1
|
Tripathi N. Solvent-induced modulation of sensitivity and selectivity in the self-assembly of tetracationic cyclophanes with cholesterol sulphate, sodium dodecyl sulfate, and sodium dodecyl benzene sulfonate: Observations of significant shifts. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 326:125228. [PMID: 39362043 DOI: 10.1016/j.saa.2024.125228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/12/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
Cyclophane CP-1 demonstrates markedly distinct sensitivities toward Cholesterol sulfate (CH-S), Sodium Dodecyl Sulfate (SDS), and Sodium Dodecyl Benzene Sulfonate (SDBS) when the solvent is shifted minimally from a 95 % to a 98 % HEPES-DMSO mixture. In a 98:2 HEPES-DMSO mixture, CP-1 engages in highly selective self-assembly with CH-S, which is characterized by aggregation-induced emission enhancement (AIEE) in contrast to other steroidal sulfates such as pregnenolone sulfate (PRG-S), dehydroisoandrosterone sulfate (DIAND-S), taurocholic acid (TACH-S), and the surfactants SDS and SDBS. This assembly results in an approximate 40-fold increase in fluorescence intensity with three equivalents of CH-S and allows for the detection of concentrations as low as 200 nM under physiological conditions. Dynamic light scattering (DLS) studies illustrate the aggregation of CP-1 and CH-S, with the zeta potential of each shifting from negative values to nearly zero in a 1:2 CP-1:CH-S mixture, indicating self-assembly. This aggregation behavior is reversible, as demonstrated by a corresponding decrease and then increase in fluorescence intensity with temperature variations from 25 °C to 70 °C and back to 25 °C. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) analyses show that CP-1 forms aggregates ranging from 100 to 180 nm, which increase to 150-250 nm upon interaction with CH-S. In a 95:5 HEPES-DMSO mixture, CP-1 exhibits a stronger AIEE response with SDS and SDBS compared to CH-S. Cyclophane CP-2, when dissolved in binary DMSO-water mixtures with water content exceeding 80 %, shows similar AIEE phenomena and undergoes selective fluorescence quenching with SDS and only a 50 % increase in fluorescence intensity with CH-S, irrespective of the HEPES concentration (95 % or 98 %).
Collapse
Affiliation(s)
- Neetu Tripathi
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143 005, India.
| |
Collapse
|
2
|
Yokoyama T, Ohashi T, Kikuchi N, Fujimori A. Fabrication of cellulose nanofibers by the method of interfacial molecular films and the creation of organized soluble starch molecular films. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
García MC, Calderón-Montaño JM, Rueda M, Longhi M, Rabasco AM, López-Lázaro M, Prieto-Dapena F, González-Rodríguez ML. pH-temperature dual-sensitive nucleolipid-containing stealth liposomes anchored with PEGylated AuNPs for triggering delivery of doxorubicin. Int J Pharm 2022; 619:121691. [PMID: 35331830 DOI: 10.1016/j.ijpharm.2022.121691] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/05/2022] [Accepted: 03/18/2022] [Indexed: 11/29/2022]
Abstract
Liposomes (Lip) are useful nanocarriers for drug delivery and cancer nanomedicine because of their ability to efficiently encapsulate drugs with different physical and chemical properties. The pH gradient between normal and tumoral tissues, and their rapid metabolism that induces hyperthermia encourage the development of pH- and thermo-sensitive Lip for delivering anticancer drugs. Nucleolipids have been studied as scaffolding material to prepare Lip, mainly for cancer therapy. Herein, we report for the first time the use of 1,2-dipalmitoyl-sn-glycero-3-(cytidine diphosphate) (DG-CDP) to develop pH/thermo-sensitive nucleolipid-containing stealth Lip stabilized by combination with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and cholesterol, anchored with NH2-PEGylated gold nanoparticles (PEG-AuNPs, 15 nm) for triggering delivery of doxorubicin (Dox). The optimal composition of DPPC, DG-CDP and cholesterol (94:3:3) was established by Langmuir isotherms. Unloaded and Dox-loaded Lip and AuNPs-Lip exhibited nano-scale sizes (415-650 nm), acceptable polydispersity indexes (<0.33), spherical shapes, and negative Z-potential (-23- -6.6 mV) due to the phosphate groups of DG-CDP, which allowed the anchoring with positively charged AuNPs. High EE% were achieved (>78%) and although efficient control in the Dox release towards different receptor media was observed, the release of Dox from PEG-AuNPs-Lip-Dox was significantly triggered at acidic pH and hyperthermia temperature, demonstrating its responsiveness to both stimuli. Dox-loaded Lip showed high cytotoxic activity against MDA-MB-231 breast cancer cells and SK-OV-3 ovarian cancer cells, suggesting that Dox was released from these nanocarriers over time. Overall, the liposomal formulations showed promising properties as stimuli-responsive nanocarriers for cancer nanomedicine, with prospects for hyperthermia therapy.
