1
|
Skakic I, Taki AC, Francis JE, Dekiwadia C, Van TTH, Joe CCD, Phan T, Lovrecz G, Gorry PR, Ramsland PA, Walduck AK, Smooker PM. Nanocapsules Comprised of Purified Protein: Construction and Applications in Vaccine Research. Vaccines (Basel) 2024; 12:410. [PMID: 38675791 PMCID: PMC11053559 DOI: 10.3390/vaccines12040410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Nanoparticles show great promise as a platform for developing vaccines for the prevention of infectious disease. We have been investigating a method whereby nanocapsules can be formulated from protein, such that the final capsules contain only the cross-linked protein itself. Such nanocapsules are made using a silica templating system and can be customised in terms of size and porosity. Here we compare the construction and characteristics of nanocapsules from four different proteins: one a model protein (ovalbumin) and three from infectious disease pathogens, namely the influenza virus, Helicobacter pylori and HIV. Two of the nanocapsules were assessed further. We confirm that nanocapsules constructed from the urease A subunit of H. pylori can reduce subsequent infection in a vaccinated mouse model. Further, we show that capsules constructed from the HIV gp120 protein can be taken up by dendritic cells in tissue culture and can be recognised by antibodies raised against the virus. These results point to the utility of this method in constructing protein-only nanocapsules from proteins of varying sizes and isoelectric points.
Collapse
Affiliation(s)
- Ivana Skakic
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (I.S.); (J.E.F.); (T.T.H.V.); (P.A.R.)
| | - Aya C. Taki
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Jasmine E. Francis
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (I.S.); (J.E.F.); (T.T.H.V.); (P.A.R.)
| | - Chaitali Dekiwadia
- RMIT Microscopy & Microanalysis Facility, School of Science, RMIT University, Melbourne, VIC 3001, Australia;
| | - Thi Thu Hao Van
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (I.S.); (J.E.F.); (T.T.H.V.); (P.A.R.)
| | - Carina C. D. Joe
- CSIRO Manufacturing, Clayton, VIC 3169, Australia; (C.C.D.J.); (T.P.); (G.L.)
| | - Tram Phan
- CSIRO Manufacturing, Clayton, VIC 3169, Australia; (C.C.D.J.); (T.P.); (G.L.)
| | - George Lovrecz
- CSIRO Manufacturing, Clayton, VIC 3169, Australia; (C.C.D.J.); (T.P.); (G.L.)
| | - Paul R. Gorry
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute of Infection and Immunity, Parkville, VIC 3010, Australia;
| | - Paul A. Ramsland
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (I.S.); (J.E.F.); (T.T.H.V.); (P.A.R.)
- Department of Immunology, Monash University, Melbourne, VIC 3004, Australia
- Department of Surgery, Austin Health, The University of Melbourne, Heidelberg, VIC 3084, Australia
| | - Anna K. Walduck
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (I.S.); (J.E.F.); (T.T.H.V.); (P.A.R.)
| | - Peter M. Smooker
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (I.S.); (J.E.F.); (T.T.H.V.); (P.A.R.)
| |
Collapse
|
2
|
Mehandole A, Walke N, Mahajan S, Aalhate M, Maji I, Gupta U, Mehra NK, Singh PK. Core-Shell Type Lipidic and Polymeric Nanocapsules: the Transformative Multifaceted Delivery Systems. AAPS PharmSciTech 2023; 24:50. [PMID: 36703085 DOI: 10.1208/s12249-023-02504-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/03/2023] [Indexed: 01/28/2023] Open
Abstract
Amongst the several nano-drug delivery systems, lipid or polymer-based core-shell nanocapsules (NCs) have garnered much attention of researchers owing to its multidisciplinary properties and wide application. NCs are structured core-shell systems in which the core is an aqueous or oily phase protecting the encapsulated drug from environmental conditions, whereas the shell can be lipidic or polymeric. The core is stabilized by surfactant/lipids/polymers, which control the release of the drug. The presence of a plethora of biocompatible lipids and polymers with the provision of amicable surface modifications makes NCs an ideal choice for precise drug delivery. In the present article, multiple lipidic and polymeric NC (LNCs and PNCs) systems are described with an emphasis on fabrication methods and characterization techniques. Far-reaching applications as a carrier or delivery system are demonstrated for oral, parenteral, nasal, and transdermal routes of administration to enhance the bioavailability of hard-to-formulate drugs and to achieve sustained and targeted delivery. This review provide in depth understanding on core-shell NC's mechanism of absorption, surface modification, size tuning, and toxicity moderation which overshadows the drawbacks of conventional approaches. Additionally, the review shines a spotlight on the current challenges associated with core-shell NCs and applications in the foreseeable future.
