1
|
Jia C, Zhu J, Zhang L. Study on Preparation of Superhydrophobic Copper Surface by Milling and Its Protective Performance. MATERIALS 2022; 15:ma15051939. [PMID: 35269174 PMCID: PMC8911609 DOI: 10.3390/ma15051939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022]
Abstract
Using milling method, a 0.1 mm flat-bottom sharp knife was used to mill the surface of Cu substrate in a CNC engraving machine to construct the microstructure of rectangular bumps, and rectangular bumps with different sizes and different distances were prepared by changing the distance between cutter tips. After deburring and stearic acid modification, a superhydrophobic Cu surface with excellent mechanical durability and stability was successfully prepared. Through friction and wear experiments, the contact angle of the superhydrophobic Cu surface decreased slightly while retaining excellent corrosion resistance.
Collapse
|
2
|
Ding Y, Jia L, Yin L, Dang C, Liu X, Xu J. Anisotropic wetting characteristics of droplet on micro-grooved surface. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127850] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Liu Z, Tao H, Lin J. Anisotropic Ice Adhesion of Micro-Nano-Structured Metal Surface by a Femtosecond Laser. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9571-9576. [PMID: 34323498 DOI: 10.1021/acs.langmuir.1c01459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The icephobic materials induced using micro-nano-structured surfaces have aroused great attention for promising applications. Previously, the characterization of ice adhesion of icephobic materials by shear force is usually performed without direction discrimination along the surface whatever the surface is anisotropic or not. In this work, we studied the direction-dependent ice adhesion strength on groove-shaped micro-nano-structured aluminum alloy surfaces formed using a femtosecond laser. It is found that the ice adhesion strength on the surfaces exhibits anisotropy, which corresponds to a smaller ice adhesion strength in the direction parallel to the groove than that orthogonal to the groove. Furthermore, it is found that the ice adhesion strength decreases with the increase in groove width in the orthogonal direction, while it does not change much in the parallel direction. The anisotropic ice adhesion strength is attributed to the change of wettability and morphology in the two directions. The findings in this work suggest that anisotropic ice adhesion should be fully considered when designing an icephobic micro-nano-structured metal structure, which is of great significance to the characterization and application of icephobic materials.
Collapse
Affiliation(s)
- Ziyuan Liu
- School of Science, Changchun University of Science and Technology, Changchun 130022, China
| | - Haiyan Tao
- School of Science, Changchun University of Science and Technology, Changchun 130022, China
| | - Jingquan Lin
- School of Science, Changchun University of Science and Technology, Changchun 130022, China
| |
Collapse
|
4
|
Ahmadi SF, Spohn CA, Nath S, Boreyko JB. Suppressing Condensation Frosting Using an Out-of-Plane Dry Zone. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15603-15609. [PMID: 33325712 DOI: 10.1021/acs.langmuir.0c03054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The vapor pressure above ice is lower than that above supercooled water at the same temperature. This inherent hygroscopic quality of ice has recently been exploited to suppress frost growth by patterning microscopic ice stripes along a surface. These vapor-attracting ice stripes prevented condensation frosting from occurring in the intermediate regions; however, the required presence of the sacrificial ice stripes made it impossible to achieve the ideal case of a completely dry surface. Here, we decouple the sacrificial ice from the antifrosting surface by holding an uncoated aluminum surface in parallel with a prefrosted surface. By replacing the overlapping in-plane dry zones with a uniform out-of-plane dry zone, we show that even an uncoated aluminum surface can stay almost completely dry in chilled and supersaturated conditions. Using a blend of experiments and numerical simulations, we show that the critical separation required to keep the surface dry is a function of the ambient supersaturation.
