1
|
Cao B, Yang H, Yu Z. A Novel Strategy for the Characterization of Self-Assembled Structures Using the Static Solid-State Phosphorus Nuclear Magnetic Resonance Technique. J Phys Chem Lett 2024; 15:262-266. [PMID: 38165310 DOI: 10.1021/acs.jpclett.3c03281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Structural characterization of assemblies in solutions is essential for understanding the relationship between the structure and material properties. In this study, we introduce a novel approach to investigate amphiphilic self-assemblies in solutions using the phospholipid molecule 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine (Lyso PC) as a 31P NMR probe. The high natural abundance and gyromagnetic ratio of 31P make it one of the most sensitive nuclei in the low-frequency region, enabling efficient detection even in dilute solutions. Lyso PC can readily co-assemble with amphiphilic molecules and ions in aqueous solutions, forming various structures, such as hexagonal, lamellar, and micellar assemblies. The characteristic line shapes of these assemblies reflect the chemical environment around the probe and provide insights into the different phase states of the assemblies. This strategy offers a simple, cost-effective, and static method for obtaining structural information about various assemblies. Our work not only introduces a sensitive probe for characterizing assemblies in a solvent environment but also inspires new ideas for the development of similar spectroscopic probes.
Collapse
Affiliation(s)
- Bobo Cao
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Haijun Yang
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhiwu Yu
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
2
|
Dai D, Cao B, Hao XL, Li ZH, Yu ZW. Free-Standing Two-Dimensional Crystals Formed from Self-Assembled Ionic Liquids. J Phys Chem Lett 2023; 14:2744-2749. [PMID: 36897097 DOI: 10.1021/acs.jpclett.3c00006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The fabrication of two-dimensional crystals (2DCs) has attracted very large interest because it creates materials with various surface structural features and special surface properties. Normally, this is limited to sheets networked together with strong covalent or coordination bonds. Against this understanding, we discovered macroscopic scale free-standing 2DCs in the aqueous dispersions of [Cnmim]X (X = Br, NO3; n = 14, 16, 18) using simultaneous synchrotron small- and wide-angle X-ray scattering techniques. On the other hand, the 2DCs are also a kind of novel hydrogel holding water content up to 98 wt %. This unusual phenomenon is attributed to the weak interactions between imidazole headgroups and counterions. The observation reported in this work is expected to contribute to theorists in their pursuit of the general principles governing the stability of 2D materials. It may also enlighten experimentalists in designing new free-standing 2DCs for various applications.
Collapse
Affiliation(s)
- Dong Dai
- MOE Key Laboratory on Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bobo Cao
- MOE Key Laboratory on Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiao-Lei Hao
- MOE Key Laboratory on Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhi-Hong Li
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Wu Yu
- MOE Key Laboratory on Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Han C, Yuan X, Ren L. Self-Assembly of a C 16M[Mn] Magnetic Surfactant in Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11770-11777. [PMID: 36164807 DOI: 10.1021/acs.langmuir.2c01902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A magnetic surfactant, which combines the properties of a surfactant with magnetic responsiveness, shows great potential in biotechnology, separation, adsorption, and catalysis, especially in non-invasive manipulation through a magnetic field. However, a molecularly magnetic surfactant is usually paramagnetic for the amorphous and less ordered structures. In this work, magnetic surfactant 1-methyl-3-hexadecane-imidazolium [MnCl2Br] (C16M[Mn]) is reported to self-assemble in water. The C16M[Mn] magnetic surfactant self-assembles in water to form a lamellar hydrogel from 10 to 50 wt % at and below room temperature. The hydrogel changes from a gel to a sol at 30 °C, and the hexadecane chains in the hydrogel change from noncrystalline to crystalline at 0 °C. In the hydrogel state, the lamellar domain spacing is varied from 36 to 45 nm depending on the concentration and self-assembly temperature. After self-assembly, the magnetic susceptibility of the freeze-dried magnetic surfactant is increased. Most important is the fact that the freeze-dried sample at a high concentration (40-50 wt %) shows the highest magnetic susceptibility, which is related to the closer molecular packing and the more ordered structures. The self-assembly-induced increase in magnetic susceptibility provides a method for improving the magnetic properties of a magnetic surfactant.