Collapse
Affiliation(s)
- Arti Mehandole
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Nikita Walke
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Neelesh Kumar Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India.
| |
Collapse
|
3
|
Karimi MR, Khoee S, Shaghaghi B. Smart transformation of bowl shape chitosan nanomotors to disc shape in simulated biological media and consequent controlled velocity. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Synthesis of Multifunctional Organic Nanoparticles Combining Photodynamic Therapy and Chemotherapeutic Drug Release. Macromol Res 2022. [DOI: 10.1007/s13233-022-0021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Anjum S, Hashim M, Malik SA, Khan M, Lorenzo JM, Abbasi BH, Hano C. Recent Advances in Zinc Oxide Nanoparticles (ZnO NPs) for Cancer Diagnosis, Target Drug Delivery, and Treatment. Cancers (Basel) 2021; 13:4570. [PMID: 34572797 PMCID: PMC8468934 DOI: 10.3390/cancers13184570] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is regarded as one of the most deadly and mirthless diseases and it develops due to the uncontrolled proliferation of cells. To date, varieties of traditional medications and chemotherapies have been utilized to fight tumors. However, their immense drawbacks, such as reduced bioavailability, insufficient supply, and significant adverse effects, make their use limited. Nanotechnology has evolved rapidly in recent years and offers a wide spectrum of applications in the healthcare sectors. Nanoscale materials offer strong potential for curing cancer as they pose low risk and fewer complications. Several metal oxide NPs are being developed to diagnose or treat malignancies, but zinc oxide nanoparticles (ZnO NPs) have remarkably demonstrated their potential in the diagnosis and treatment of various types of cancers due to their biocompatibility, biodegradability, and unique physico-chemical attributes. ZnO NPs showed cancer cell specific toxicity via generation of reactive oxygen species and destruction of mitochondrial membrane potential, which leads to the activation of caspase cascades followed by apoptosis of cancerous cells. ZnO NPs have also been used as an effective carrier for targeted and sustained delivery of various plant bioactive and chemotherapeutic anticancerous drugs into tumor cells. In this review, at first we have discussed the role of ZnO NPs in diagnosis and bio-imaging of cancer cells. Secondly, we have extensively reviewed the capability of ZnO NPs as carriers of anticancerous drugs for targeted drug delivery into tumor cells, with a special focus on surface functionalization, drug-loading mechanism, and stimuli-responsive controlled release of drugs. Finally, we have critically discussed the anticancerous activity of ZnO NPs on different types of cancers along with their mode of actions. Furthermore, this review also highlights the limitations and future prospects of ZnO NPs in cancer theranostic.
Collapse
Affiliation(s)
- Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan; (M.H.); (S.A.M.); (M.K.)
| | - Mariam Hashim
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan; (M.H.); (S.A.M.); (M.K.)
| | - Sara Asad Malik
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan; (M.H.); (S.A.M.); (M.K.)
| | - Maha Khan
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan; (M.H.); (S.A.M.); (M.K.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avenida de Galicia 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Ourense, Spain;
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 15320, Pakistan;
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Eure & Loir Campus, University of Orleans, 28000 Chartres, France;
| |
Collapse
|
6
|
‘Sweet as a Nut’: Production and use of nanocapsules made of glycopolymer or polysaccharide shell. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Ceftizoxime loaded ZnO/L-cysteine based an advanced nanocarrier drug for growth inhibition of Salmonella typhimurium. Sci Rep 2021; 11:15565. [PMID: 34330977 PMCID: PMC8324911 DOI: 10.1038/s41598-021-95195-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
l-Cysteine coated zinc oxide (ZnO) nano hollow spheres were prepared as a potent drug delivery agent to eradicate Salmonella enterica serovar Typhimurium (S. typhimurium). The ZnO nano hollow spheres were synthesized by following the environmentally-friendly trisodium citrate assisted method and l-cysteine (L-Cys) conjugate with its surface. ZnO/L-Cys@CFX nanocarrier drug has been fabricated by incorporating ceftizoxime with L-Cys coated ZnO nano hollow spheres and characterized using different techniques such as scanning electron microscope (SEM), attenuated total reflection Fourier transform infrared (ATR-FTIR), and X-ray diffraction (XRD) etc. Furthermore, the drug-loading and encapsulation efficiency at different pH levels was measured using UV–vis spectrometer and optimized. A control and gradual manner of pH-sensitive release profile was found after investigating the release profile of CFX from the carrier drug. The antibacterial activity of ZnO/L-Cys@CFX and CFX were evaluated through the agar disc diffusion method and the broth dilution method, which indicate the antibacterial properties of antibiotics enhance after conjugating. Surprisingly, the ZnO/L-Cys@CFX exhibits a minimum inhibitory concentration (MIC) of 5 µg/ml against S. typhimurium is lower than CFX (20 µg/ml) itself. These results indicate the nanocarrier can reduce the amount of CFX dosed to eradicate S. typhimurium.