Collapse
Affiliation(s)
- S Farzad Ahmadi
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Corey A Spohn
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Saurabh Nath
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia 24061, United States
- Physique et Mécanique des Milieux Hétérogènes, UMR 7636 du CNRS, ESPCI, 75005 Paris, France
| | - Jonathan B Boreyko
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
5
|
Shen Y, Zou H, Wang S. Condensation Frosting on Micropillar Surfaces - Effect of Microscale Roughness on Ice Propagation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13563-13574. [PMID: 33146014 DOI: 10.1021/acs.langmuir.0c02353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microscale surface structures have been widely explored as a promising tool for antifreezing or frost avoidance on heat transfer surfaces. Despite studies of many surface feature designs, the mechanisms associated with condensation freezing and ice propagation on microstructured surfaces have yet to be thoroughly elucidated, espectially when it comes to quantitative understanding. In this work, condensation freezing on circular micropillar surfaces is investigated, with varying pillar spacing and height (layout/microscale roughness) but a constant pillar diameter. The pillar layout is found to have significant effects on both liquid nucleation and neighboring droplet interactions, as reflected by the condensation droplet distribution prior to soilidification and eventually the freezing front propagation area velocity. In general, nucleation is preferred on the pillar top rather than the bottom of the pillared surface unless there is a large distance between the pillars. Interactions between neighboring droplets solely on pillar tops (or bottom surfaces) can induce heterogeneity in the droplet distribution and slow freezing front propagation. Based on the roles the pillars play in nucleation, droplet coalescence, and ice bridging, four different condensation states are identified and related to the layout of the pillars, and the freezing front area propagation velocity is found to be different in each state. The findings provide a quantitative basis for designing antifreezing surfaces, applicable to a wide range of thermal systems.
Collapse
Affiliation(s)
- Yuchen Shen
- Department of Mechanical Science and Engineering, University of Illinois at Urbana- Champaign, Urbana, Illinois 61801-3028, United States
| | - Haoyang Zou
- Department of Mechanical Science and Engineering, University of Illinois at Urbana- Champaign, Urbana, Illinois 61801-3028, United States
| | - Sophie Wang
- Department of Mechanical Science and Engineering, University of Illinois at Urbana- Champaign, Urbana, Illinois 61801-3028, United States
| |
Collapse
|
6
|
Critical sliding angle of water droplet on parallel hydrophobic grooved surface. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124083] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
He L, Sun Y, Sui X, Wang Z, Liang W. Modeling and Measurement on the Sliding Behavior of Microgrooved Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14133-14140. [PMID: 31573206 DOI: 10.1021/acs.langmuir.9b02418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The sliding behavior of anisotropic surfaces is a crucial property to their applications from fundamental research to practical fields. Herein, we propose a theoretical model for analyzing the sliding behavior based on the concept of adhesion energy. Surface Evolver simulation is conducted to determine the adhesion energy per unit area. The microgrooved surfaces are fabricated and characterized to validate the proposed theory. It is found that the apparent contact angle measured along the direction parallel to the strips increases with the increase of microgroove width, while the corresponding sliding angles exhibit an opposite trend. The adhesion energy per unit area has a constant value regardless of the droplet volume. The different sliding behaviors of anisotropic surfaces along the perpendicular and parallel directions are attributed to the difference in the corresponding adhesion energies per unit area. The proposed model is expected to be used for predicting the sliding behavior of anisotropic surfaces.
Collapse
Affiliation(s)
- Liang He
- College of Aerospace and Civil Engineering , Harbin Engineering University , Nantong Street , Harbin 150001 , China
- AVIC Xi'an Aircraft Industry (Group) Company Ltd. , Xifei Road , Xi'an 710089 , China
- Department of Bioresource Engineering , McGill University , 21111 Lakeshore Road , Sainte-Anne-de-Bellevue , QC H9X 3V9 , Canada
| | - Yongyang Sun
- College of Aerospace and Civil Engineering , Harbin Engineering University , Nantong Street , Harbin 150001 , China
| | - Xin Sui
- College of Aerospace and Civil Engineering , Harbin Engineering University , Nantong Street , Harbin 150001 , China
| | - Zhefeng Wang
- College of Aerospace and Civil Engineering , Harbin Engineering University , Nantong Street , Harbin 150001 , China
| | - Wenyan Liang
- College of Aerospace and Civil Engineering , Harbin Engineering University , Nantong Street , Harbin 150001 , China
| |
Collapse
|
8
|
Numerical study of wetting stability and sliding behavior of liquid droplets on microgrooved surfaces. Colloid Polym Sci 2019. [DOI: 10.1007/s00396-019-04527-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Dai Q, Ji Y, Huang W, Wang X. On the Thermocapillary Migration on Radially Microgrooved Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9169-9176. [PMID: 31267755 DOI: 10.1021/acs.langmuir.9b01352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Thermocapillary migration describes the phenomenon in which a droplet placed on a nonuniformly heated surface can migrate from warm to cold regions. Herein, we report an experimental investigation of the migration of silicone oil droplets on radially microgrooved surfaces subjected to a thermal gradient; the effects of the initial divergence angle and divergent direction on the migration behavior are highlighted. A theoretical model is established to predict the migration velocity considering the thermocapillary, viscous resistance, and radial structure-induced forces; furthermore, the proposed theoretical derivation is validated. This study advances the understanding of this interfacial phenomenon, which has great potential for regulating and controlling liquid motion in lubrication systems, condensation and heat-transfer devices, and open microfluidics.
