1
|
Abstract
Optical biosensors are frontrunners for the rapid and real-time detection of analytes, particularly for low concentrations. Among them, whispering gallery mode (WGM) resonators have recently attracted a growing focus due to their robust optomechanical features and high sensitivity, measuring down to single binding events in small volumes. In this review, we provide a broad overview of WGM sensors along with critical advice and additional "tips and tricks" to make them more accessible to both biochemical and optical communities. Their structures, fabrication methods, materials, and surface functionalization chemistries are discussed. We propose this reflection under a pedagogical approach to describe and explain these biochemical sensors with a particular focus on the most recent achievements in the field. In addition to highlighting the advantages of WGM sensors, we also discuss and suggest strategies to overcome their current limitations, leaving room for further development as practical tools in various applications. We aim to provide new insights and combine different knowledge and perspectives to advance the development of the next generation of WGM biosensors. With their unique advantages and compatibility with different sensing modalities, these biosensors have the potential to become major game changers for biomedical and environmental monitoring, among many other relevant target applications.
Collapse
Affiliation(s)
- Médéric Loyez
- Department of Electrical & Systems Engineering, Washington University, One Brookings Drive Green Hall 2120F, St. Louis, Missouri 63130, United States
| | - Maxwell Adolphson
- Department of Electrical & Systems Engineering, Washington University, One Brookings Drive Green Hall 2120F, St. Louis, Missouri 63130, United States
| | - Jie Liao
- Department of Electrical & Systems Engineering, Washington University, One Brookings Drive Green Hall 2120F, St. Louis, Missouri 63130, United States
| | - Lan Yang
- Department of Electrical & Systems Engineering, Washington University, One Brookings Drive Green Hall 2120F, St. Louis, Missouri 63130, United States
| |
Collapse
|
2
|
Liu H, Ahn DJ. Non-specific protein removal and specific protein capture simultaneously using a hydrodynamic force induced under vortex flow. Macromol Res 2023. [DOI: 10.1007/s13233-023-00131-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
3
|
Liu H, Ahn DJ. Anisotropic CdSe Tetrapods in Vortex Flow for Removing Non-Specific Binding and Increasing Protein Capture. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22155929. [PMID: 35957486 PMCID: PMC9371395 DOI: 10.3390/s22155929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 06/09/2023]
Abstract
Non-specific binding (NSB) is one of the important issues in biosensing performance. Herein, we designed a strategy for removing non-specific binding including anti-mouse IgG antibody and bovine serum albumin (BSA) by utilizing anisotropic cadmium selenide tetrapods (CdSe TPs) in a vortex flow. The shear force on the tetrapod nanoparticles was increased by controlling the rotation rate of the vortex flow from 0 rpm to 1000 rpm. As a result, photoluminescence (PL) signals of fluorescein (FITC)-conjugated protein, anti-mouse IgG antibody-FITC and bovine serum albumin (BSA)-FITC, were reduced by 35% and 45%, respectively, indicating that NSB can be removed under vortex flow. In particular, simultaneous NSB removal and protein capture can be achieved even with mixture solutions of target antibodies and anti-mouse IgG antibodies by applying cyclic mode vortex flow on anisotropic CdSe TPs. These results demonstrate successfully that NSB can be diminished by rotating CdSe TPs to generate shear force under vortex flow. This study opens up new research protocols for utilization of anisotropic nanoparticles under vortex flow, which increases the feasibility of protein capture and non-specific proteins removal for biosensors.
Collapse
Affiliation(s)
- Hanzhe Liu
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea
| | - Dong June Ahn
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| |
Collapse
|
4
|
Cho DH, Xie T, Mulcahey PJ, Kelleher NP, Hahm JI. Distinctive Adsorption Mechanism and Kinetics of Immunoglobulin G on a Nanoscale Polymer Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1458-1470. [PMID: 35037456 DOI: 10.1021/acs.langmuir.1c02710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Elucidation of protein adsorption beyond simple polymer surfaces to those presenting greater chemical complexity and nanoscopic features is critical to developing well-controlled nanobiomaterials and nanobiosensors. In this study, we repeatedly and faithfully track individual proteins on the same nanodomain areas of a block copolymer (BCP) surface and monitor the adsorption and assembly behavior of a model protein, immunoglobulin G (IgG), over time into a tight surface-packed structure. With discrete protein adsorption events unambiguously visualized at the biomolecular level, the detailed assembly and packing states of IgG on the BCP nanodomain surface are subsequently correlated to various regimes of IgG adsorption kinetic plots. Intriguing features, entirely different from those observed from macroscopic homopolymer templates, are identified from the IgG adsorption isotherms on the nanoscale, chemically varying BCP surface. They include the presence of two Langmuir-like adsorption segments and a nonmonotonic regime in the adsorption plot. Via correlation to time-corresponding topographic data, the unique isotherm features are explained with single biomolecule level details of the IgG adsorption pathway on the BCP. This work not only provides much needed, direct experimental evidence for time-resolved, single protein level, adsorption events on nanoscale polymer surfaces but also signifies mutual linking between specific topographic states of protein adsorption and assembly to particular segments of adsorption isotherms. From the fundamental research viewpoint, the correlative ability to examine the nanoscopic surface organizations of individual proteins and their local as well as global adsorption kinetic profiles will be highly valuable for accurately determining protein assembly mechanisms and interpreting protein adsorption kinetics on nanoscale surfaces. Application-wise, such knowledge will also be important for fundamentally guiding the design and development of biomaterials and biomedical devices that exploit nanoscale polymer architectures.