Collapse
|
8
|
Sun Z, Wu Q, Li L, Cai C, Xue L, Ye C, Gao C. Structure-controlled zwitterionic nanocapsules with thermal-responsiveness. NANOTECHNOLOGY 2020; 31:425710. [PMID: 32610299 DOI: 10.1088/1361-6528/aba1bc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A facile approach is established to prepare zwitterionic nanocapsules (ZN C s) with controlled diameters and core/shell structures based on an inverse reversible addition-fragmentation transfer (RAFT) miniemulsion interfacial polymerization method. The diameters and core volume fractions of ZNCs can be tuned finely from 61 to 220 nm and from 0.22 to 0.61, respectively. Furthermore, the thermal-responsive property of the prepared zwitterionic nanocapsules was systematically studied relating to core/shell ratios and cross-linking degrees. These ZNCs could be particularly useful in constructing polymeric materials with well-defined nanoporous structures for nano-void membranes, drug delivery devices and catalytic carriers.
Collapse
Affiliation(s)
- Zhijuan Sun
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province 310014 People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
9
|
Taki AC, Francis JE, Skakic I, Dekiwadia C, McLean TR, Bansal V, Smooker PM. Protein-only nanocapsules induce cross-presentation in dendritic cells, demonstrating potential as an antigen delivery system. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 28:102234. [PMID: 32522709 DOI: 10.1016/j.nano.2020.102234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/12/2020] [Accepted: 05/28/2020] [Indexed: 01/19/2023]
Abstract
Templating has been demonstrated to be an efficient method of nanocapsule preparation. However, there have been no reports of using protein-only nanocapsules as an antigen delivery system. Such a system would enable the delivery of antigen without additional polymers. This study focused on defining the structural and cellular characteristics of nanocapsules consisting of antigen (ovalbumin) alone, synthesized by the templating method using highly monodispersed solid core mesoporous shell (SC/MS) and mesoporous (MS) silica nanoparticles of 410 nm and 41 nm in diameter, respectively. The synthesized ovalbumin nanocapsules were homogeneous in structure, and cellular uptake was observed in DC2.4 murine immature dendritic cells with minimal cytotoxicity. The nanocapsules were localized intracellularly and induced antigen presentation by the cross-presentation pathway. The templating system, using SC/MS and MS silica nanoparticles, was demonstrated to be an effective nanocapsule synthesis method for a new antigen delivery system.
Collapse
Affiliation(s)
- Aya C Taki
- Bioscience and Food Technology, School of Science, RMIT University, Bundoora, VIC, Australia.
| | - Jasmine E Francis
- Bioscience and Food Technology, School of Science, RMIT University, Bundoora, VIC, Australia.
| | - Ivana Skakic
- Bioscience and Food Technology, School of Science, RMIT University, Bundoora, VIC, Australia.
| | - Chaitali Dekiwadia
- RMIT Microscopy and Microanalysis Facility, RMIT University, Melbourne, VIC, Australia.
| | - Thomas R McLean
- Bioscience and Food Technology, School of Science, RMIT University, Bundoora, VIC, Australia.
| | - Vipul Bansal
- RMIT NanoBiotechnology Research Laboratory, Ian Potter NanoBioSensing Facility, School of Science, RMIT University, Melbourne, VIC, Australia.
| | - Peter M Smooker
- Bioscience and Food Technology, School of Science, RMIT University, Bundoora, VIC, Australia.
| |
Collapse
|
10
|
Liparulo A, Esposito R, Santonocito D, Muñoz-Ramírez A, Spaziano G, Bruno F, Xiao J, Puglia C, Filosa R, Berrino L, D'Agostino B. Formulation and Characterization of Solid Lipid Nanoparticles Loading RF22-c, a Potent and Selective 5-LO Inhibitor, in a Monocrotaline-Induced Model of Pulmonary Hypertension. Front Pharmacol 2020; 11:83. [PMID: 32180715 PMCID: PMC7059131 DOI: 10.3389/fphar.2020.00083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/27/2020] [Indexed: 02/05/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare but fatal disease characterized by persistent elevated blood pressure in the pulmonary circulation, due to increased resistance to blood flow, through the lungs. Advances in the understanding of the pathobiology of PAH clarify the role of leukotrienes (LTs) that appear to be an exciting new target for disease intervention. Over the years, our group has long investigated this field, detecting the 1,2-benzoquinone RF-22c as the most powerful and selective competitive inhibitor of the enzyme 5-lipoxygenase (5-LO). With the aim to improve the bioavailability of RF-22c and to confirm the role of 5-LO as therapeutic strategy for PAH treatment, we developed a solid lipid nanoparticle (SLN) loaded with drug. Therefore, in monocrotaline (MCT) rat model of PAH, the role of 5-LO has been investigated through the formulation of RF-22c-SLN. The rats were randomly grouped into control group, MCT group, and MCT + RF22-c group. After 21 days, all the animals were sacrificed to perform functional and histological evaluations. RF22-c-SLN treatment was able to significantly reduce the mean pulmonary arterial pressure (mPAP) and precapillary resistance (R-pre) compared to the MCT group. The MCT induced rise in medial wall thickness of pulmonary arterioles, and the cardiomyocytes width were significantly attenuated by RF22-c-SLN formulation upon treatment. The results showed that the selective inhibition of 5-LO improved hemodynamic parameters as well as vascular and cardiac remodeling by preventing induced pulmonary hypertension. The improved sustained release properties and targeting abilities achieved with the innovative nanotechnological approach may be therapeutically beneficial for PAH patients as a consequence of the increase of pharmacological effects and of the possible reduction and/or optimization of the drug frequency of administration.
