1
|
García‐Arribas AB, Ibáñez‐Freire P, Carlero D, Palacios‐Alonso P, Cantero‐Reviejo M, Ares P, López‐Polín G, Yan H, Wang Y, Sarkar S, Chhowalla M, Oksanen HM, Martín‐Benito J, de Pablo PJ, Delgado‐Buscalioni R. Broad Adaptability of Coronavirus Adhesion Revealed from the Complementary Surface Affinity of Membrane and Spikes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404186. [PMID: 39231361 PMCID: PMC11538687 DOI: 10.1002/advs.202404186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/21/2024] [Indexed: 09/06/2024]
Abstract
Coronavirus stands for a large family of viruses characterized by protruding spikes surrounding a lipidic membrane adorned with proteins. The present study explores the adhesion of transmissible gastroenteritis coronavirus (TGEV) particles on a variety of reference solid surfaces that emulate typical virus-surface interactions. Atomic force microscopy informs about trapping effectivity and the shape of the virus envelope on each surface, revealing that the deformation of TGEV particles spans from 20% to 50% in diameter. Given this large deformation range, experimental Langmuir isotherms convey an unexpectedly moderate variation in the adsorption-free energy, indicating a viral adhesion adaptability which goes beyond the membrane. The combination of an extended Helfrich theory and coarse-grained simulations reveals that, in fact, the envelope and the spikes present complementary adsorption affinities. While strong membrane-surface interaction lead to highly deformed TGEV particles, surfaces with strong spike attraction yield smaller deformations with similar or even larger adsorption-free energies.
Collapse
Affiliation(s)
- Aritz B. García‐Arribas
- Departamento de Física de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Pablo Ibáñez‐Freire
- Departamento de Física Teórica de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Diego Carlero
- Departamento de Estructura de MacromoléculasCentro Nacional de Biotecnología CSICMadrid28049Spain
| | - Pablo Palacios‐Alonso
- Departamento de Física Teórica de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Miguel Cantero‐Reviejo
- Departamento de Física Teórica de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Pablo Ares
- Departamento de Física Teórica de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Guillermo López‐Polín
- Departamento de Física de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Han Yan
- Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeCB3 0FSUK
| | - Yan Wang
- Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeCB3 0FSUK
| | - Soumya Sarkar
- Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeCB3 0FSUK
| | - Manish Chhowalla
- Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeCB3 0FSUK
| | - Hanna M. Oksanen
- Faculty of Biological and Environmental SciencesVijkki BiocenterUniversity of HelsinkiHelsinki00014Finland
| | - Jaime Martín‐Benito
- Departamento de Física de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Pedro J. de Pablo
- Departamento de Física de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
- Instituto de Física de la Materia Condensada IFIMACUniversidad Autónoma de MadridMadrid28049Spain
| | - Rafael Delgado‐Buscalioni
- Departamento de Física Teórica de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
- Instituto de Física de la Materia Condensada IFIMACUniversidad Autónoma de MadridMadrid28049Spain
| |
Collapse
|
2
|
Molecular simulation of poly(ethylene-ran-propylene) nanoparticles with different comonomer composition. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
3
|
|
4
|
Chng CP, Sadovsky Y, Hsia KJ, Huang C. Curvature-Regulated Lipid Membrane Softening of Nano-Vesicles. EXTREME MECHANICS LETTERS 2021; 43:101174. [PMID: 33542946 PMCID: PMC7853652 DOI: 10.1016/j.eml.2021.101174] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The physico-mechanical properties of nanoscale lipid vesicles (e.g., natural nano-vesicles and artificial nano-liposomes) dictate their interaction with biological systems. Understanding the interplay between vesicle size and stiffness is critical to both the understanding of the biological functions of natural nano-vesicles and the optimization of nano-vesicle-based diagnostics and therapeutics. It has been predicted that, when vesicle size is comparable to its membrane thickness, the effective bending stiffness of the vesicle increases dramatically due to both the entropic effect as a result of reduced thermal undulation and the nonlinear curvature elasticity effect. Through systematic molecular dynamics simulations, we show that the vesicle membrane thins and softens with the decrease in vesicle size, which effectively counteracts the stiffening effects as already mentioned. Our simulations indicate that the softening of nano-vesicles results from a change in the bilayer's interior structure - a decrease in lipid packing order - as the membrane curvature increases. Our work thus leads to a more complete physical framework to understand the physico-mechanical properties of nanoscale lipid vesicles, paving the way to further advances in the biophysics of nano-vesicles and their biomedical applications.