Collapse
Affiliation(s)
- Mónica C García
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas, Ciudad Universitaria, Haya de la Torre and Medina Allende, Science Building 2, Córdoba X5000HUA, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, UNITEFA, Córdoba X5000HUA, Argentina; Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González 2, 41012 Seville, Spain.
| | - José Manuel Calderón-Montaño
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González 2, 41012 Seville, Spain
| | - Manuela Rueda
- Department of Physical Chemistry, Faculty of Chemistry, Universidad de Sevilla, C/Prof. García González s/n, 41012 Seville, Spain
| | - Marcela Longhi
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas, Ciudad Universitaria, Haya de la Torre and Medina Allende, Science Building 2, Córdoba X5000HUA, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, UNITEFA, Córdoba X5000HUA, Argentina
| | - Antonio M Rabasco
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González 2, 41012 Seville, Spain
| | - Miguel López-Lázaro
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González 2, 41012 Seville, Spain
| | - Francisco Prieto-Dapena
- Department of Physical Chemistry, Faculty of Chemistry, Universidad de Sevilla, C/Prof. García González s/n, 41012 Seville, Spain
| | - María Luisa González-Rodríguez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González 2, 41012 Seville, Spain.
| |
Collapse
|
4
|
Pradhan S, Brooks A, Yadavalli V. Nature-derived materials for the fabrication of functional biodevices. Mater Today Bio 2020; 7:100065. [PMID: 32613186 PMCID: PMC7317235 DOI: 10.1016/j.mtbio.2020.100065] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 11/18/2022] Open
Abstract
Nature provides an incredible source of inspiration, structural concepts, and materials toward applications to improve the lives of people around the world, while preserving ecosystems, and addressing environmental sustainability. In particular, materials derived from animal and plant sources can provide low-cost, renewable building blocks for such applications. Nature-derived materials are of interest for their properties of biodegradability, bioconformability, biorecognition, self-repair, and stimuli response. While long used in tissue engineering and regenerative medicine, their use in functional devices such as (bio)electronics, sensors, and optical systems for healthcare and biomonitoring is finding increasing attention. The objective of this review is to cover the varied nature derived and sourced materials currently used in active biodevices and components that possess electrical or electronic behavior. We discuss materials ranging from proteins and polypeptides such as silk and collagen, polysaccharides including chitin and cellulose, to seaweed derived biomaterials, and DNA. These materials may be used as passive substrates or support architectures and often, as the functional elements either by themselves or as biocomposites. We further discuss natural pigments such as melanin and indigo that serve as active elements in devices. Increasingly, combinations of different biomaterials are being used to address the challenges of fabrication and performance in human monitoring or medicine. Finally, this review gives perspectives on the sourcing, processing, degradation, and biocompatibility of these materials. This rapidly growing multidisciplinary area of research will be advanced by a systematic understanding of nature-inspired materials and design concepts in (bio)electronic devices.