Collapse
Affiliation(s)
- Angela Liparulo
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli," University of Campania "L. Vanvitelli," Naples, Italy
| | - Renata Esposito
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli," University of Campania "L. Vanvitelli," Naples, Italy
| | | | - Alejandra Muñoz-Ramírez
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago, Casilla, Correo, Chile.,Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China.,Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli," Naples, Italy
| | - Giuseppe Spaziano
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli," University of Campania "L. Vanvitelli," Naples, Italy
| | - Ferdinando Bruno
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli," Naples, Italy
| | - Jianbo Xiao
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Carmelo Puglia
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Rosanna Filosa
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli," Naples, Italy.,Consorzio Sannio Tech-AMP Biotec, Apollosa, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli," University of Campania "L. Vanvitelli," Naples, Italy
| | - Bruno D'Agostino
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli," University of Campania "L. Vanvitelli," Naples, Italy
| |
Collapse
|
11
|
Li X, Maldonado L, Malmr M, Rouf TB, Hua Y, Kokini J. Development of hollow kafirin-based nanoparticles fabricated through layer-by-layer assembly as delivery vehicles for curcumin. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.04.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
12
|
Radhakrishnan R, Pooja D, Kulhari H, Gudem S, Ravuri HG, Bhargava S, Ramakrishna S. Bombesin conjugated solid lipid nanoparticles for improved delivery of epigallocatechin gallate for breast cancer treatment. Chem Phys Lipids 2019; 224:104770. [PMID: 30965023 DOI: 10.1016/j.chemphyslip.2019.04.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/05/2019] [Accepted: 04/05/2019] [Indexed: 12/21/2022]
Abstract
Epigallocatechin-gallate (EGCG) is a potent anti-cancer therapeutic which effectively controls the growth of cancerous cells through a variety of different pathways. However, its molecular structure is susceptible to modifications due to cellular enzymes affecting its stability, bioavailability and hence, overall efficiency. In this study, we have initially encapsulated EGCG in the matrix of solid lipid nanoparticles to provide a stable drug carrier. To confer additional specificity towards gastrin releasing peptide receptors (GRPR) overexpressed in breast cancer, EGCG loaded nanoparticles were conjugated with a GRPR-specific peptide. In-vitro cytotoxicity studies showed that the peptide-conjugated formulations possessed greater cytotoxicity to cancer cell lines compared to the non-conjugated formulations. Further, in-vivo studies performed on C57/BL6 mice showed greater survivability and reduction in tumour volume in mice treated with peptide-conjugated formulation as compared to the mice treated with non-conjugated formulation or with plain EGCG. These results warrant the potential of the system designed in this study as a novel and effective drug delivery system in breast cancer therapy.
Collapse
Affiliation(s)
- Rasika Radhakrishnan
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India; IICT-RMIT Research Centre, CSIR-Indian Institute of Chemical Technology, Hyderabad, India; Centre for Advanced Materials and Industrial Chemistry, School of Science, RMIT University, Melbourne, Australia
| | - Deep Pooja
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India; IICT-RMIT Research Centre, CSIR-Indian Institute of Chemical Technology, Hyderabad, India; Centre for Advanced Materials and Industrial Chemistry, School of Science, RMIT University, Melbourne, Australia.
| | - Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, India
| | - Sagarika Gudem
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Halley Gora Ravuri
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Suresh Bhargava
- IICT-RMIT Research Centre, CSIR-Indian Institute of Chemical Technology, Hyderabad, India; Centre for Advanced Materials and Industrial Chemistry, School of Science, RMIT University, Melbourne, Australia.
| | - Sistla Ramakrishna
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India; IICT-RMIT Research Centre, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.