Collapse
Affiliation(s)
- Chenming Han
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Lixia Ren
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| |
Collapse
|
4
|
Cao B, Guo HY, Hao XL, Wu ZH, Wu FG, Yu ZW. Transition Mechanism from Nonlamellar to Well-Ordered Lamellar Phases: Is the Lamellar Liquid-Crystal Phase a Must? J Phys Chem Lett 2021; 12:4484-4489. [PMID: 33956459 DOI: 10.1021/acs.jpclett.1c01146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding the self-assembly mechanisms of amphiphilic molecules in solutions and regulating their phase behaviors are of primary significance for their applications. To challenge the reported direct phase transitions from nonlamellar to ordered lamellar phases, the self-assembly and phase behavior of the 1-hexadecyl-3-methylimidazolium chloride aqueous dispersions were studied using a strategy of isothermal incubation after the temperature jump. A disordered lamellar phase (identified as the lamellar liquid-crystal (Lα) phase), serving as an intermediate, was found to bridge the transition from a spherical micellar (M) phase to a lamellar-gel (Lβ) phase. Meanwhile, the nonsynchronicity in the tail and headgroup regions of the ionic liquid surfactant during the transition process was also unveiled, with the former being prior to the latter. The in-depth understanding of the self-assembly mechanisms may help push forward the related applications in the future.
Collapse
Affiliation(s)
- Bobo Cao
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Hao-Yue Guo
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xiao-Lei Hao
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhong-Hua Wu
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, P. R. China
| | - Zhi-Wu Yu
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
5
|
Biocompatible supramolecular systems based on novel cationic imidazolium- and urethane-containing amphiphiles: Self-assembly and antimicrobial properties. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Singh A, Sharma S, Kaur N, Singh N. Self-assembly of imidazolium/benzimidazolium cationic receptors: their environmental and biological applications. NEW J CHEM 2020. [DOI: 10.1039/d0nj03836a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review highlights the applications of imidazolium based cationic receptors for sensing of biomolecules and catalysis.
Collapse
Affiliation(s)
- Amanpreet Singh
- Department of Chemistry
- Indian Institute of Technology
- Ropar
- India
| | - Shilpa Sharma
- Department of Chemistry
- Indian Institute of Technology
- Ropar
- India
| | - Navneet Kaur
- Department of Chemistry
- Panjab University
- Chandigarh
- India
| | - Narinder Singh
- Department of Chemistry
- Indian Institute of Technology
- Ropar
- India
| |
Collapse
|
7
|
Guo HY, Cao B, Deng G, Hao XL, Wu FG, Yu ZW. Effect of Imidazolium-Based Ionic Liquids on the Structure and Phase Behavior of Palmitoyl-oleoyl-phosphatidylethanolamine. J Phys Chem B 2019; 123:5474-5482. [PMID: 31244097 DOI: 10.1021/acs.jpcb.9b03562] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Among various applications, ionic liquids (ILs) have been used as antimicrobial agents in laboratories, possibly through induction of the leakage of bacteria. A molecular-level understanding of the mechanism that describes how ILs enhance the permeation of membranes is still lacking. In this study, the effects of imidazolium-based ILs with different alky chain lengths on the structure and phase behavior of 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE), which is a representative bacteria-membrane-rich lipid, have been investigated. By employing differential scanning calorimetry and synchrotron small- and wide-angle X-ray scattering techniques, we found that ILs with longer alkyl chains influenced the phase behavior more effectively, and lower IL concentrations are needed to induce phase separation for both lamellar liquid crystalline phase and nonlamellar inverted hexagonal phase of POPE. Interestingly, the IL with an alkyl chain of 12 carbon atoms ([C12mim]Cl) shows a difference. It exhibits a stronger disturbing effect on the POPE bilayer structure than [C16mim]Cl, indicating that the ability of ILs to influence the membrane structures is dependent not only on the alkyl chain length of ILs, but also on the degree of matching of the alkyl chain lengths of ILs and lipids. The new lamellar and nonlamellar structures induced by ILs both have smaller repeat distances than that of pure POPE, implying thinner membrane structures. Data of the fluorescence-based vesicle dye leakage assay are consistent with these results, particularly the defects caused by IL-induced phase separation can enhance the membrane permeability markedly. The present work may shed light on our understanding of the antimicrobial mechanism of ILs.
