1
|
Daicho K, Ozawa Y, Sugimoto K, Abe M. A pyrazine‐bridged trimer of oxo‐centered triruthenium–carbonyl clusters and the supramolecular assembly built from multiple noncovalent contacts. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.202000491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Keita Daicho
- Graduate School of Material Science University of Hyogo Ako‐gun Japan
| | - Yoshiki Ozawa
- Graduate School of Material Science University of Hyogo Ako‐gun Japan
| | - Kunihisa Sugimoto
- Diffraction & Scattering Division, Japan Synchrotron Radiation Research Institute (JASRI) Sayo‐gun Japan
| | - Masaaki Abe
- Graduate School of Material Science University of Hyogo Ako‐gun Japan
| |
Collapse
|
2
|
Bu D, Xiong Y, Tan YN, Meng M, Low PJ, Kuang DB, Liu CY. Understanding the charge transport properties of redox active metal-organic conjugated wires. Chem Sci 2018; 9:3438-3450. [PMID: 29780473 PMCID: PMC5934749 DOI: 10.1039/c7sc04727d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/16/2018] [Indexed: 11/28/2022] Open
Abstract
For Rh2-organic molecular wires, we found that weaker coupling systems built using longer bridging ligands exhibit better electrical conductance.
Layer-by-layer assembly of the dirhodium complex [Rh2(O2CCH3)4] (Rh2) with linear N,N′-bidentate ligands pyrazine (LS) or 1,2-bis(4-pyridyl)ethene (LL) on a gold substrate has developed two series of redox active molecular wires, (Rh2LS)n@Au and (Rh2LL)n@Au (n = 1–6). By controlling the number of assembling cycles, the molecular wires in the two series vary systematically in length, as characterized by UV-vis spectroscopy, cyclic voltammetry and atomic force microscopy. The current–voltage characteristics recorded by conductive probe atomic force microscopy indicate a mechanistic transition for charge transport from voltage-driven to electrical field-driven in wires with n = 4, irrespective of the nature and length of the wires. Whilst weak length dependence of electrical resistance is observed for both series, (Rh2LL)n@Au wires exhibit smaller distance attenuation factors (β) in both the tunneling (β = 0.044 Å–1) and hopping (β = 0.003 Å–1) regimes, although in (Rh2LS)n@Au the electronic coupling between the adjacent Rh2 centers is stronger. DFT calculations reveal that these wires have a π-conjugated molecular backbone established through π(Rh2)–π(L) orbital interactions, and (Rh2LL)n@Au has a smaller energy gap between the filled π*(Rh2) and the empty π*(L) orbitals. Thus, for (Rh2LL)n@Au, electron hopping across the bridge is facilitated by the decreased metal to ligand charge transfer gap, while in (Rh2LS)n@Au the hopping pathway is disfavored likely due to the increased Coulomb repulsion. On this basis, we propose that the super-exchange tunneling and the underlying incoherent hopping are the dominant charge transport mechanisms for shorter (n ≤ 4) and longer (n > 4) wires, respectively, and the Rh2L subunits in mixed-valence states alternately arranged along the wire serve as the hopping sites.
Collapse
Affiliation(s)
- Donglei Bu
- Department of Chemistry , Jinan University , 601 Huang-Pu Avenue West , Guangzhou 510632 , China .
| | - Yingqi Xiong
- Department of Chemistry , Jinan University , 601 Huang-Pu Avenue West , Guangzhou 510632 , China .
| | - Ying Ning Tan
- Department of Chemistry , Jinan University , 601 Huang-Pu Avenue West , Guangzhou 510632 , China .
| | - Miao Meng
- Department of Chemistry , Jinan University , 601 Huang-Pu Avenue West , Guangzhou 510632 , China .
| | - Paul J Low
- School of Molecular Sciences , University of Western Australia , 35 Stirling Highway , Crawley , 6009 , WA , Australia
| | - Dai-Bin Kuang
- School of Chemistry , SunYat-sen University , Guangzhou 510275 , P. R. China
| | - Chun Y Liu
- Department of Chemistry , Jinan University , 601 Huang-Pu Avenue West , Guangzhou 510632 , China .
| |
Collapse
|
3
|
Sekine Y, Yokoyama T, Hoshino N, Ishizaki M, Kanaizuka K, Akutagawa T, Haga MA, Miyasaka H. Stepwise fabrication of donor/acceptor thin films with a charge-transfer molecular wire motif. Chem Commun (Camb) 2016; 52:13983-13986. [PMID: 27847947 DOI: 10.1039/c6cc08310b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel thin films composed of a donor (D)/acceptor (A) charge-transfer chain compound were fabricated by a layer-by-layer technique using complexation of a paddlewheel-type diruthenium(ii, ii) complex with an N,N'-dicyanoquinonediimine derivative on an ITO substrate with a pyridine-substituted phosphonate anchor. The stepwise growth of an electron-transfer D+A--chain thin film was confirmed.