Collapse
Affiliation(s)
- S. Pradhan
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - A.K. Brooks
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - V.K. Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| |
Collapse
|
5
|
Al-mahamad LL. Synthesis and surface characterization of new triplex polymer of Ag(I) and mixture nucleosides: cytidine and 8-bromoguanosine. Heliyon 2019; 5:e01609. [PMID: 31193246 PMCID: PMC6522667 DOI: 10.1016/j.heliyon.2019.e01609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/04/2019] [Accepted: 04/26/2019] [Indexed: 12/14/2022] Open
Abstract
In this work one-dimensional (1D) triplex polymer of silver (I): mixture nucleosides of cytidine and 8-bromoguanosine was synthesised. The polymer showed high stability due to the presence Ag(I) ions in the structure of the polymer in addition to the stability that produces from the effect of Hoogsteen hydrogen bonding in the triplex CGC. Atomic Force Microscopy (AFM) and transmission electron microscopy (TEM) were used to investigate the morphology of the polymer. The AFM images revealed formation of nanofibres extending many microns in length with height in the range of 2-3 nm. Statistical analyses carried out to analyse the AFM images to determine the height of the loops that formed in the polymer. The data displayed that the height value was in the range between 10 nm to 15 nm. The data of TEM images were consistent with the data of AFM images by displaying a very long fibre. Gwyddion software program was used to investigate surface parameters (roughness and waviness), diameter (size distribution), and probability density of the fibre. The data showed that the diameter of the fibre was ∼0.4 nm.
Collapse
Affiliation(s)
- Lamia L.G. Al-mahamad
- Department of Chemistry, College of Science, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
6
|
Kimijima A, Honda A, Nomoto K, Miyamura K. Cold crystallization in the mixed system of adenine and thymine dodecyl derivatives. CrystEngComm 2019. [DOI: 10.1039/c9ce00407f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The 1 : 1 mixture of adenine and thymine both substituted with dodecyl groups exhibited the unique thermal behavior.
Collapse
Affiliation(s)
- Ayaka Kimijima
- Department of Chemistry
- Faculty of Science
- Tokyo University of Science
- Shinjuku-ku
- Japan
| | - Akinori Honda
- Department of Chemistry
- Faculty of Science
- Tokyo University of Science
- Shinjuku-ku
- Japan
| | - Kuniharu Nomoto
- Department of Chemistry
- Faculty of Science
- Tokyo University of Science
- Shinjuku-ku
- Japan
| | - Kazuo Miyamura
- Department of Chemistry
- Faculty of Science
- Tokyo University of Science
- Shinjuku-ku
- Japan
| |
Collapse
|
7
|
G Argudo P, Muñoz E, Giner-Casares JJ, Martín-Romero MT, Camacho L. Folding of cytosine-based nucleolipid monolayer by guanine recognition at the air-water interface. J Colloid Interface Sci 2018; 537:694-703. [PMID: 30481730 DOI: 10.1016/j.jcis.2018.11.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/02/2018] [Accepted: 11/10/2018] [Indexed: 01/05/2023]
Abstract
Monolayers of a cytosine-based nucleolipid (1,2-dipalmitoyl-sn-glycero-3-(cytidine diphosphate) (ammonium salt), CDP-DG) at basic subphase have been prepared at the air-water interface both in absence and presence of guanine. The formation of the complementary base pairing is demonstrated by combining surface experimental techniques, i.e., surface pressure (π)-area (A), Brewster angle microscopy (BAM), infrared spectroscopy (PM-IRRAS) and computer simulations. A folding of the cytosine-based nucleolipid molecules forming monolayer at the air-water interface occurs during the guanine recognition as absorbate host and is kept during several compression-expansion processes under set experimental conditions. The specificity between nitrogenous bases has been also registered. Finally, mixed monolayers of CDP-DG and a phospholipid (1,2-dimyristoyl-sn-glycero-3-phosphate (sodium salt), DMPA) has been studied and a molecular segregation of the DMPA molecules has been inferred by the additivity rule.
Collapse
Affiliation(s)
- Pablo G Argudo
- Institute of Fine Chemistry and Nanochemistry, Department of Physical Chemistry and Applied Thermodynamics, University of Córdoba, Campus Universitario de Rabanales, Edificio Marie Curie, Córdoba E-14014, Spain
| | - Eulogia Muñoz
- Institute of Fine Chemistry and Nanochemistry, Department of Physical Chemistry and Applied Thermodynamics, University of Córdoba, Campus Universitario de Rabanales, Edificio Marie Curie, Córdoba E-14014, Spain
| | - Juan José Giner-Casares
- Institute of Fine Chemistry and Nanochemistry, Department of Physical Chemistry and Applied Thermodynamics, University of Córdoba, Campus Universitario de Rabanales, Edificio Marie Curie, Córdoba E-14014, Spain
| | - María Teresa Martín-Romero
- Institute of Fine Chemistry and Nanochemistry, Department of Physical Chemistry and Applied Thermodynamics, University of Córdoba, Campus Universitario de Rabanales, Edificio Marie Curie, Córdoba E-14014, Spain.
