their advantages to the study of proteins compared to other techniques and other forms of FTIR spectroscopy. It will then go on to examine the advances that have been made within the field over the last several years, particularly the use of ATR FTIR spectroscopy for the understanding and development of protein interaction with surfaces. Additionally, the growing potential of Surface Enhanced Infrared Spectroscopy (SEIRAS) within this area of applications will be discussed. The review includes the applications of ATR FTIR imaging to protein crystallisation and for high-throughput studies, highlighting the future potential of the technology within the field of protein structural studies and beyond.
Collapse
|
18
|
Kazarian SG, Ewing AV. Applications of Fourier transform infrared spectroscopic imaging to tablet dissolution and drug release. Expert Opin Drug Deliv 2013; 10:1207-21. [DOI: 10.1517/17425247.2013.801452] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Lantvit SM, Barrett BJ, Reynolds MM. Nitric oxide releasing material adsorbs more fibrinogen. J Biomed Mater Res A 2013; 101:3201-10. [PMID: 23554300 DOI: 10.1002/jbm.a.34627] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 01/29/2013] [Accepted: 01/30/2013] [Indexed: 12/30/2022]
Abstract
One mechanism of the failure of blood-contacting devices is clotting. Nitric oxide (NO) releasing materials are seen as a viable solution to the mediation of surface clotting by preventing platelet activation; however, NO's involvement in preventing clot formation extends beyond controlling platelet function. In this study, we evaluate NO's effect on factor XII (fibrinogen) adsorption and activation, which causes the initiation of the intrinsic arm of the coagulation cascade. This is done by utilizing a model plasticized poly(vinyl) chloride (PVC), N-diazeniumdiolate system and looking at the adsorption of fibrinogen, an important clotting protein, to these surfaces. The materials have been prepared in such a way to eliminate changes in surface properties between the control (plasticized PVC) and composite (NO-releasing) materials. This allows us to isolate NO release and determine the effect on the adsorption of fibrinogen, to the material surface. Surprisingly, it was found that an NO releasing material with a surface flux of 17.4 ± 0.5 × 10(-10) mol NO cm(-2) min(-1) showed a significant increase in the amount of fibrinogen adsorbed to the material surface compared to one with a flux of 13.0 ± 1.6 × 10(-10) mol NO cm(-2) min(-1) and the control (2334 ± 496, 226 ± 99, and 103 ±31% fibrinogen adsorbed of control, respectively). This study suggests that NO's role in controlling clotting is extended beyond platelet activation.
Collapse
Affiliation(s)
- Sarah M Lantvit
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
| | | | | |
Collapse
|
20
|
Reynolds PM, Pedersen R, Stormonth-Darling J, Dalby MJ, Riehle MO, Gadegaard N. Label-free segmentation of Co-cultured cells on a nanotopographical gradient. NANO LETTERS 2013; 13:570-6. [PMID: 23252684 PMCID: PMC3633255 DOI: 10.1021/nl304097p] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/17/2012] [Indexed: 05/25/2023]
Abstract
The function and fate of cells is influenced by many different factors, one of which is surface topography of the support culture substrate. Systematic studies of nanotopography and cell response have typically been limited to single cell types and a small set of topographical variations. Here, we show a radical expansion of experimental throughput using automated detection, measurement, and classification of co-cultured cells on a nanopillar array where feature height changes continuously from planar to 250 nm over 9 mm. Individual cells are identified and characterized by more than 200 descriptors, which are used to construct a set of rules for label-free segmentation into individual cell types. Using this approach we can achieve label-free segmentation with 84% confidence across large image data sets and suggest optimized surface parameters for nanostructuring of implant devices such as vascular stents.
Collapse
Affiliation(s)
- Paul M. Reynolds
- Division of Biomedical Engineering,
School of Engineering, University of Glasgow, Glasgow, G12 8LT, United Kingdom
| | - Rasmus
H. Pedersen
- Division of Biomedical Engineering,
School of Engineering, University of Glasgow, Glasgow, G12 8LT, United Kingdom
| | - John Stormonth-Darling
- Division of Biomedical Engineering,
School of Engineering, University of Glasgow, Glasgow, G12 8LT, United Kingdom
| | - Matthew J. Dalby
- Center for Cell Engineering,
Institute of Molecular Cell and Systems Biology, University
of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Mathis O. Riehle
- Center for Cell Engineering,
Institute of Molecular Cell and Systems Biology, University
of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Nikolaj Gadegaard
- Division of Biomedical Engineering,
School of Engineering, University of Glasgow, Glasgow, G12 8LT, United Kingdom
| |
Collapse
|
21
|
Kazarian SG, Chan KLA. ATR-FTIR spectroscopic imaging: recent advances and applications to biological systems. Analyst 2013; 138:1940-51. [DOI: 10.1039/c3an36865c] [Citation(s) in RCA: 267] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
22
|
Xu JY, Chen TW, Bao WJ, Wang K, Xia XH. Label-free strategy for in-situ analysis of protein binding interaction based on attenuated total reflection surface enhanced infrared absorption spectroscopy (ATR-SEIRAS). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:17564-17570. [PMID: 23163643 DOI: 10.1021/la303054w] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A versatile ATR-SEIRAS methodology is described herein for highly sensitive analysis of immunoglobulin (IgG) recognition. This strategy allows in situ tracking of specific protein binding at the liquid-solid interface. Most importantly, interferential signal from environmental molecules (e.g., water, nonspecific binding molecules, and bulk molecules) can be eliminated to negligible levels by using the ATR analysis mode, and the sensitive IR structural information of target proteins is obtained simultaneously. A simplified numerical model has been established to quantitatively describe the kinetics and thermodynamics of protein recognition processes at surfaces. Compared with conventional label-free methods for protein binding study, experimental results obtained from IR spectroscopic information are more reliable. The presented ATR-SEIRAS method is powerful in studying surface limited protein binding reactions.
Collapse
Affiliation(s)
- Jian-Yun Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, People's Republic of China
| | | | | | | | | |
Collapse
|