Collapse
Affiliation(s)
- Choon-Peng Chng
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
| | - Yoel Sadovsky
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213
| | - K. Jimmy Hsia
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Republic of Singapore
- corresponding authors: and
| | - Changjin Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Republic of Singapore
- corresponding authors: and
| |
Collapse
|
5
|
Obeid S, Guyomarc'h F. Atomic force microscopy of food assembly: Structural and mechanical insights at the nanoscale and potential opportunities from other fields. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Bahri A, Chevalier-Lucia D, Marchesseau S, Schmitt C, Gergely C, Martin M. Effect of pH change on size and nanomechanical behavior of whey protein microgels. J Colloid Interface Sci 2019; 555:558-568. [PMID: 31404840 DOI: 10.1016/j.jcis.2019.07.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 10/26/2022]
Abstract
Microgels specific structural and functional features are attracting high research interest in several applications such as bioactives and drug delivery or functional food ingredients. Whey protein microgels (WPM) are obtained by heat treatment of whey protein isolate (WPI) in order to promote intramolecular cross-linking. In the present work, atomic force microscopy (AFM) was used in contact mode and in liquid to investigate WPM particles topography and mechanical properties at the nanoscale at native pH (6.5) and acid pH (5.5 and 3.0). Prior to AFM, WPM particles were captured on a gold substrate via low energy interactions by means of specific monoclonal antibodies. AFM images clearly showed an increase in the size of WPM particles induced by pH decrease. AFM in force spectroscopy mode was employed to monitor the elasticity of WPMs. The obtained effective Young's modulus data showed a significant increase in stiffness at pH 5.5 and pH 3.0, over 15-fold compared to native pH. These findings indicate that the mechanical profile of the WPM network varied with the pH decrease. The WPM topographic and nanomechanical changes induced by acidification were most likely due to substantial changes in the shape and inner structure of WPM particles. Our results suggest that internally cross-linked structures, modified by acidification could display interesting functional properties when used as a food ingredient.
Collapse
Affiliation(s)
- Asma Bahri
- IATE, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France; L2C, Univ Montpellier, CNRS, Montpellier, France
| | | | - Sylvie Marchesseau
- IATE, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Christophe Schmitt
- Nestlé Institute of Material Sciences, Nestlé Research, Lausanne, Switzerland
| | | | - Marta Martin
- L2C, Univ Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
7
|
Molecular simulation of nanoparticles composed of mono- and bi-dispersed poly(ethylene oxide). J Mol Model 2019; 25:271. [PMID: 31448391 DOI: 10.1007/s00894-019-4174-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/16/2019] [Indexed: 10/26/2022]
|
8
|
Ma M, Guo Y. Accelerated Aging of PS Blocks in PS- b-PMMA Diblock Copolymer under Hard Confinement. J Phys Chem B 2019; 123:2448-2453. [PMID: 30763094 DOI: 10.1021/acs.jpcb.8b12565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This letter presents an accelerated physical aging of polystyrene (PS) blocks in polystyrene- block-poly(methyl methacrylate) (PS- b-PMMA) diblock copolymers under hard confinement. The three-dimensional hard nanoconfinement was provided by the PMMA component owing to its high elasticity and was formed via self-assembled microphase separation. Aging was observed by measuring enthalpy recovery of the PS blocks in the copolymers for which the degree of polymerization ( N) of PS blocks is fixed, whereas the N of PMMA blocks varies. Our results demonstrate that the aging speed of the PS blocks can increase by a factor of three to that of the neat PS as the N of PMMA blocks increases. Therefore, the hard confinement accelerates physical aging of the PS blocks, i.e., the relatively soft component in the copolymer.