Collapse
Affiliation(s)
- David H Cho
- Department of Chemistry, Georgetown University, 37th & O Sts. NW., Washington, D.C. 20057, United States
| | - Tian Xie
- Department of Chemistry, Georgetown University, 37th & O Sts. NW., Washington, D.C. 20057, United States
| | - Patrick J Mulcahey
- Department of Chemistry, Georgetown University, 37th & O Sts. NW., Washington, D.C. 20057, United States
| | - Noah P Kelleher
- Department of Chemistry, Georgetown University, 37th & O Sts. NW., Washington, D.C. 20057, United States
| | - Jong-In Hahm
- Department of Chemistry, Georgetown University, 37th & O Sts. NW., Washington, D.C. 20057, United States
| |
Collapse
|
5
|
Guo L, Yu H, Shen J. Internal morphology-dependent resonances of a coated spherical particle. APPLIED OPTICS 2021; 60:6116-6127. [PMID: 34613275 DOI: 10.1364/ao.430069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Morphology-dependent resonances (MDRs) for a coated spherical particle are important because of their extensive applications. However, MDRs for coated spherical particles are more complicated than those for homogeneous particles. In this paper, a general expression is proposed for calculating the scattering efficiency of a specific layer of coated particle. Reformulations of internal scattering efficiency are made, which provides a new, to the best of our knowledge, method to investigate the resonance in the core and in the shell independently. MDRs in the core can be shown in four cases on the outmost scattering efficiency curve. To investigate the reason of the resonance, the relationships between MDRs in the core, outmost scattering efficiency, and partial wave are analyzed. It is numerically shown that the expressions are reliable and efficient, which provides a theoretical fundamental for studying of resonances of multilayered particles and for measurement.
Collapse
|
6
|
Membrane Contactors for Maximizing Biomethane Recovery in Anaerobic Wastewater Treatments: Recent Efforts and Future Prospect. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Increasing demand for water and energy has emphasized the significance of energy-efficient anaerobic wastewater treatment; however, anaerobic effluents still containing a large portion of the total CH4 production are discharged to the environment without being utilized as a valuable energy source. Recently, gas–liquid membrane contactors have been considered as a promising technology to recover such dissolved methane from the effluent due to their attractive characteristics such as high specific mass transfer area, no flooding at high flow rates, and low energy requirement. Nevertheless, the development and further application of membrane contactors were still not fulfilled due to their inherent issues such as membrane wetting and fouling, which lower the CH4 recovery efficiency and thus net energy production. In this perspective, the topics in membrane contactors for dissolved CH4 recovery are discussed in the following order: (1) operational principle, (2) potential as waste-to-energy conversion system, and (3) technical challenges and recent efforts to address them. Then, future efforts that should be devoted to advancing gas–liquid membrane contactors are suggested as concluding remarks.
Collapse
|
7
|
Berneschi S, Bettazzi F, Giannetti A, Baldini F, Nunzi Conti G, Pelli S, Palchetti I. Optical whispering gallery mode resonators for label-free detection of water contaminants. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115856] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
D-shaped plastic optical fibre aptasensor for fast thrombin detection in nanomolar range. Sci Rep 2019; 9:18740. [PMID: 31822733 PMCID: PMC6904456 DOI: 10.1038/s41598-019-55248-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/31/2019] [Indexed: 12/20/2022] Open
Abstract
The development of optical biosensors for the rapid and costless determination of clinical biomarkers is of paramount importance in medicine. Here we report a fast and low-cost biosensor based on a plasmonic D-shaped plastic optical fibre (POF) sensor derivatized with an aptamer specific for the recognition of thrombin, the target marker of blood homeostasis and coagulation cascade. In particular, we designed a functional interface based on a Self Assembled Monolayer (SAM) composed of short Poly Ethylene Glycol (PEG) chains and biotin-modified PEG thiol in ratio 8:2 mol:mol, these latter serving as baits for the binding of the aptamer through streptavidin-chemistry. The SAM was studied by X-ray Photoelectron Spectroscopy (XPS) analysis, static contact angle (CA), Surface Plasmon Resonance (SPR) in POFs, and fluorescence microscopy on gold surface. The optimized SAM composition enabled the immobilization of about 112 ng/cm2 of aptamer. The thrombin detection exploiting POF-Aptasensor occurred in short times (5–10 minutes), the reached Limit of Detection (LOD) was about 1 nM, and the detection range was 1.6–60 nM, indicating the POF-Aptasensor well addresses the needs for a low-cost, simple to use and to realize, rapid, small size and portable diagnostic platform.