| | - Luis Camacho
- Institute of Fine Chemistry and Nanochemistry, Department of Physical Chemistry and Applied Thermodynamics, University of Córdoba, Campus Universitario de Rabanales, Edificio Marie Curie, Córdoba E-14014, Spain
| |
Collapse
|
8
|
A novel electrochemical aptasensor based on gold electrode decorated Ag@Au core-shell nanoparticles for sulfamethazine determination. Anal Bioanal Chem 2018; 410:7671-7678. [DOI: 10.1007/s00216-018-1381-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/15/2018] [Accepted: 09/14/2018] [Indexed: 10/28/2022]
|
9
|
Han M, Fan Q, Zhang Y, Xu L, Yu C, Su X. Non-classical hydrogen bond triggered strand displacement for analytical applications and DNA nanostructure assembly. NEW J CHEM 2018. [DOI: 10.1039/c7nj05141g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel strand displacement triggered by the non-classical hydrogen bond between cyanuric acid and adenine exhibits a fast reaction rate.
Collapse
Affiliation(s)
- Manli Han
- Beijing Key Laboratory of Bioprocess
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Qingsheng Fan
- Sino-erman Joint Research Institution
- Nanchang University
- Nanchang 330047
- China
| | - Yi Zhang
- Beijing Key Laboratory of Bioprocess
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Lida Xu
- Beijing Key Laboratory of Bioprocess
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Changyuan Yu
- Beijing Key Laboratory of Bioprocess
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Xin Su
- Beijing Key Laboratory of Bioprocess
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
10
|
Wang M, Choi B, Wei X, Feng A, Thang SH. Synthesis, self-assembly, and base-pairing of nucleobase end-functionalized block copolymers in aqueous solution. Polym Chem 2018. [DOI: 10.1039/c8py01201f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
As a novel strategy, nucleobase-containing copolymers are created for molecular recognition and nucleobase releasing.
Collapse
Affiliation(s)
- Mu Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Bonnie Choi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Xiaohu Wei
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Anchao Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - San H. Thang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
11
|
Huang P, Shi S, Liu Y, Nie M, Wang Q. Root-like natural fibers in polypropylene prepared via directed diffusion and self-assembly driven by hydrogen bonding. RSC Adv 2017. [DOI: 10.1039/c7ra05095j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Constructing root-like natural fibers in polypropylene via hydrogen bonding-driven diffusion and aggregation of self-assembling molecules.
Collapse
Affiliation(s)
- Pei Huang
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu 610065
- China
| | - Shaohong Shi
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu 610065
- China
| | - Yuansen Liu
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization
- Third Institute of Oceanography
- State Oceanic Administration
- Xiamen
- China
| | - Min Nie
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu 610065
- China
| | - Qi Wang
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
12
|
Liu Z, Wang D, Cao M, Han Y, Xu H, Wang Y. Enhanced Molecular Recognition between Nucleobases and Guanine-5'-monophosphate-disodium (GMP) by Surfactant Aggregates in Aqueous Solution. ACS APPLIED MATERIALS & INTERFACES 2015; 7:15078-15087. [PMID: 26106937 DOI: 10.1021/acsami.5b04441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Only specific base pairs on DNA can bind with each other through hydrogen bonds, which is called the Watson-Crick (W/C) pairing rule. However, without the constraint of DNA chains, the nucleobases in bulk aqueous solution usually do not follow the W/C pairing rule anymore because of the strong competitive effect of water and the multi-interaction edges of nucleobases. The present work applied surfactant aggregates noncovalently functionalized by nucleotide to enhance the recognition between nucleobases without DNA chains in aqueous solution, and it revealed the effects of their self-assembling ability and morphologies on the recognition. The cationic ammonium monomeric, dimeric, and trimeric surfactants DTAB, 12-3-12, and 12-3-12-3-12 were chosen. The surfactants with guanine-5'-monophosphate-disodium (GMP) form micelles, vesicles, and fingerprint-like and plate-like aggregates bearing the hydrogen-bonding sites of GMP, respectively. The binding parameters of these aggregates with adenine (A), uracil (U), guanine (G), and cytosine(C) indicate that the surfactants can promote W/C recognitions in aqueous solution when they form vesicles (GMP/DTAB) or plate-like aggregates (GMP/12-3-12) with proper molecular packing compactness, which not only provide hydrophobic environments but also shield non-W/C recognition edges. However, the GMP/12-3-12 micelles with loose molecular packing, the GMP/12-3-12 fingerprint-like aggregates where the hydrogen bond sites of GMP are occupied by itself, and the GMP/12-3-12-3-12 vesicles with too strong self-assembling ability cannot promote W/C recognition. This work provides insight into how to design self-assemblies with the performance of enhanced molecule recognition.