Collapse
Affiliation(s)
- Mingchao Ma
- University of Michigan , Shanghai Jiao Tong University Joint Institute , Shanghai 200240 , China
| | - Yunlong Guo
- University of Michigan , Shanghai Jiao Tong University Joint Institute , Shanghai 200240 , China.,School of Materials Science and Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| |
Collapse
|
9
|
Bahri A, Martin M, Gergely C, Marchesseau S, Chevalier-Lucia D. Topographical and nanomechanical characterization of casein nanogel particles using atomic force microscopy. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.03.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Ma M, Huang Y, Guo Y. Enthalpy Relaxation and Morphology Evolution in Polystyrene-b-poly(methyl methacrylate) Diblock Copolymer. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
McClements J, Shaver MP, Sefiane K, Koutsos V. Morphology of Poly(styrene- co-butadiene) Random Copolymer Thin Films and Nanostructures on a Graphite Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7784-7796. [PMID: 29757657 DOI: 10.1021/acs.langmuir.8b01020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We studied the morphology of poly(styrene- co-butadiene) random copolymers on a graphite surface. Polymer solutions were spin coated onto graphite, at various concentrations and molecular weights. The polymer films and nanostructures were imaged using atomic force microscopy. Above the overlap concentration, thin films formed. However, total wetting did not occur, despite the polymers being well above their Tg. Instead, dewetting was observed, suggesting the films were in a state of metastable equilibrium. At lower concentrations, the polymers formed networks, nanoislands, and nanoribbons. Ordered nanopatterns were observed on the surface; the polymers orientated themselves due to π-π stacking interactions reflecting the crystalline structure of the graphite. At the lowest concentration, this ordering was very pronounced. At higher concentrations, it was less defined but still statistically significant. Higher degrees of ordering were observed with poly(styrene- co-butadiene) than polystyrene and polybutadiene homopolymers as the copolymer's aromatic rings are distributed along a flexible chain, which maximizes π-π stacking. At the two lowest concentrations, the size of the nanoislands and nanoribbons remained similar with varying molecular weight. However, at higher concentrations, the polymer network features were largest at the lowest molecular weight, indicating that in this case, a large proportion of shorter chains stay on top of the adsorbed ones. The contact angles of the polymer nanostructures remained mostly constant with size, which is due to the strong polymer/graphite adhesion dominating over line tension and entropic effects.
Collapse
Affiliation(s)
- Jake McClements
- School of Engineering, Institute for Materials and Processes , The University of Edinburgh , Sanderson Building, King's Buildings , Edinburgh EH9 3FB , U.K
| | - Michael P Shaver
- EaStCHEM School of Chemistry , University of Edinburgh , Joseph Black Building, King's Buildings, David Brewster Road , Edinburgh EH9 3FJ , U.K
| | - Khellil Sefiane
- School of Engineering, Institute for Materials and Processes , The University of Edinburgh , Sanderson Building, King's Buildings , Edinburgh EH9 3FB , U.K
| | - Vasileios Koutsos
- School of Engineering, Institute for Materials and Processes , The University of Edinburgh , Sanderson Building, King's Buildings , Edinburgh EH9 3FB , U.K
| |
Collapse
|
12
|
Evangelopoulos AEAS, Rissanou AN, Glynos E, Bitsanis IA, Anastasiadis SH, Koutsos V. Wetting Behavior of Polymer Droplets: Effects of Droplet Size and Chain Length. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Apostolos E. A. S. Evangelopoulos
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, King’s Buildings, Edinburgh EH9 3FB, United Kingdom
- School of Mathematical and Physical Sciences, University of Reading, Reading RG6 6AX, United Kingdom
| | - Anastassia N. Rissanou
- Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas (FORTH), GR-71110 Heraklion, Crete, Greece
| | - Emmanouil Glynos
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, P.O.
Box 1527, 711 10 Heraklion Crete, Greece
| | - Ioannis A. Bitsanis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, P.O.
Box 1527, 711 10 Heraklion Crete, Greece
| | - Spiros H. Anastasiadis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, P.O.
Box 1527, 711 10 Heraklion Crete, Greece
- Department of Chemistry, University of Crete, P.O. Box 2208, 710 03 Heraklion Crete, Greece
| | - Vasileios Koutsos
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, King’s Buildings, Edinburgh EH9 3FB, United Kingdom
| |
Collapse
|
13
|
McClements J, Buffone C, Shaver MP, Sefiane K, Koutsos V. Poly(styrene-co-butadiene) random copolymer thin films and nanostructures on a mica surface: morphology and contact angles of nanodroplets. SOFT MATTER 2017; 13:6152-6166. [PMID: 28795749 DOI: 10.1039/c7sm00994a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The self-assembly of poly(styrene-co-butadiene) random copolymers on mica surfaces was studied by varying solution concentrations and polymer molecular weights. Toluene solutions of the poly(styrene-co-butadiene) samples were spin coated onto a mica surface and the resulting polymer morphology was investigated by atomic force microscopy. At higher concentrations, thin films formed with varying thicknesses; some dewetting was observed which depended on the molecular weight. Total dewetting did not occur despite the polymer's low glass transition temperature. Instead, partial dewetting was observed suggesting that the polymer was in a metastable equilibrium state. At lower concentrations, spherical cap shaped nanodroplets formed with varying sizes from single polymer chains to aggregates containing millions of chains. As the molecular weight was increased, fewer aggregates were observed on the surface, albeit with larger sizes resulting from increased solution viscosities and more chain entanglements at higher molecular weights. The contact angles of the nanodroplets were shown to be size dependent. A minimum contact angle occurs for droplets with radii of 100-250 nm at each molecular weight. Droplets smaller than 100 nm showed a sharp increase in contact angle; attributed to an increase in the elastic modulus of the droplets, in addition, to a positive line tension value. Droplets larger than 250 nm also showed an increased contact angle due to surface heterogeneities which cannot be avoided for larger droplets. This increase in contact angle plateaus as the droplet size reaches the macroscopic scale.