Collapse
|
9
|
Lichtenberg JY, Ling Y, Kim S. Non-Specific Adsorption Reduction Methods in Biosensing. SENSORS (BASEL, SWITZERLAND) 2019; 19:E2488. [PMID: 31159167 PMCID: PMC6603772 DOI: 10.3390/s19112488] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 01/05/2023]
Abstract
Non-specific adsorption (NSA) is a persistent problem that negatively affects biosensors, decreasing sensitivity, specificity, and reproducibility. Passive and active removal methods exist to remedy this issue, by coating the surface or generating surface forces to shear away weakly adhered biomolecules, respectively. However, many surface coatings are not compatible or effective for sensing, and thus active removal methods have been developed to combat this phenomenon. This review aims to provide an overview of methods of NSA reduction in biosensing, focusing on the shift from passive methods to active methods in the past decade. Attention is focused on protein NSA, due to their common use in biosensing for biomarker diagnostics. To our knowledge, this is the first review to comprehensively discuss active NSA removal methods. Lastly, the challenges and future perspectives of NSA reduction in biosensing are discussed.
Collapse
Affiliation(s)
- Jessanne Y Lichtenberg
- Department of Electrical and Computer Engineering, School of Engineering, Baylor University, Waco, TX 76798, USA.
| | - Yue Ling
- Department of Mechanical Engineering, School of Engineering, Baylor University, Waco, TX 76798, USA.
| | - Seunghyun Kim
- Department of Electrical and Computer Engineering, School of Engineering, Baylor University, Waco, TX 76798, USA.
| |
Collapse
|
10
|
Chen YJ, Schoeler U, Huang CHB, Vollmer F. Combining Whispering-Gallery Mode Optical Biosensors with Microfluidics for Real-Time Detection of Protein Secretion from Living Cells in Complex Media. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703705. [PMID: 29718550 DOI: 10.1002/smll.201703705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/10/2018] [Indexed: 06/08/2023]
Abstract
The noninvasive monitoring of protein secretion of cells responding to drug treatment is an effective and essential tool in latest drug development and for cytotoxicity assays. In this work, a surface functionalization method is demonstrated for specific detection of protein released from cells and a platform that integrates highly sensitive optical devices, called whispering-gallery mode biosensors, with precise microfluidics control to achieve label-free and real-time detection. Cell biomarker release is measured in real time and with nanomolar sensitivity. The surface functionalization method allows for antibodies to be immobilized on the surface for specific detection, while the microfluidics system enables detection in a continuous flow with a negligible compromise between sensitivity and flow control over stabilization and mixing. Cytochrome c detection is used to illustrate the merits of the system. Jurkat cells are treated with the toxin staurosporine to trigger cell apoptosis and cytochrome c released into the cell culture medium is monitored via the newly invented optical microfluidic platform.
Collapse
Affiliation(s)
- Ying-Jen Chen
- Max Planck Institute for the Science of Light, 91054, Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technology (SAOT), Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Paul-Gordan-Str. 6, D-91052, Erlangen, Germany
| | - Ulrike Schoeler
- Max Planck Institute for the Science of Light, 91054, Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technology (SAOT), Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Paul-Gordan-Str. 6, D-91052, Erlangen, Germany
| | | | - Frank Vollmer
- Max Planck Institute for the Science of Light, 91054, Erlangen, Germany
- Brigham & Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
11
|
Toren P, Ozgur E, Bayindir M. Label-Free Optical Biodetection of Pathogen Virulence Factors in Complex Media Using Microtoroids with Multifunctional Surface Functionality. ACS Sens 2018; 3:352-359. [PMID: 29336141 DOI: 10.1021/acssensors.7b00775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Early detection of pathogens or their virulence factors in complex media has a key role in early diagnosis and treatment of many diseases. Nanomolar and selective detection of Exotoxin A, which is a virulence factor secreted from Pseudomonas aeruginosa in the sputum of Cystic Fibrosis (CF) patients, can pave the way for early diagnosis of P. aeruginosa infections. In this study, we conducted a preliminary study to demonstrate the feasibility of optical biodetection of P. aeruginosa Exotoxin A in a diluted artificial sputum mimicking the CF respiratory environment. Our surface engineering approach provides an effective biointerface enabling highly selective detection of the Exotoxin A molecules in the complex media using monoclonal anti-Exotoxin A functionalized microtoroids. The highly resilient microtoroid surface toward other constituents of the sputum provides Exotoxin A detection ability in the complex media by reproducible measurements. In this study, the limit-of-detection of Exotoxin A in the complex media is calculated as 2.45 nM.