Collapse
Affiliation(s)
- Qingwen Dai
- National Key Laboratory of Science and Technology on Helicopter Transmission , Nanjing University of Aeronautics & Astronautics , Nanjing 210016 , China
| | - Yajuan Ji
- National Key Laboratory of Science and Technology on Helicopter Transmission , Nanjing University of Aeronautics & Astronautics , Nanjing 210016 , China
| | - Wei Huang
- National Key Laboratory of Science and Technology on Helicopter Transmission , Nanjing University of Aeronautics & Astronautics , Nanjing 210016 , China
| | - Xiaolei Wang
- National Key Laboratory of Science and Technology on Helicopter Transmission , Nanjing University of Aeronautics & Astronautics , Nanjing 210016 , China
| |
Collapse
|
10
|
Noble BA, Raeymaekers B. Polymer Spreading on Unidirectionally Nanotextured Substrates Using Molecular Dynamics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8784-8789. [PMID: 31180689 DOI: 10.1021/acs.langmuir.9b01050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A unidirectional nanotexture alters the wettability of a substrate and can be used to create patterned polymer films, tailored polymer coverage/reflow, or aligned polymer molecules. However, the physical mechanisms underlying polymer spreading on nanoscale textures are not well-understood, and competing theories exist to explain how texture peaks and grooves alter the wettability of a substrate. We use molecular dynamics to simulate polymer spreading on substrates with unidirectional nanoscale textures as a function of texture shape and size and compare to polymer spreading on a flat substrate. We show that the texture groove shape is the primary factor that modifies polymer spreading on unidirectionally nanotextured substrates because the texture groove shape determines the minimum potential energy of a substrate. At the texture groove, the energy potentials of several surfaces combine, which increases polymer attraction and drives spreading along the texture groove. A texture groove also acts as a sink that inhibits polymer spreading perpendicular to the texture. Texture peaks create energy barriers that inhibit polymer spreading perpendicular to the texture, but this is a secondary mechanism that does not significantly affect anisotropic spreading. This research unifies competing theories of anisotropic liquid spreading documented in the literature and aims to aid in the design of nanoscale textures and ultrathin liquid film systems.
Collapse
Affiliation(s)
- Brooklyn A Noble
- Department of Mechanical Engineering , University of Utah , Salt Lake City , Utah 84112 , United States
| | - Bart Raeymaekers
- Department of Mechanical Engineering , University of Utah , Salt Lake City , Utah 84112 , United States
| |
Collapse
|
11
|
Kumar M, Bhardwaj R, Sahu KC. Motion of a Droplet on an Anisotropic Microgrooved Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2957-2965. [PMID: 30681868 DOI: 10.1021/acs.langmuir.8b03604] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We experimentally characterize the sliding angle of water droplets (volume 3.1-22.2 μL) migrating on inclined microgrooved surfaces along the longitudinal and transverse directions of the grooves. The rectangular microgrooves are manufactured on silicon wafers using standard photolithography techniques. We tilt the surface gradually using a rotating stage mechanism until the incipience of the sliding. The droplet migration in the longitudinal and transverse directions to the grooves is recorded using a high-speed camera. For the droplets migrating downward in the transverse direction, the contact line exhibits a "stick-slip" type motion, that is, the advancing contact line is attached to the surface, whereas the receding contact line is detached from the surface. However, no significant change in the relative position of the advancing and receding contact lines is observed in the case of the longitudinal migration of the droplets. The sliding behavior of the droplet in the longitudinal direction is similar to that observed in the case of a smooth surface. The sliding angle in the longitudinal direction of motion is found to be smaller as compared to that in the transverse motion of the droplet. In both longitudinal and transverse migrations, increasing the pitch of the grooves increases the contact angle, which in turn decreases the sliding angle. As the droplet volume is increased, the component of the gravitational force in the direction of inclination increases, which acts to decrease the sliding angle. A theoretical analysis is also conducted to predict the sliding angle of a droplet on microgrooved surfaces. The model predictions agree with the trends observed in our experiments and thus validate the proposed sliding mechanisms in the longitudinal and transverse migrations of the droplet.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Mechanical Engineering , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | - Rajneesh Bhardwaj
