1
|
Dong Y, Ji X, Laaksonen A, Cao W, He H, Lu X. Excellent Protein Immobilization and Stability on Heterogeneous C-TiO 2 Hybrid Nanostructures: A Single Protein AFM Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9323-9332. [PMID: 32673488 DOI: 10.1021/acs.langmuir.0c01942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Enhancing molecular interaction is critical for improving the immobilization and stability of proteins on TiO2 surfaces. In this work, mesoporous TiO2 materials with varied pore geometries were decorated with phenyl phosphoric acid (PPA), followed by a thermal treatment to obtain chemically heterogeneous C-TiO2 samples without changing the geometry and crystalline structure, which can keep the advantages of both carbon and TiO2. The molecular interaction force between the protein and the surfaces was measured using atomic force microscopy by decomposing from the total adhesion forces, showing that the surface chemistry determines the interaction strength and depends on the amount of partial carbon coverage on the TiO2 surface (∼40-80%). Samples with 58.3% carbon coverage provide the strongest molecular interaction force, consistent with the observation from the detected friction force. Surface-enhanced Raman scattering and electrochemical biosensor measurements for these C-TiO2 materials were further conducted to illustrate their practical implications, implying their promising applications such as in protein detection and biosensing.
Collapse
Affiliation(s)
- Yihui Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P.R. China
| | - Xiaoyan Ji
- Energy Engineering, Division of Energy Science, Luleå University of Technology, 97187 Luleå, Sweden
| | - Aatto Laaksonen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P.R. China
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica-Voda, 41A, 700487 Iasi, Romania
| | - Wei Cao
- School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hongyan He
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xiaohua Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P.R. China
| |
Collapse
|
2
|
Progress in molecular-simulation-based research on the effects of interface-induced fluid microstructures on flow resistance. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2019.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Huang X, Wu J, Zhu Y, Zhang Y, Feng X, Lu X. Flow-resistance analysis of nano-confined fluids inspired from liquid nano-lubrication: A review. Chin J Chem Eng 2017. [DOI: 10.1016/j.cjche.2017.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
An R, Dong Y, Zhu J, Rao C. Adhesion and friction forces in biofouling attachments to nanotube- and PEG- patterned TiO2 surfaces. Colloids Surf B Biointerfaces 2017; 159:108-117. [DOI: 10.1016/j.colsurfb.2017.07.067] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 11/25/2022]
|
5
|
Dong Y, An R, Zhao S, Cao W, Huang L, Zhuang W, Lu L, Lu X. Molecular Interactions of Protein with TiO 2 by the AFM-Measured Adhesion Force. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:11626-11634. [PMID: 28772074 DOI: 10.1021/acs.langmuir.7b02024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Understanding the interactions between porous materials and biosystems is of great important in biomedical and environmental sciences. Upon atomic force microscopy (AFM) adhesion measurement, a new experimental approach was presented here to determine the molecular interaction force between proteins and mesoporous TiO2 of various surface roughnesses. The interaction force between each protein molecule and the pure anatase TiO2 surface was characterized by fitting the adhesion and adsorption capacity per unit contact area, and it was found that the adhesion forces were approximately 0.86, 2.63, and 4.41 nN for lysozyme, myoglobin, and BSA, respectively. Moreover, we reported that the molecular interaction force was independent of the surface topography of the material but the protein type is a factor of the interaction. These experimental results on the molecular level provide helpful insights for stimulating model calculation and molecular simulation studies of protein interaction with surfaces.