Collapse
Affiliation(s)
- Pelin Toren
- Institute of Materials Science and Nanotechnology, §UNAM-National Nanotechnology Research Center, and ‡Department of Physics, Bilkent University , 06800 Ankara, Turkey
| | - Erol Ozgur
- Institute of Materials Science and Nanotechnology, §UNAM-National Nanotechnology Research Center, and ‡Department of Physics, Bilkent University , 06800 Ankara, Turkey
| | - Mehmet Bayindir
- Institute of Materials Science and Nanotechnology, §UNAM-National Nanotechnology Research Center, and ‡Department of Physics, Bilkent University , 06800 Ankara, Turkey
| |
Collapse
|
12
|
Wondimu SF, Hippler M, Hussal C, Hofmann A, Krämmer S, Lahann J, Kalt H, Freude W, Koos C. Robust label-free biosensing using microdisk laser arrays with on-chip references. OPTICS EXPRESS 2018; 26:3161-3173. [PMID: 29401847 DOI: 10.1364/oe.26.003161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 12/19/2017] [Indexed: 06/07/2023]
Abstract
Whispering-gallery mode (WGM) microdisk lasers show great potential for highly sensitive label-free detection in large-scale sensor arrays. However, when used in practical applications under normal ambient conditions, these devices suffer from temperature fluctuations and photobleaching. Here we demonstrate that these challenges can be overcome by a novel referencing scheme that allows for simultaneous compensation of temperature drift and photobleaching. The technique relies on reference structures protected by locally dispensed passivation materials, and can be scaled to extended arrays of hundreds of devices. We prove the viability of the concept in a series of experiments, demonstrating robust and sensitive label-free detection over a wide range of constant or continuously varying temperatures. To the best of our knowledge, these measurements represent the first demonstration of biosensing in active WGM devices with simultaneous compensation of both photobleaching and temperature drift.
Collapse
|
13
|
Heylman KD, Knapper KA, Horak EH, Rea MT, Vanga SK, Goldsmith RH. Optical Microresonators for Sensing and Transduction: A Materials Perspective. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1700037. [PMID: 28627118 DOI: 10.1002/adma.201700037] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/01/2017] [Indexed: 05/27/2023]
Abstract
Optical microresonators confine light to a particular microscale trajectory, are exquisitely sensitive to their microenvironment, and offer convenient readout of their optical properties. Taken together, this is an immensely attractive combination that makes optical microresonators highly effective as sensors and transducers. Meanwhile, advances in material science, fabrication techniques, and photonic sensing strategies endow optical microresonators with new functionalities, unique transduction mechanisms, and in some cases, unparalleled sensitivities. In this progress report, the operating principles of these sensors are reviewed, and different methods of signal transduction are evaluated. Examples are shown of how choice of materials must be suited to the analyte, and how innovations in fabrication and sensing are coupled together in a mutually reinforcing cycle. A tremendously broad range of capabilities of microresonator sensors is described, from electric and magnetic field sensing to mechanical sensing, from single-molecule detection to imaging and spectroscopy, from operation at high vacuum to in live cells. Emerging sensing capabilities are highlighted and put into context in the field. Future directions are imagined, where the diverse capabilities laid out are combined and advances in scalability and integration are implemented, leading to the creation of a sensor unparalleled in sensitivity and information content.
Collapse
Affiliation(s)
- Kevin D Heylman
- Department of Chemistry, University of Wisconsin, 1101 University Ave, Madison, WI, 53706, USA
| | - Kassandra A Knapper
- Department of Chemistry, University of Wisconsin, 1101 University Ave, Madison, WI, 53706, USA
| | - Erik H Horak
- Department of Chemistry, University of Wisconsin, 1101 University Ave, Madison, WI, 53706, USA
| | - Morgan T Rea
- Department of Chemistry, University of Wisconsin, 1101 University Ave, Madison, WI, 53706, USA
| | - Sudheer K Vanga
- Department of Chemistry, University of Wisconsin, 1101 University Ave, Madison, WI, 53706, USA
| | - Randall H Goldsmith
- Department of Chemistry, University of Wisconsin, 1101 University Ave, Madison, WI, 53706, USA
| |
Collapse
|
14
|
Biosensing by WGM Microspherical Resonators. SENSORS 2016; 16:s16060905. [PMID: 27322282 PMCID: PMC4934331 DOI: 10.3390/s16060905] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 02/05/2023]
Abstract
Whispering gallery mode (WGM) microresonators, thanks to their unique properties, have allowed researchers to achieve important results in both fundamental research and engineering applications. Among the various geometries, microspheres are the simplest 3D WGM resonators; the total optical loss in such resonators can be extremely low, and the resulting extraordinarily high Q values of 108–109 lead to high energy density, narrow resonant-wavelength lines and a lengthy cavity ringdown. They can also be coated in order to better control their properties or to increase their functionality. Their very high sensitivity to changes in the surrounding medium has been exploited for several sensing applications: protein adsorption, trace gas detection, impurity detection in liquids, structural health monitoring of composite materials, detection of electric fields, pressure sensing, and so on. In the present paper, after a general introduction to WGM resonators, attention is focused on spherical microresonators, either in bulk or in bubble format, to their fabrication, characterization and functionalization. The state of the art in the area of biosensing is presented, and the perspectives of further developments are discussed.