Collapse
Affiliation(s)
- Zhang Liu
- †Key Laboratory of Colloid and Interface Science, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Dong Wang
- ‡Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Meiwen Cao
- ‡Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Yuchun Han
- †Key Laboratory of Colloid and Interface Science, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hai Xu
- ‡Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Yilin Wang
- †Key Laboratory of Colloid and Interface Science, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
13
|
Stefaniu C, Brezesinski G, Möhwald H. Langmuir monolayers as models to study processes at membrane surfaces. Adv Colloid Interface Sci 2014; 208:197-213. [PMID: 24612663 DOI: 10.1016/j.cis.2014.02.013] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 12/12/2022]
Abstract
The use of new sophisticated and highly surface sensitive techniques as synchrotron based X-ray scattering techniques and in-house infrared reflection absorption spectroscopy (IRRAS) has revolutionized the monolayer research. Not only the determination of monolayer structures but also interactions between amphiphilic monolayers at the soft air/liquid interface and molecules dissolved in the subphase are important for many areas in material and life sciences. Monolayers are convenient quasi-two-dimensional model systems. This review focuses on interactions between amphiphilic molecules in binary and ternary mixtures as well as on interfacial interactions with interesting biomolecules dissolved in the subphase. The phase state of monolayers can be easily triggered at constant temperature by increasing the packing density of the lipids by compression. Simultaneously the monolayer structure changes are followed in situ by grazing incidence X-ray diffraction or IRRAS. The interactions can be indirectly determined by the observed structure changes. Additionally, the yield of enzymatic reaction can be quantitatively determined, secondary structures of peptides and proteins can be measured and compared with those observed in bulk. In this way, the influence of a confinement on the structural properties of biomolecules can be determined. The adsorption of DNA can be quantified as well as the competing adsorption of ions at charged interfaces. The influence of modified nanoparticles on model membranes can be clearly determined. In this review, the relevance and utility of Langmuir monolayers as suitable models to study physical and chemical interactions at membrane surfaces are clearly demonstrated.
Collapse
Affiliation(s)
- Cristina Stefaniu
- Max Planck Institute of Colloids and Interfaces, Science Park Potsdam-Golm, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - Gerald Brezesinski
- Max Planck Institute of Colloids and Interfaces, Science Park Potsdam-Golm, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - Helmuth Möhwald
- Max Planck Institute of Colloids and Interfaces, Science Park Potsdam-Golm, Am Mühlenberg 1, D-14476 Potsdam, Germany.