| |
Collapse
|
13
|
Srivastava P, Hira SK, Gupta U, Singh VK, Singh R, Pandey P, Srivastava DN, Singh RA, Manna PP. Pepsin Assisted Doxorubicin Delivery from Mesoporous Silica Nanoparticles Downsizes Solid Tumor Volume and Enhances Therapeutic Efficacy in Experimental Murine Lymphoma. ACS APPLIED BIO MATERIALS 2018; 1:2133-2140. [DOI: 10.1021/acsabm.8b00559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Sumit Kumar Hira
- Department of Zoology, The University of Burdwan, Purba Burdwan 713104, India
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Lower-Sized Chitosan Nanocapsules for Transcutaneous Antigen Delivery. NANOMATERIALS 2018; 8:nano8090659. [PMID: 30149658 PMCID: PMC6164329 DOI: 10.3390/nano8090659] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/14/2018] [Accepted: 08/22/2018] [Indexed: 11/17/2022]
Abstract
Transcutaneous vaccination has several advantages including having a noninvasive route and needle-free administration; nonetheless developing an effective transdermal formulation has not been an easy task because skin physiology, particularly the stratum corneum, does not allow antigen penetration. Size is a crucial parameter for successful active molecule administration through the skin. Here we report a new core-shell structure rationally developed for transcutaneous antigen delivery. The resulting multifunctional carrier has an oily core with immune adjuvant properties and a polymeric corona made of chitosan. This system has a size of around 100 nm and a positive zeta potential. The new formulation is stable in storage and physiological conditions. Ovalbumin (OVA) was used as the antigen model and the developed nanocapsules show high association efficiency (75%). Chitosan nanocapsules have high interaction with the immune system which was demonstrated by complement activation and also did not affect cell viability in the macrophage cell line. Finally, ex vivo studies using a pig skin model show that OVA associated to the chitosan nanocapsules developed in this study penetrated and were retained better than OVA in solution. Thus, the physicochemical properties and their adequate characteristics make this carrier an excellent platform for transcutaneous antigen delivery.
Collapse
|
15
|
Foti MC, Slavova-Kazakova A, Rocco C, Kancheva VD. Kinetics of curcumin oxidation by 2,2-diphenyl-1-picrylhydrazyl (DPPH˙): an interesting case of separated coupled proton-electron transfer. Org Biomol Chem 2016; 14:8331-7. [PMID: 27530442 DOI: 10.1039/c6ob01439a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The decay of dpph˙ in absolute ethanol at 25 °C and in the presence of curcumin (1), 4-methylcurcumin (3), 4,4-dimethylcurcumin (4) or curcumin 4'-methyl ether (5) follows bi-exponential kinetics. These unusual reaction kinetics are compatible with a two-step process in which an intermediate accumulates in a reversible first step followed by an irreversible process. As in other similar cases (Foti et al., Org. Lett., 2011, 13, 4826-4829), we have hypothesised that the intermediate is a π-stacked complex, formed between one curcumin anion (in the case of 1, 3 and 5 the enolate anion) and the picryl moiety of dpph˙, in which an intra-complex electron transfer from the (enolate) anion takes place. By comparing the kinetics of curcumin 4',4''-dimethyl ether (2) (no phenolic OH), (5) (one phenolic OH) and (1) (two phenolic OHs), we have deduced that the electron transfer process must be accompanied by a simultaneous proton transfer from the phenolic OHs to the bulk solvent (separated coupled proton-electron transfer). The rate constants kα for the forward reaction of 2, 5 and 1 with dpph˙ are in fact ∼0, 7.5 × 10(3) and 1.8 × 10(4) M(-1) s(-1), respectively, in a clear dependence on the number of phenolic OHs.
Collapse
Affiliation(s)
- Mario C Foti
- Istituto di Chimica Biomolecolare del CNR, Via P. Gaifami 18, I 95126 Catania, Italy.
| | | | | | | |
Collapse
|
16
|
Affiliation(s)
- Haotian Sun
- Department of Chemical and Biological Engineering; University at Buffalo, State University of New York; Buffalo NY 14260 USA
| | - Chih-Kuang Chen
- Department of Fiber and Composite Materials; Feng Chia University; No. 100 Wenhwa Road Taichung Taiwan 40724 ROC
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; 3400 North Charles Street Baltimore MD 21218 USA
| | - Chong Cheng
- Department of Chemical and Biological Engineering; University at Buffalo, State University of New York; Buffalo NY 14260 USA
| |
Collapse
|
17
|
Ezhilarasi PN, Muthukumar SP, Anandharamakrishnan C. Solid lipid nanoparticle enhances bioavailability of hydroxycitric acid compared to a microparticle delivery system. RSC Adv 2016. [DOI: 10.1039/c6ra04312g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Solid lipid nanoparticles (SLN) are the most promising delivery system that improves the stability, bioavailability and controlled release of food bioactive compounds.
Collapse
Affiliation(s)
- P. N. Ezhilarasi
- Centre for Food Nanotechnology
- CSIR-Central Food Technological Research Institute
- Mysore-570 020
- India
- AcSIR-Academy of Scientific and Innovative Research
| | - S. P. Muthukumar
- Animal House Facility
- CSIR-Central Food Technological Research Institute
- Mysore-570 020
- India
| | - C. Anandharamakrishnan
- Centre for Food Nanotechnology
- CSIR-Central Food Technological Research Institute
- Mysore-570 020
- India
- AcSIR-Academy of Scientific and Innovative Research
| |
Collapse
|
18
|
Kamat V, Marathe I, Ghormade V, Bodas D, Paknikar K. Synthesis of Monodisperse Chitosan Nanoparticles and in Situ Drug Loading Using Active Microreactor. ACS APPLIED MATERIALS & INTERFACES 2015; 7:22839-22847. [PMID: 26448128 DOI: 10.1021/acsami.5b05100] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Chitosan nanoparticles are promising drug delivery vehicles. However, the conventional method of unregulated mixing during ionic gelation limits their application because of heterogeneity in size and physicochemical properties. Therefore, a detailed theoretical analysis of conventional and active microreactor models was simulated. This led to design and fabrication of a polydimethylsiloxane microreactor with magnetic micro needles for the synthesis of monodisperse chitosan nanoparticles. Chitosan nanoparticles synthesized conventionally, using 0.5 mg/mL chitosan, were 250 ± 27 nm with +29.8 ± 8 mV charge. Using similar parameters, the microreactor yielded small size particles (154 ± 20 nm) at optimized flow rate of 400 μL/min. Further optimization at 0.4 mg/mL chitosan concentration yielded particles (130 ± 9 nm) with higher charge (+39.8 ± 5 mV). The well-controlled microreactor-based mixing generated highly monodisperse particles with tunable properties including antifungal drug entrapment (80%), release rate, and effective activity (MIC, 1 μg/mL) against Candida.