Collapse
Affiliation(s)
- Yihui Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009, P. R. China
| | - Rong An
- Herbert Gleiter Institute of Nanoscience, Nanjing University of Science & Technology , Nanjing 210094, P. R. China
| | - Shuangliang Zhao
- School of Chemical Engineering, East China University of Science and Technology , Shanghai 200237, P. R. China
| | - Wei Cao
- State Key Laboratory of Tribology, Tsinghua University , Beijing 100084, China
| | - Liangliang Huang
- School of Chemical, Biological & Materials Engineering, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Wei Zhuang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009, P. R. China
| | - Linghong Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009, P. R. China
| | - Xiaohua Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009, P. R. China
| |
Collapse
|
6
|
Zhuang W, Lu L, Li W, An R, Feng X, Wu X, Zhu Y, Lu X. In-situ synthesized mesoporous TiO2-B/anatase microparticles: Improved anodes for lithium ion batteries. Chin J Chem Eng 2015. [DOI: 10.1016/j.cjche.2014.11.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
An R, Zhuang W, Yang Z, Lu X, Zhu J, Wang Y, Dong Y, Wu N. Protein adsorptive behavior on mesoporous titanium dioxide determined by geometrical topography. Chem Eng Sci 2014. [DOI: 10.1016/j.ces.2014.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Bahramian A. High Conversion Efficiency of Dye-Sensitized Solar Cells Based on Coral-like TiO2 Nanostructured Films: Synthesis and Physical Characterization. Ind Eng Chem Res 2013. [DOI: 10.1021/ie402536h] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Alireza Bahramian
- Department of Chemical Engineering, Hamedan University of Technology, Hamedan 65155, Iran
| |
Collapse
|
9
|
McNamee CE, Higashitani K. Effect of the charge and roughness of surfaces on normal and friction forces measured in aqueous solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:5013-5022. [PMID: 23530856 DOI: 10.1021/la4003934] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We used the atomic force microscope (AFM) to determine how the roughness and charge on a surface affect the adhesion and friction when measured against a smooth surface (colloid probe) in an aqueous solution. The effect of roughness was investigated by coating TiO2 crystal substrates with TiO2 nano- or micro-sized particles, where an increase in the particle size increased the RMS roughness of the substrate. The charge of the substrate was varied by changing the pH of the aqueous solution. Force-separation curves and friction-load data were measured for the smooth colloid probe-rough substrate systems. The adhesion and friction between two surfaces in solution were seen to depend on the surface charge and roughness. A noncharged surface gave the greatest adhesion, while a charged surface gave weaker adhesions. Increasing the roughness of the surface resulted in a stronger adhesion. The magnitude and range of the adhesions were not affected by the measuring velocity in the case of a noncharged substrate but decreased with an increasing velocity for charged surfaces. The friction was seen not to depend on roughness in the case of a noncharged surface. However, in the case of a charged surface, the friction decreased with an increased roughness for low loads and then showed no dependence on the surface roughness for high loads. The results of this experiment show that the adhesion and friction of a system can be decreased via the roughness and charge of the substrate and the ion types in the solution.
Collapse
|
10
|
An R, Zhu Y, Wu N, Xie W, Lu J, Feng X, Lu X. Wetting behavior of ionic liquid on mesoporous titanium dioxide surface by atomic force microscopy. ACS APPLIED MATERIALS & INTERFACES 2013; 5:2692-2698. [PMID: 23465606 DOI: 10.1021/am400175z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Ionic liquids based on 1-butyl-3-methylimidazolium hexafluoro-phosphate (ILs [Bmim][PF6]) has been employed to wet the mesoporous and dense titanium dioxide (TiO2) films. It has been found from atomic force microscopy (AFM) analysis that ILs [Bmim][PF6] can form a wetting phase on mesoporous TiO2 films, but nonwetting and sphere shaped droplets on dense films. AFM topography, phase images, and adhesion measurements suggest a remarkable dependence of wetting ILs [Bmim][PF6] films on the TiO2 porous geometry. On mesoporous TiO2 films, the adhesive force of ILs [Bmim][PF6] reaches at 40 nN, but only 4 nN on dense TiO2 films. The weak interacting ILs [Bmim][PF6] on dense TiO2 films forms rounded liquid spheres (contact angle as 40°), which helps to reduce friction locally but not on the whole surface. The stronger adhesive force on mesoporous TiO2 films makes ILs [Bmim][PF6] adhere to the surface tightly (contact angle as 5°), and this feature remains after five months. The stable spreading ILs [Bmim][PF6] films provide low friction coefficient (0.0025), large wetting areas, and short CO2 diffusion distance on the whole mesoporous TiO2 surface, avoiding the significant decelerating effect through equilibrium limitations to enable CO2 capture rate up to 1.6 and 10 times faster than that on dense TiO2 and pure ILs, respectively. And importantly, ILs wetted on mesoporous TiO2 shorten the time reaching to the maximum adsorption rate (2.8 min), faster than that on mesoporous TiO2 (6.1 min), and dense TiO2 (11.2 min). This work provides an important guidance for the improvement of the efficiency of CO2 capture, gas separation, and the lubrication of micro/nanoelectromechanical systems (M/NEMs).
Collapse
Affiliation(s)
- Rong An
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, 5 Xinmofan Road, Nanjing 210009, PR China
| | | | | | | | | | | | | |
Collapse
|