- Department of Mechanical Engineering , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | - Kirti Chandra Sahu
- Department of Chemical Engineering , Indian Institute of Technology Hyderabad , Sangareddy 502 285 , Telangana , India
| |
Collapse
|
12
|
Li J, Guo Z. Spontaneous directional transportations of water droplets on surfaces driven by gradient structures. NANOSCALE 2018; 10:13814-13831. [PMID: 30010683 DOI: 10.1039/c8nr04354j] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Spontaneous directional transportation of droplets on solid surfaces driven by structure gradients has attracted much attention due to its large-scale applications, such as heat transfer, microfluidic devices, water collection, and separation. It also provides new insight for theoretical research into the interactions between droplets and solid surfaces. This review article summarizes recent progress in the spontaneous directional transportation of droplets on surfaces with structure gradients. Currently, surfaces with structure gradients can be divided into three types: wedge corners with a gradient opening angle, wedge-shaped surfaces, and conical substrates. This review focuses on their basic theory, detailed transport processes, fabrication methods, influence factors and application development. Finally, a perspective of this mode of transportation for future development is proposed.
Collapse
Affiliation(s)
- Jian Li
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| | - Zhiguang Guo
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
13
|
Zhao J, Chen S, Liu Y. Droplets motion on chemically/topographically heterogeneous surfaces. MOLECULAR SIMULATION 2016. [DOI: 10.1080/08927022.2016.1198478] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Vaikuntanathan V, Sivakumar D. Maximum Spreading of Liquid Drops Impacting on Groove-Textured Surfaces: Effect of Surface Texture. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:2399-409. [PMID: 26885767 DOI: 10.1021/acs.langmuir.5b04639] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Maximum spreading of liquid drops impacting on solid surfaces textured with unidirectional parallel grooves is studied for drop Weber number in the range 1-100 focusing on the role of texture geometry and wettability. The maximum spread factor of impacting drops measured perpendicular to grooves, βm,⊥ is seen to be less than that measured parallel to grooves, βm,∥. The difference between βm,⊥ and βm,∥ increases with drop impact velocity. This deviation of βm,⊥ from βm,∥ is analyzed by considering the possible mechanisms, corresponding to experimental observations-(1) impregnation of drop into the grooves, (2) convex shape of liquid-vapor interface near contact line at maximum spreading, and (3) contact line pinning of spreading drop at the pillar edges-by incorporating them into an energy conservation-based model. The analysis reveals that contact line pinning offers a physically meaningful justification of the observed deviation of βm,⊥ from βm,∥ compared to other possible candidates. A unified model, incorporating all the above-mentioned mechanisms, is formulated, which predicts βm,⊥ on several groove-textured surfaces made of intrinsically hydrophilic and hydrophobic materials with an average error of 8.3%. The effect of groove-texture geometrical parameters on maximum drop spreading is explained using this unified model. A special case of the unified model, with contact line pinning absent, predicts βm,∥ with an average error of 6.3%.
Collapse
Affiliation(s)
- Visakh Vaikuntanathan
- Department of Aerospace Engineering, Indian Institute of Science , Bangalore 560 012, India
| | - D Sivakumar
- Department of Aerospace Engineering, Indian Institute of Science , Bangalore 560 012, India
| |
Collapse
|
15
|
Numerical Study of the Wetting and Mobility of Liquid Droplets on Horizontal and Inclined Flat and Microgrooved Surfaces. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.proeng.2015.05.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
|