Collapse
Affiliation(s)
- Vivek Kamat
- Nanobioscience, Agharkar Research Institute , GG Agarkar Road, Pune 411 004, India
| | - Ila Marathe
- Nanobioscience, Agharkar Research Institute , GG Agarkar Road, Pune 411 004, India
| | - Vandana Ghormade
- Nanobioscience, Agharkar Research Institute , GG Agarkar Road, Pune 411 004, India
| | - Dhananjay Bodas
- Nanobioscience, Agharkar Research Institute , GG Agarkar Road, Pune 411 004, India
| | - Kishore Paknikar
- Nanobioscience, Agharkar Research Institute , GG Agarkar Road, Pune 411 004, India
| |
Collapse
|
19
|
Small Wonders-The Use of Nanoparticles for Delivering Antigen. Vaccines (Basel) 2015; 3:638-61. [PMID: 26350599 PMCID: PMC4586471 DOI: 10.3390/vaccines3030638] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/15/2015] [Accepted: 07/31/2015] [Indexed: 12/19/2022] Open
Abstract
Despite the discovery of many potential antigens for subunit vaccines, universal protection is often lacking due to the limitations of conventional delivery methods. Subunit vaccines primarily induce antibody-mediated humoral responses, whereas potent antigen-specific cellular responses are required for prevention against some pathogenic infections. Nanoparticles have been utilised in nanomedicine and are promising candidates for vaccine or drug delivery. Nanoparticle vehicles have been demonstrated to be efficiently taken up by dendritic cells and induce humoral and cellular responses. This review provides an overview of nanoparticle vaccine development; in particular, the preparation of nanoparticles using a templating technique is highlighted, which would alleviate some of the disadvantages of existing nanoparticles. We will also explore the cellular fate of nanoparticle vaccines. Nanoparticle-based antigen delivery systems have the potential to develop new generation vaccines against currently unpreventable infectious diseases.
Collapse
|
20
|
Puvvada N, Rajput S, Kumar BNP, Sarkar S, Konar S, Brunt KR, Rao RR, Mazumdar A, Das SK, Basu R, Fisher PB, Mandal M, Pathak A. Novel ZnO hollow-nanocarriers containing paclitaxel targeting folate-receptors in a malignant pH-microenvironment for effective monitoring and promoting breast tumor regression. Sci Rep 2015; 5:11760. [PMID: 26145450 PMCID: PMC4491843 DOI: 10.1038/srep11760] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 06/02/2015] [Indexed: 11/22/2022] Open
Abstract
Low pH in the tumor micromilieu is a recognized pathological feature of cancer. This attribute of cancerous cells has been targeted herein for the controlled release of chemotherapeutics at the tumour site, while sparing healthy tissues. To this end, pH-sensitive, hollow ZnO-nanocarriers loaded with paclitaxel were synthesized and their efficacy studied in breast cancer in vitro and in vivo. The nanocarriers were surface functionalized with folate using click-chemistry to improve targeted uptake by the malignant cells that over-express folate-receptors. The nanocarriers released ~75% of the paclitaxel payload within six hours in acidic pH, which was accompanied by switching of fluorescence from blue to green and a 10-fold increase in the fluorescence intensity. The fluorescence-switching phenomenon is due to structural collapse of the nanocarriers in the endolysosome. Energy dispersion X-ray mapping and whole animal fluorescent imaging studies were carried out to show that combined pH and folate-receptor targeting reduces off-target accumulation of the nanocarriers. Further, a dual cell-specific and pH-sensitive nanocarrier greatly improved the efficacy of paclitaxel to regress subcutaneous tumors in vivo. These nanocarriers could improve chemotherapy tolerance and increase anti-tumor efficacy, while also providing a novel diagnostic read-out through fluorescent switching that is proportional to drug release in malignant tissues.