Collapse
|
15
|
Chen YJ, Xiang W, Klucken J, Vollmer F. Tracking micro-optical resonances for identifying and sensing novel procaspase-3 protein marker released from cell cultures in response to toxins. NANOTECHNOLOGY 2016; 27:164001. [PMID: 26963176 DOI: 10.1088/0957-4484/27/16/164001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The response of cells to toxins is commonly investigated by detecting intracellular markers for cell death, such as caspase proteins. This requires the introduction of labels by the permeabilization or complete lysis of cells. Here we introduce a non-invasive tool for monitoring a caspase protein in the extracellular medium. The tool is based on highly sensitive optical micro-devices, referred to as whispering-gallery mode biosensors (WGMBs). WGMBs are functionalized with antibodies for the specific and label-free detection of procaspase-3 released from human embryonic kidney HEK293 and neuroglioma H4 cells after introducing staurosporine and rotenone toxins, respectively. Additional tests show that the extracellular accumulation of procaspase-3 is concomitant with a decrease in cell viability. The hitherto unknown release of procaspase-3 from cells in response to toxins and its accumulation in the medium is further investigated by Western blot, showing that the extracellular detection of procaspase-3 is interrelated with cytotoxicity of alpha-synuclein protein (aSyn) overexpressed in H4 cells. These studies provide evidence for procaspase-3 as a novel extracellular biomarker for cell death, with applications in cytotoxicity tests. Such WGMBs could be applied to further identify as-yet unknown extracellular biomarkers using established antibodies against intracellular antigens.
Collapse
Affiliation(s)
- Ying-Jen Chen
- Max Planck Institute for the Science of Light, Günther-Scharowsky-Str.1/Bldg. 24, D-91058 Erlangen, Germany. Erlangen Graduate School in Advanced Optical Technology (SAOT), Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Paul-Gordan-Str. 6, D-91052 Erlangen, Germany
| | | | | | | |
Collapse
|
16
|
Knapper KA, Heylman KD, Horak EH, Goldsmith RH. Chip-Scale Fabrication of High-Q All-Glass Toroidal Microresonators for Single-Particle Label-Free Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:2945-50. [PMID: 26853536 DOI: 10.1002/adma.201504976] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/12/2015] [Indexed: 05/23/2023]
Abstract
Whispering-gallery-mode microresonators enable materials for single-molecule label-free detection and imaging because of their high sensitivity to their micro-environment. However, fabrication and materials challenges prevent scalability and limit functionality. All-glass on-chip microresonators significantly reduce these difficulties. Construction of all-glass toroidal microresonators with high quality factor and low mode volume is reported and these are used as platforms for label-free single-particle imaging.
Collapse
Affiliation(s)
- Kassandra A Knapper
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI, 53706, USA
| | - Kevin D Heylman
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI, 53706, USA
| | - Erik H Horak
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI, 53706, USA
| | - Randall H Goldsmith
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI, 53706, USA
| |
Collapse
|
17
|
Lehman SE, Mudunkotuwa IA, Grassian VH, Larsen SC. Nano-Bio Interactions of Porous and Nonporous Silica Nanoparticles of Varied Surface Chemistry: A Structural, Kinetic, and Thermodynamic Study of Protein Adsorption from RPMI Culture Medium. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:731-42. [PMID: 26716353 DOI: 10.1021/acs.langmuir.5b03997] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Understanding complex chemical changes that take place at nano-bio interfaces is of great concern for being able to sustainably implement nanomaterials in key applications such as drug delivery, imaging, and environmental remediation. Typical in vitro assays use cell viability as a proxy to understanding nanotoxicity but often neglect how the nanomaterial surface can be altered by adsorption of solution-phase components in the medium. Protein coronas form on the nanomaterial surface when incubated in proteinaceous solutions. Herein, we apply a broad array of techniques to characterize and quantify protein corona formation on silica nanoparticle surfaces. The porosity and surface chemistry of the silica nanoparticles have been systematically varied. Using spectroscopic tools such as FTIR and circular dichroism, structural changes and kinetic processes involved in protein adsorption were evaluated. Additionally, by implementing thermogravimetric analysis, quantitative protein adsorption measurements allowed for the direct comparison between samples. Taken together, these measurements enabled the extraction of useful chemical information on protein binding onto nanoparticles in solution. Overall, we demonstrate that small alkylamines can increase protein adsorption and that even large polymeric molecules such as poly(ethylene glycol) (PEG) cannot prevent protein adsorption in these systems. The implications of these results as they relate to further understanding nano-bio interactions are discussed.