| |
Collapse
|
14
|
Olubummo A, Schulz M, Schöps R, Kressler J, Binder WH. Phase changes in mixed lipid/polymer membranes by multivalent nanoparticle recognition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:259-267. [PMID: 24359326 DOI: 10.1021/la403763v] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Selective addressing of membrane components in complex membrane mixtures is important for many biological processes. The present paper investigates the recognition between multivalent surface functionalized nanoparticles (NPs) and amphiphilic block copolymers (BCPs), which are successfully incorporated into lipid membranes. The concept involves the supramolecular recognition between hybrid membranes (composed of a mixture of a lipid (DPPC or DOPC), an amphiphilic triazine-functionalized block copolymer TRI-PEO13-b-PIB83 (BCP 2), and nonfunctionalized BCPs (PEO17-b-PIB87 BCP 1)) with multivalent (water-soluble) nanoparticles able to recognize the triazine end group of the BCP 2 at the membrane surface via supramolecular hydrogen bonds. CdSe-NPs bearing long PEO47-thymine (THY) polymer chains on their surface specifically interacted with the 2,4-diaminotriazine (TRI) moiety of BCP 2 embedded within hybrid lipid/BCP mono- or bilayers. Experiments with GUVs from a mixture of DPPC/BCP 2 confirm selective supramolecular recognition between the THY-functionalized NPs and the TRI-functionalized polymers, finally resulting in the selective removal of BCP 2 from the hybrid vesicle membrane as proven via facetation of the originally round and smooth vesicles. GUVs (composed of DOPC/BCP 2) show that a selective removal of the polymer component from the fluid hybrid membrane results in destruction of hybrid vesicles via membrane rupture. Adsorption experiments with mixed monolayers from lipids with either BCP 2 or BCP 1 (nonfunctionalized) reveal that the THY-functionalized NPs specifically recognize BCP 2 at the air/water interface by inducing significantly higher changes in the surface pressure when compared to monolayers from nonspecifically interacting lipid/BCP 1 mixtures. Thus, recognition of multivalent NPs with specific membrane components of hybrid lipid/BCP mono- and bilayers proves the selective removal of BCPs from mixed membranes, in turn inducing membrane rupture. Such recognition events display high potential in controlling permeability and fluidity of membranes (e.g., in pharmaceutics).
Collapse
Affiliation(s)
- Adekunle Olubummo
- Chair of Macromolecular Chemistry, Faculty of Natural Sciences II (Chemistry, Physics and Mathematics), Institute of Chemistry, Martin-Luther University Halle-Wittenberg , D-06120 Halle (Saale), Germany
| | | | | | | | | |
Collapse
|
15
|
Ariga K, Yamauchi Y, Mori T, Hill JP. 25th anniversary article: what can be done with the Langmuir-Blodgett method? Recent developments and its critical role in materials science. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:6477-512. [PMID: 24302266 DOI: 10.1002/adma.201302283] [Citation(s) in RCA: 276] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Indexed: 05/18/2023]
Abstract
The Langmuir-Blodgett (LB) technique is known as an elegant method for fabrication of well-defined layered structures with molecular level precision. Since its discovery the LB method has made an indispensable contribution to surface science, physical chemistry, materials chemistry and nanotechnology. However, recent trends in research might suggest the decline of the LB method as alternate methods for film fabrication such as layer-by-layer (LbL) assembly have emerged. Is LB film technology obsolete? This review is presented in order to challenge this preposterous question. In this review, we summarize recent research on LB and related methods including (i) advanced design for LB films, (ii) LB film as a medium for supramolecular chemistry, (iii) LB technique for nanofabrication and (iv) LB involving advanced nanomaterials. Finally, a comparison between LB and LbL techniques is made. The latter reveals the crucial role played by LB techniques in basic surface science, current advanced material sciences and nanotechnologies.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) PRESTO & CREST, JST, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | | | | | | |
Collapse
|
16
|
Kumar S, Singh P, Mahajan A, Kumar S. Aggregation Induced Emission Enhancement in Ionic Self-Assembled Aggregates of Benzimidazolium Based Cyclophane and Sodium Dodecylbenzenesulfonate. Org Lett 2013; 15:3400-3. [DOI: 10.1021/ol401452t] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sandeep Kumar
- Department of Chemistry, UGC Centre for Advanced Studies, Guru Nanak Dev University, Amritsar 143 005, India, and Department of Physics, Guru Nanak Dev University, Amritsar 143 005, India
| | - Prabhpreet Singh
- Department of Chemistry, UGC Centre for Advanced Studies, Guru Nanak Dev University, Amritsar 143 005, India, and Department of Physics, Guru Nanak Dev University, Amritsar 143 005, India
| | - Aman Mahajan
- Department of Chemistry, UGC Centre for Advanced Studies, Guru Nanak Dev University, Amritsar 143 005, India, and Department of Physics, Guru Nanak Dev University, Amritsar 143 005, India
| | - Subodh Kumar
- Department of Chemistry, UGC Centre for Advanced Studies, Guru Nanak Dev University, Amritsar 143 005, India, and Department of Physics, Guru Nanak Dev University, Amritsar 143 005, India
| |
Collapse
|