Collapse
Affiliation(s)
- Nagaprasad Puvvada
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India.,Department of Pharmacology, Dalhousie Medicine New Brunswick, Dalhousie University, New Brunswick, Canada
| | - Shashi Rajput
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - B N Prashanth Kumar
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Siddik Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine; Richmond, VA 23298, USA
| | - Suraj Konar
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Keith R Brunt
- Department of Pharmacology, Dalhousie Medicine New Brunswick, Dalhousie University, New Brunswick, Canada
| | - Raj R Rao
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23238, USA
| | - Abhijit Mazumdar
- Department of Clinical Cancer Prevention and Systems Biology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine; Richmond, VA 23298, USA.,VCU Institute of Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23238, USA.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23238, USA
| | - Ranadhir Basu
- Central Research Facility, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine; Richmond, VA 23298, USA.,VCU Institute of Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23238, USA.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23238, USA
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Amita Pathak
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
21
|
Kittitheeranun P, Sajomsang W, Phanpee S, Treetong A, Wutikhun T, Suktham K, Puttipipatkhachorn S, Ruktanonchai UR. Layer-by-layer engineered nanocapsules of curcumin with improved cell activity. Int J Pharm 2015; 492:92-102. [PMID: 26143232 DOI: 10.1016/j.ijpharm.2015.06.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/27/2015] [Accepted: 06/23/2015] [Indexed: 01/08/2023]
Abstract
Nanocarriers based on electrostatic Layer-by-layer (LbL) assembly of CaCO3 nanoparticles (CaCO3 NPs) was investigated. These inorganic nanoparticles was used as templates to construct nanocapsules made from films based on two oppositely charged polyelectrolytes, poly(diallyldimethylammonium chloride), and poly (sodium 4-styrene-sulfonate sodium salt), followed by core dissolution. The naked CaCO3 NPs, CaCO3 NPs coated with the polyelectrolytes and hollow nanocapsules were found with hexagonal shape with average sizes of 350-400 nm. A reversal of the surface charge between positive to negative zeta potential values was found, confirming the adsorption of polyelectrolytes. The loading efficiency and release of curcumin were controlled by the hydrophobic interactions between the drug and the polyelectrolyte matrix of the hollow nanocapsules. The quantity of curcumin released from hollow nanocapsules was found to increase under acidic environments, which is a desirable for anti-cancer drug delivery. The hollow nanocapsules were found to localize in the cytoplasm and nucleus compartment of Hela cancer cells after 24 h of incubation. Hollow nanocapsules were non-toxic to human fibroblast cells. Furthermore, curcumin loaded hollow nanocapsules exhibited higher in vitro cell inhibition against Hela cells than that of free curcumin, suggesting that polyelectrolyte based-hollow nanocapsules can be utilized as new carriers for drug delivery.
Collapse
Affiliation(s)
- Paveenuch Kittitheeranun
- National Nanotechnology Center, National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand
| | - Warayuth Sajomsang
- National Nanotechnology Center, National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand
| | - Sarunya Phanpee
- National Nanotechnology Center, National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand
| | - Alongkot Treetong
- National Nanotechnology Center, National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand
| | - Tuksadon Wutikhun
- National Nanotechnology Center, National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand
| | - Kunat Suktham
- National Nanotechnology Center, National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand
| | - Satit Puttipipatkhachorn
- Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Uracha Rungsardthong Ruktanonchai
- National Nanotechnology Center, National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand.
| |
Collapse
|
22
|
The polyacrylic acid/modified chitosan capsules with tunable release of small hydrophobic probe and drug. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.02.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
23
|
Anti-cancer, pharmacokinetics and tumor localization studies of pH-, RF- and thermo-responsive nanoparticles. Int J Biol Macromol 2014; 74:249-62. [PMID: 25526695 DOI: 10.1016/j.ijbiomac.2014.11.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 11/22/2014] [Accepted: 11/25/2014] [Indexed: 11/21/2022]
Abstract
The curcumin-encapsulated chitosan-graft-poly(N-vinyl caprolactam) nanoparticles containing gold nanoparticles (Au-CRC-TRC-NPs) were developed by ionic cross-linking method. After "optimum RF exposure" at 40 W for 5 min, Au-CRC-TRC-NPs dissipated heat energy in the range of ∼42°C, the lower critical solution temperature (LCST) of chitosan-graft-poly(N-vinyl caprolactam), causing controlled curcumin release and apoptosis to cancer cells. Further, in vivo PK/PD studies on swiss albino mice revealed that Au-CRC-TRC-NPs could be sustained in circulation for a week with no harm to internal organs. The colon tumor localization studies revealed that Au-CRC-TRC-NPs were retained in tumor for a week. These results throw light on their feasibility as multi-responsive nanomedicine for RF-assisted cancer treatment modalities.