Collapse
Affiliation(s)
- Sean E Lehman
- Department of Chemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Imali A Mudunkotuwa
- Department of Chemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Vicki H Grassian
- Department of Chemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Sarah C Larsen
- Department of Chemistry, University of Iowa , Iowa City, Iowa 52242, United States
| |
Collapse
|
18
|
François A, Zhi Y, Meldrum A. Whispering Gallery Mode Devices for Sensing and Biosensing. PHOTONIC MATERIALS FOR SENSING, BIOSENSING AND DISPLAY DEVICES 2016. [DOI: 10.1007/978-3-319-24990-2_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Toren P, Ozgur E, Bayindir M. Real-Time and Selective Detection of Single Nucleotide DNA Mutations Using Surface Engineered Microtoroids. Anal Chem 2015; 87:10920-6. [DOI: 10.1021/acs.analchem.5b02664] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Pelin Toren
- Institute
of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
- UNAM-National
Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
| | - Erol Ozgur
- Institute
of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
- UNAM-National
Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
| | - Mehmet Bayindir
- Institute
of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
- UNAM-National
Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Department
of Physics, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
20
|
Ozgur E, Toren P, Aktas O, Huseyinoglu E, Bayindir M. Label-Free Biosensing with High Selectivity in Complex Media using Microtoroidal Optical Resonators. Sci Rep 2015; 5:13173. [PMID: 26271605 PMCID: PMC4642504 DOI: 10.1038/srep13173] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/16/2015] [Indexed: 01/31/2023] Open
Abstract
Although label-free biosensors comprised of optical microcavities inherently possess the capability of resolving molecular interactions at individual level, this extreme sensitivity restricts their convenience for large scale applications by inducing vulnerability towards non-specific interactions that readily occur within complex media. Therefore, the use of optical microresonators for biosensing is mostly limited within strictly defined laboratory conditions, instead of field applications as early detection of cancer markers in blood, or identification of contamination in food. Here, we propose a novel surface modification strategy suitable for but not limited to optical microresonator based biosensors, enabling highly selective biosensing with considerable sensitivity as well. Using a robust, silane-based surface coating which is simultaneously protein resistant and bioconjugable, we demonstrate that it becomes possible to perform biosensing within complex media, without compromising the sensitivity or reliability of the measurement. Functionalized microtoroids are successfully shown to resist nonspecific interactions, while simultaneously being used as sensitive biological sensors. This strategy could pave the way for important applications in terms of extending the use of state-of-the-art biosensors for solving problems similar to the aforementioned.
Collapse
Affiliation(s)
- Erol Ozgur
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
| | - Pelin Toren
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Ozan Aktas
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
| | - Ersin Huseyinoglu
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Mehmet Bayindir
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
- Department of Physics, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
21
|
The Detection of Helicobacter hepaticus Using Whispering-Gallery Mode Microcavity Optical Sensors. BIOSENSORS-BASEL 2015; 5:562-76. [PMID: 26262647 PMCID: PMC4600172 DOI: 10.3390/bios5030562] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/05/2015] [Indexed: 11/17/2022]
Abstract
Current bacterial detection techniques are relatively slow, require bulky instrumentation, and usually require some form of specialized training. The gold standard for bacterial detection is culture testing, which can take several days to receive a viable result. Therefore, simpler detection techniques that are both fast and sensitive could greatly improve bacterial detection and identification. Here, we present a new method for the detection of the bacteria Helicobacter hepaticus using whispering-gallery mode (WGM) optical microcavity-based sensors. Due to minimal reflection losses and low material adsorption, WGM-based sensors have ultra-high quality factors, resulting in high-sensitivity sensor devices. In this study, we have shown that bacteria can be non-specifically detected using WGM optical microcavity-based sensors. The minimum detection for the device was 1 × 104 cells/mL, and the minimum time of detection was found to be 750 s. Given that a cell density as low as 1 × 103 cells/mL for Helicobacter hepaticus can cause infection, the limit of detection shown here would be useful for most levels where Helicobacter hepaticus is biologically relevant. This study suggests a new approach for H. hepaticus detection using label-free optical sensors that is faster than, and potentially as sensitive as, standard techniques.
Collapse
|
22
|
Wang F, Anderson M, Bernards MT, Hunt HK. PEG Functionalization of Whispering Gallery Mode Optical Microresonator Biosensors to Minimize Non-Specific Adsorption during Targeted, Label-Free Sensing. SENSORS 2015; 15:18040-60. [PMID: 26213937 PMCID: PMC4570306 DOI: 10.3390/s150818040] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/16/2015] [Accepted: 07/17/2015] [Indexed: 01/14/2023]
Abstract
Whispering Gallery Mode (WGM) optical microresonator biosensors are a powerful tool for targeted detection of analytes at extremely low concentrations. However, in complex environments, non-specific adsorption can significantly reduce their signal to noise ratio, limiting their accuracy. To overcome this, poly(ethylene glycol) (PEG) can be employed in conjunction with appropriate recognition elements to create a nonfouling surface capable of detecting targeted analytes. This paper investigates a general route for the addition of nonfouling elements to WGM optical biosensors to reduce non-specific adsorption, while also retaining high sensitivity. We use the avidin-biotin analyte-recognition element system, in conjunction with PEG nonfouling elements, as a proof-of-concept, and explore the extent of non-specific adsorption of lysozyme and fibrinogen at multiple concentrations, as well as the ability to detect avidin in a concentration-dependent fashion. Ellipsometry, contact angle measurement, fluorescence microscopy, and optical resonator characterization methods were used to study non-specific adsorption, the quality of the functionalized surface, and the biosensor’s performance. Using a recognition element ratio to nonfouling element ratio of 1:1, we showed that non-specific adsorption could be significantly reduced over the controls, and that high sensitivity could be maintained. Due to the frequent use of biotin-avidin-biotin sandwich complexes in functionalizing sensor surfaces with biotin-labeled recognition elements, this chemistry could provide a common basis for creating a non-fouling surface capable of targeted detection. This should improve the ability of WGM optical biosensors to operate in complex environments, extending their application towards real-world detection.