Collapse
Affiliation(s)
- Jake McClements
- Institute for Materials and Processes, School of Engineering, The University of Edinburgh, Sanderson Building, King's Buildings, Edinburgh EH9 3FB, UK.
| | | | | | | | | |
Collapse
|
14
|
Bahri A, Martin M, Gergely C, Pugnière M, Chevalier-Lucia D, Marchesseau S. Atomic Force Microscopy Study of the Topography and Nanomechanics of Casein Micelles Captured by an Antibody. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:4720-4728. [PMID: 28481103 DOI: 10.1021/acs.langmuir.7b00311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Casein micelles (CMs) are colloidal phospho-protein-mineral complexes naturally present in milk. This study used atomic force microscopy (AFM) in a liquid environment to evaluate the topography and nanomechanics of single native CMs immobilized by a novel capture method. The proposed immobilization method involves weak interactions with the antiphospho-Ser/Thr/Tyr monoclonal antibody covalently bound to a carboxylic acid self-assembled monolayer (SAM) on a gold surface. This capture strategy was compared to the commonly used covalent immobilization method of CMs via carbodiimide chemistry. With this conventional method, CMs remained mainly mobile during AFM measurements in liquid, disturbing the evaluation of their average size and elastic properties. Conversely, when captured by the specific antibody, they were successfully immobilized and their integrity was preserved during the AFM measurement. The characterization of both CM topography and elastic properties was carried out in a liquid ionic environment at native pH 6.6. The CMs' capture efficiency via antibody was concurrently proved by surface plasmon resonance. The calculation of casein micelles' width, height, and contact angle was carried out from the recorded 2D AFM images. CMs were characterized by a mean width of 148 ± 8 nm and a mean height of 42 ± 1 nm. Weak forces were applied to single captured CMs. The obtained force versus indentation curves were fitted using the Hertz model in order to evaluate their elastic properties. The elasticity distribution of native CMs exhibited a unimodal trend with a peak centered at 269 ± 14 kPa.
Collapse
Affiliation(s)
- Asma Bahri
- Université de Montpellier , UMR IATE, F-34095 Montpellier Cedex 05, France
| | - Marta Martin
- Laboratoire Charles Coulomb, Université de Montpellier , UMR 5221-CNRS, F-34095 Montpellier Cedex 05, France
| | - Csilla Gergely
- Laboratoire Charles Coulomb, Université de Montpellier , UMR 5221-CNRS, F-34095 Montpellier Cedex 05, France
| | - Martine Pugnière
- IRCM-CRLC Val d'Aurelle - INSERM U896, F-34298 Montpellier Cedex 5, France
| | | | - Sylvie Marchesseau
- Université de Montpellier , UMR IATE, F-34095 Montpellier Cedex 05, France
| |
Collapse
|
15
|
Monte Carlo simulation of the stability and structure of polyethylene oxide nanodroplet with different solvent qualities. Colloid Polym Sci 2015. [DOI: 10.1007/s00396-015-3808-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Abstract
Softness is an essential mechanical feature of macromolecular particles such as polymer-grafted nanocolloids, polyelectrolyte networks, cross-linked microgels as well as block copolymer and dendrimer micelles. Elasticity of individual particles directly controls their swelling, wetting, and adsorption behaviour, their aggregation and self-assembly as well as structural and rheological properties of suspensions. Here we use numerical simulations and self-consistent field theory to study the deformation behaviour of a single spherical polymer brush upon diametral compression. We observe a universal response, which is rationalised using scaling arguments and interpreted in terms of two coarse-grained models. At small and intermediate compressions the deformation can be accurately reproduced by modelling the brush as a liquid drop, whereas at large compressions the brush behaves as a soft ball. Applicable far beyond the pairwise-additive small-strain regime, the models may be used to describe microelasticity of nanocolloids in severe confinement including dense disordered and crystalline phases.
Collapse
|
17
|
AFM study of casein micelles cross-linked by genipin: effects of acid pH and citrate. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s13594-014-0199-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|