Collapse
Affiliation(s)
- Hao-Yue Guo
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Bobo Cao
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Geng Deng
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Xiao-Lei Hao
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , People's Republic of China
| | - Zhi-Wu Yu
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , People's Republic of China
| |
Collapse
|
8
|
Sun Y, Xu X, Qin M, Pang N, Wang G, Zhuang L. Dodecyl sulfate-based anionic surface-active ionic liquids: synthesis, surface properties, and interaction with gelatin. Colloid Polym Sci 2019. [DOI: 10.1007/s00396-019-04473-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Zuo B, Xu J, Sun S, Liu Y, Yang J, Zhang L, Wang X. Stepwise crystallization and the layered distribution in crystallization kinetics of ultra-thin poly(ethylene terephthalate) film. J Chem Phys 2016; 144:234902. [DOI: 10.1063/1.4953852] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Biao Zuo
- Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jianquan Xu
- Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shuzheng Sun
- Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yue Liu
- Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Juping Yang
- Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Li Zhang
- Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xinping Wang
- Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
10
|
Bhadani A, Misono T, Singh S, Sakai K, Sakai H, Abe M. Structural diversity, physicochemical properties and application of imidazolium surfactants: Recent advances. Adv Colloid Interface Sci 2016; 231:36-58. [PMID: 27063924 DOI: 10.1016/j.cis.2016.03.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 01/19/2016] [Accepted: 03/21/2016] [Indexed: 10/22/2022]
Abstract
The current review covers recent advances on development and investigation of cationic surfactants containing imidazolium headgroup, which are being extensively investigated for their self-aggregation properties and are currently being utilized in various conventional and non-conventional application areas. These surfactants are being used as: soft template for synthesis of mesoporous/microporous materials, drug and gene delivery agent, stabilizing agent for nanoparticles, dispersants for single/multi walled carbon nanotubes, antimicrobial and antifungal agent, viscosity modifiers, preparing nanocomposite materials, stabilizing microemulsions, corrosion inhibitors and catalyst for organic reactions. Recently several structural derivatives of these surfactants have been developed having many interesting physicochemical properties and they have demonstrated enormous potential in the area of nanotechnology, material science and biomedical science.
Collapse
|
11
|
Wu FG, Sun HY, Zhou Y, Deng G, Yu ZW. Molecular-level pictures of the phase transitions of saturated and unsaturated phospholipid binary mixtures. RSC Adv 2015. [DOI: 10.1039/c4ra07569b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Saturated and unsaturated lipids change nonsynchronously upon heating-induced phase transitions.
Collapse
Affiliation(s)
- Fu-Gen Wu
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Hai-Yuan Sun
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Yu Zhou
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Geng Deng
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Zhi-Wu Yu
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| |
Collapse
|
12
|
Wu FG, Sun HY, Zhou Y, Wu RG, Yu ZW. Full picture of the thermotropic phase behavior of cardiolipin bilayer in water: identification of a metastable subgel phase. RSC Adv 2014. [DOI: 10.1039/c4ra09158b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
13
|
Li Q, Qian J. Multifarious zinc coordination polymers based on biphenyl-3,3′,5,5′-tetracarboxylate and different flexibility of N-donor ligands. RSC Adv 2014. [DOI: 10.1039/c4ra04505j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
14
|
Wu FG, Wu RG, Sun HY, Zheng YZ, Yu ZW. Demixing and crystallization of DODAB in DPPC-DODAB binary mixtures. Phys Chem Chem Phys 2014; 16:15307-18. [PMID: 24943895 DOI: 10.1039/c4cp01707b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The crystallization mechanism of one lipid component within multicomponent lipid mixtures remains unclear. To shed light on this issue, we studied the demixing and crystallization behaviors of a binary lipid system using neutral dipalmitoylphosphatidylcholine (DPPC) and cationic dioctadecyldimethylammonium bromide (DODAB) as model molecules. The results indicate that when DODAB is no more than equimolar (e.g., DPPC/DODAB = 2/1 and 1/1), DPPC is miscible with DODAB and hinders the crystallization of DODAB, and the samples undergo reversible gel-fluid phase transitions upon heating and cooling. However, when DODAB is dominant in the mixture (DPPC/DODAB = 1/2), cooling of the mixed fluid phase results in the formation of a DODAB-rich gel domain and a DPPC-DODAB mixed gel domain. Such phase-separated mixed gels can undergo further demixing and crystallization, producing a DODAB-rich crystalline domain and a DPPC-rich tilted gel domain upon prolonged (or plus low-temperature) incubation. Besides, evidence has been given that the crystallized DODAB-rich domain remains in the same lipid bilayer as the DPPC-rich domain. All the three binary lipid mixtures can hold large amounts of water in the lipid interlamellar regions, allowing the incorporation of a large number of water-soluble substances such as DNA or proteins, which can be used for the fabrication of functional biofilms and biomaterials. Influences of water content and salt concentration on the phase structures (e.g., repeat distances) of the binary mixtures have also been studied.
Collapse
Affiliation(s)
- Fu-Gen Wu
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | | | | | | | | |
Collapse
|
15
|
Chen S, Zhang S, Liu X, Wang J, Wang J, Dong K, Sun J, Xu B. Ionic liquid clusters: structure, formation mechanism, and effect on the behavior of ionic liquids. Phys Chem Chem Phys 2014; 16:5893-906. [DOI: 10.1039/c3cp53116c] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Gao H, Shi L, Zhang S, Li J, Wang X, Zheng L. Aggregation behavior of imidazolium-based chiral surfactant in aqueous solution. Colloid Polym Sci 2012. [DOI: 10.1007/s00396-012-2830-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|