Collapse
Affiliation(s)
- Fanyongjing Wang
- Department of Bioengineering, University of Missouri, Columbia, MO 65201, USA.
| | - Mark Anderson
- Department of Biochemistry, University of Missouri, Columbia, MO 65201, USA.
| | - Matthew T Bernards
- Department of Chemical Engineering, University of Missouri, Columbia, MO 65201, USA.
| | - Heather K Hunt
- Department of Bioengineering, University of Missouri, Columbia, MO 65201, USA.
| |
Collapse
|
23
|
Foreman MR, Swaim JD, Vollmer F. Whispering gallery mode sensors. ADVANCES IN OPTICS AND PHOTONICS 2015; 7:168-240. [PMID: 26973759 PMCID: PMC4786191 DOI: 10.1364/aop.7.000168] [Citation(s) in RCA: 263] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We present a comprehensive overview of sensor technology exploiting optical whispering gallery mode (WGM) resonances. After a short introduction we begin by detailing the fundamental principles and theory of WGMs in optical microcavities and the transduction mechanisms frequently employed for sensing purposes. Key recent theoretical contributions to the modeling and analysis of WGM systems are highlighted. Subsequently we review the state of the art of WGM sensors by outlining efforts made to date to improve current detection limits. Proposals in this vein are numerous and range, for example, from plasmonic enhancements and active cavities to hybrid optomechanical sensors, which are already working in the shot noise limited regime. In parallel to furthering WGM sensitivity, efforts to improve the time resolution are beginning to emerge. We therefore summarize the techniques being pursued in this vein. Ultimately WGM sensors aim for real-world applications, such as measurements of force and temperature, or alternatively gas and biosensing. Each such application is thus reviewed in turn, and important achievements are discussed. Finally, we adopt a more forward-looking perspective and discuss the outlook of WGM sensors within both a physical and biological context and consider how they may yet push the detection envelope further.
Collapse
Affiliation(s)
- Matthew R. Foreman
- Max Planck Institute for the Science of Light, Laboratory of Nanophotonics and Biosensing, Günther-Scharowsky-Straße 1, 91058 Erlangen, Germany
| | - Jon D. Swaim
- Max Planck Institute for the Science of Light, Laboratory of Nanophotonics and Biosensing, Günther-Scharowsky-Straße 1, 91058 Erlangen, Germany
| | - Frank Vollmer
- Max Planck Institute for the Science of Light, Laboratory of Nanophotonics and Biosensing, Günther-Scharowsky-Straße 1, 91058 Erlangen, Germany
| |
Collapse
|
24
|
Label-free, single molecule resonant cavity detection: a double-blind experimental study. SENSORS 2015; 15:6324-41. [PMID: 25785307 PMCID: PMC4435135 DOI: 10.3390/s150306324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/27/2015] [Accepted: 03/05/2015] [Indexed: 01/04/2023]
Abstract
Optical resonant cavity sensors are gaining increasing interest as a potential diagnostic method for a range of applications, including medical prognostics and environmental monitoring. However, the majority of detection demonstrations to date have involved identifying a “known” analyte, and the more rigorous double-blind experiment, in which the experimenter must identify unknown solutions, has yet to be performed. This scenario is more representative of a real-world situation. Therefore, before these devices can truly transition, it is necessary to demonstrate this level of robustness. By combining a recently developed surface chemistry with integrated silica optical sensors, we have performed a double-blind experiment to identify four unknown solutions. The four unknown solutions represented a subset or complete set of four known solutions; as such, there were 256 possible combinations. Based on the single molecule detection signal, we correctly identified all solutions. In addition, as part of this work, we developed noise reduction algorithms.
Collapse
|
25
|
Wilson KA, Finch CA, Anderson P, Vollmer F, Hickman JJ. Combining an optical resonance biosensor with enzyme activity kinetics to understand protein adsorption and denaturation. Biomaterials 2014; 38:86-96. [PMID: 25453976 DOI: 10.1016/j.biomaterials.2014.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/02/2014] [Indexed: 11/30/2022]
Abstract
Understanding protein adsorption and resultant conformation changes on modified and unmodified silicon dioxide surfaces is a subject of keen interest in biosensors, microfluidic systems and for medical diagnostics. However, it has been proven difficult to investigate the kinetics of the adsorption process on these surfaces as well as understand the topic of the denaturation of proteins and its effect on enzyme activity. A highly sensitive optical whispering gallery mode (WGM) resonator was used to study a catalytic enzyme's adsorption processes on different silane modified glass substrates (plain glass control, DETA, 13 F, and SiPEG). The WGM sensor was able to obtain high resolution kinetic data of glucose oxidase (GO) adsorption with sensitivity of adsorption better than that possible with SPR. The kinetic data, in combination with a functional assay of the enzyme activity, was used to test hypotheses on adsorption mechanisms. By fitting numerical models to the WGM sensograms for protein adsorption, and by confirming numerical predictions of enzyme activity in a separate assay, we were able to identify mechanisms for GO adsorption on different alkylsilanes and infer information about the adsorption of protein on nanostructured surfaces.