Collapse
Affiliation(s)
- Yoshihiro Sekine
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan. and Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Taiga Yokoyama
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Norihisa Hoshino
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Manabu Ishizaki
- Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, 990-8560, Japan
| | - Katsuhiko Kanaizuka
- Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, 990-8560, Japan
| | - Tomoyuki Akutagawa
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Masa-Aki Haga
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Hitoshi Miyasaka
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan. and Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
4
|
Sakamoto R, Wu KH, Matsuoka R, Maeda H, Nishihara H. π-Conjugated bis(terpyridine)metal complex molecular wires. Chem Soc Rev 2016; 44:7698-714. [PMID: 25864838 DOI: 10.1039/c5cs00081e] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bottom-up approaches have gained significant attention recently for the creation of nano-sized, ordered functional structures and materials. Stepwise coordination techniques, in which ligand molecules and metal sources are reacted alternatively, offer several advantages. Coordination bonds are stable, reversible, and self-assembling, and the resultant metal complex motifs may contain functionalities unique to their own characteristics. This review focuses on metal complex wire systems, specifically the bottom-up fabrication of linear and branched bis(terpyridine)metal complex wires on electrode surfaces. This system possesses distinct and characteristic electronic functionalities, intra-wire redox conduction and excellent long-range electron transport ability. This series of comprehensive studies exploited the customizability of bis(terpyridine)metal complex wires, including examining the influence of building blocks. In addition, simple yet effective electron transfer models were established for redox conduction and long-range electron transport. A fabrication technique for an ultra-long bis(terpyridine)metal complex wire is also described, along with its properties and functionalities.
Collapse
Affiliation(s)
- Ryota Sakamoto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Kuo-Hui Wu
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Ryota Matsuoka
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Hiroaki Maeda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Hiroshi Nishihara
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
5
|
Nagashima T, Ozawa H, Suzuki T, Nakabayashi T, Kanaizuka K, Haga MA. Photoresponsive Molecular Memory Films Composed of Sequentially Assembled Heterolayers Containing Ruthenium Complexes. Chemistry 2015; 22:1658-67. [DOI: 10.1002/chem.201503591] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Takumi Nagashima
- Department of Applied Chemistry; Faculty of Science and Engineering; Chuo University; 1-13-27 Kasuga Bunkyo-ku Tokyo 112-8551 Japan
| | - Hiroaki Ozawa
- Department of Applied Chemistry; Faculty of Science and Engineering; Chuo University; 1-13-27 Kasuga Bunkyo-ku Tokyo 112-8551 Japan
| | - Takashi Suzuki
- Department of Applied Chemistry; Faculty of Science and Engineering; Chuo University; 1-13-27 Kasuga Bunkyo-ku Tokyo 112-8551 Japan
| | - Takuya Nakabayashi
- Department of Applied Chemistry; Faculty of Science and Engineering; Chuo University; 1-13-27 Kasuga Bunkyo-ku Tokyo 112-8551 Japan
| | - Katsuhiko Kanaizuka
- Department of Chemistry; Faculty of Science; Yamagata University; 1-4-12 Kojirakawa-machi Yamagata 990-8560 Japan
| | - Masa-aki Haga
- Department of Applied Chemistry; Faculty of Science and Engineering; Chuo University; 1-13-27 Kasuga Bunkyo-ku Tokyo 112-8551 Japan
| |
Collapse
|
6
|
Koodlur Sannegowda L, Reddy KRV, Shivaprasad KH. Stable nano-sized copper and its oxide particles using cobalt tetraamino phthalocyanine as a stabilizer; application to electrochemical activity. RSC Adv 2014; 4:11367-11374. [DOI: 10.1039/c3ra42682c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024] Open
Abstract
CVs showing the electrocatalytic reduction of dioxygen with (a) bare GC; GC modified with (b) CoPTA; (c) metallic oxide nanoparticles after exposing the particles to air for 1 day and (d) CoPTA capped copper nanoparticles.
Collapse
Affiliation(s)
- Lokesh Koodlur Sannegowda
- Dept. of Chemistry
- Vijayanagara Sri Krishnadevaraya University
- Jnana Sagara Campus
- Bellary-583104, India
| | - K. R. Venugopala Reddy
- Dept. of Chemistry
- Vijayanagara Sri Krishnadevaraya University
- Jnana Sagara Campus
- Bellary-583104, India
| | - K. H. Shivaprasad
- Dept. of Chemistry
- Vijayanagara Sri Krishnadevaraya University
- Jnana Sagara Campus
- Bellary-583104, India
| |
Collapse
|
7
|
Metal complex oligomer and polymer wires on electrodes: Tactical constructions and versatile functionalities. POLYMER 2013. [DOI: 10.1016/j.polymer.2013.04.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|