Collapse
Affiliation(s)
- Kerry A Wilson
- Nanoscience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, FL 32826, USA
| | - Craig A Finch
- Nanoscience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, FL 32826, USA
| | - Phillip Anderson
- Nanoscience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, FL 32826, USA
| | - Frank Vollmer
- The Wyss & Rowland Institutes, Harvard University, 100 Edwin H. Land Blvd, Cambridge, MA 02142, USA
| | - James J Hickman
- Nanoscience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, FL 32826, USA.
| |
Collapse
|
26
|
Dahmen JL, Yang Y, Greenlief CM, Stacey G, Hunt HK. Interfacing Whispering Gallery Mode Optical Microresonator Biosensors with the Plant Defense Elicitor Chitin. Colloids Surf B Biointerfaces 2014; 122:241-249. [DOI: 10.1016/j.colsurfb.2014.06.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/25/2014] [Accepted: 06/30/2014] [Indexed: 01/06/2023]
|
27
|
Heylman KD, Knapper KA, Goldsmith RH. Photothermal Microscopy of Nonluminescent Single Particles Enabled by Optical Microresonators. J Phys Chem Lett 2014; 5:1917-23. [PMID: 26273873 DOI: 10.1021/jz500781g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A powerful new paradigm for single-particle microscopy on nonluminescent targets is reported using ultrahigh-quality factor optical microresonators as the critical detecting element. The approach is photothermal in nature as the microresonators are used to detect heat dissipated from individual photoexcited nano-objects. The method potentially satisfies an outstanding need for single-particle microscopy on nonluminescent objects of increasingly smaller absorption cross section. Simultaneously, our approach couples the sensitivity of label-free detection using optical microresonators with a means of deriving chemical information on the target species, a significant benefit. As a demonstration, individual nonphotoluminescent multiwalled carbon nanotubes are spatially mapped, and the per-atom absorption cross section is determined. Finite-element simulations are employed to model the relevant thermal processes and elucidate the sensing mechanism. Finally, a direct pathway to the extension of this new technique to molecules is laid out, leading to a potent new method of performing measurements on individual molecules.
Collapse
Affiliation(s)
- Kevin D Heylman
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Kassandra A Knapper
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Randall H Goldsmith
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
28
|
Tanaka M, Yoshioka K, Hirata Y, Fujimaki M, Kuwahara M, Niwa O. Design and fabrication of biosensing interface for waveguide-mode sensor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:13111-13120. [PMID: 24063697 DOI: 10.1021/la402802u] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In order to develop a biosensing system with waveguide-mode sensor, fabrication of a biosensing interface on the silica surface of the sensing chip was carried out using triethoxysilane derivatives with anti-leptin antibody. Triethoxysilane derivatives bearing succinimide ester and oligoethylene glycol moieties were synthesized to immobilize the antibody and to suppress nonspecific adsorption of proteins, respectively. The chip modified with triethoxysilane derivatives bearing oligoethylene glycol moiety suppressed nonspecific adsorption of proteins derived from human serum effectively by rinse with PBS containing surfactant (0.05% Tween 20). On the other hand, it was confirmed that antibody was immobilized on the chip by immersion into antibody solution to show response of antigen-antibody reaction, where the chip was modified with triethoxysilane derivatives bearing succinimide ester moiety. When the interface was fabricated with antibody and a mixture of triethoxysilane derivatives bearing succinimide ester and oligoethylene glycol moieties, the response of antigen-antibody reaction depended on composition of the mixture and enhanced with the increase of ratio for triethoxysilane derivatives bearing succinimide ester moiety reflecting the antibody concentration immobilized on the chip. While introduction of excess triethoxysilane derivatives bearing succinimide ester moiety induced nonspecific adsorption of proteins derived from human serum, the immobilized antibody on the chip kept its activity after 1-month storage in a refrigerator. Taking into consideration those factors, the biosensing interface was fabricated using triethoxysilane derivatives with anti-leptin antibody to examine performance of the waveguide-mode sensor. It was found that the detection limits for human leptin were 50 ng/mL in PBS and 100 ng/mL in human serum. The results demonstrate that the waveguide-mode sensor powered by the biosensing interface fabricated with those triethoxysilane derivatives and antibody has potential to detect several tens of nanograms per milliliter of biomarkers in human serum with an unlabeled detection method.
Collapse
Affiliation(s)
- Mutsuo Tanaka
- Biomedical Research Institute , Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | | | | | |
Collapse
|