Collapse
|
24
|
Cui J, van Koeverden MP, Müllner M, Kempe K, Caruso F. Emerging methods for the fabrication of polymer capsules. Adv Colloid Interface Sci 2014; 207:14-31. [PMID: 24210468 DOI: 10.1016/j.cis.2013.10.012] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/11/2013] [Accepted: 10/13/2013] [Indexed: 12/13/2022]
Abstract
Hollow polymer capsules are attracting increasing research interest due to their potential application as drug delivery vectors, sensors, biomimetic nano- or multi-compartment reactors and catalysts. Thus, significant effort has been directed toward tuning their size, composition, morphology, and functionality to further their application. In this review, we provide an overview of emerging techniques for the fabrication of polymer capsules, encompassing: self-assembly, layer-by-layer assembly, single-step polymer adsorption, bio-inspired assembly, surface polymerization, and ultrasound assembly. These techniques can be applied to prepare polymer capsules with diverse functionality and physicochemical properties, which may fulfill specific requirements in various areas. In addition, we critically evaluate the challenges associated with the application of polymer capsules in drug delivery systems.
Collapse
Affiliation(s)
- Jiwei Cui
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Martin P van Koeverden
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Markus Müllner
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Kristian Kempe
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Frank Caruso
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
25
|
Wang J, Li H, Li H, Zou C, Wang H, Li D. Mesoporous TiO₂ thin films exhibiting enhanced thermal stability and controllable pore size: preparation and photocatalyzed destruction of cationic dyes. ACS APPLIED MATERIALS & INTERFACES 2014; 6:1623-1631. [PMID: 24517509 DOI: 10.1021/am404484k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Ordered mesostructured TiO2 thin films were constructed through a method that combined sol-gel with evaporation-induced self-assembly (EISA). It was found that the calcination temperature, as well as the type of block copolymer, could vary the TiO2 mesoporous structure. Based on tension stress calculated by the surface energy of crystallites and the compression calculated by interface energy between the crystallites, the thermodynamic study for the sample had been carried out and the critical crystallite size expression of the mesoporous film was presented for the prediction of the thermal stability of the mesoporous structure at high temperature. It was also found that varying the mass ratio of templating agent to inorganic precursor could adjust the pore size of mesoporous TiO2. The pore size regulating mechanism had been discussed. The sample calcined at 450-500 °C, which had a higher specific surface area and larger pore size, exhibited higher photocatalyzed destruction capability of Methylene Blue.
Collapse
Affiliation(s)
- Jinshu Wang
- School of Materials Science and Engineering, Beijing University of Technology , Beijing 100124, People's Republic of China
| | | | | | | | | | | |
Collapse
|
26
|
Mertins O, Dimova R. Insights on the interactions of chitosan with phospholipid vesicles. Part II: Membrane stiffening and pore formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:14552-14559. [PMID: 24168435 DOI: 10.1021/la4032199] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The interactions between the polysaccharide chitosan and phospholipids are studied using giant unilamellar vesicles (GUVs). We explore both bare GUVs incubated in chitosan solution post vesicle formation and GUVs prepared using a reverse-phase method where the polymer is adsorbed on both sides of the membrane leaflet. The fluctuations of the vesicle membrane are significantly reduced in the presence of chitosan as characterized by the bending rigidity, which increases with chitosan concentration denoting physical restrictions imposed to the bilayer as a consequence of the interaction with the polysaccharide. In the absence of chitosan, the rigidity of the bare phosphatidylcholine vesicles is also observed to increase (about 3-fold) upon the incorporation of a small fraction (10 mol %) of phosphatidylglycerol. Pore formation caused by chitosan is evidenced by loss of optical contrast of the giant vesicles denoting exchange between internal and external solutions through the pores. Our study provides evidence for the potential of chitosan to affect the bilayer permeability and to disrupt negatively charged membranes as well as to promote adhesiveness of vesicles on glass surfaces.
Collapse
Affiliation(s)
- Omar Mertins
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces , Science Park Golm, 14424 Potsdam, Germany
| | | |
Collapse
|
27
|
Goethals EC, Shukla R, Mistry V, Bhargava SK, Bansal V. Role of the templating approach in influencing the suitability of polymeric nanocapsules for drug delivery: LbL vs SC/MS. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:12212-12219. [PMID: 23998648 DOI: 10.1021/la4024103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Polymer nanocapsules play an increasingly important role for drug delivery applications. Layer-by-layer (LbL) templated synthesis has received the widest attention to fabricate polymer nanocapsules. However, for drug delivery applications, the LbL approach may not necessarily offer the optimum nanocapsules. We make the first attempt to compare the LbL approach with a more recently developed solid core/mesoporous shell (SC/MS) templated approach in context of their suitability for construction of sub-500 nm sized capsules for drug delivery applications. The nanocapsules of chitosan, poly(allylamine hydrochloride) (PAH), and poly(sodium 4-styrenesulfonate) (PSS) are fabricated using LbL and SC/MS templating approaches and loaded with curcumin, a model lipophilic anticancer drug. The influence of the templating approach on capsule aggregation, polymer loading, drug loading, cellular uptake, and therapeutic efficacy against MCF-7 breast cancer cells is compared in an effort to identify the most suitable fabrication method and polymer material for drug delivery applications. In combination, among different tested nanocapsules, chitosan nanocapsules fabricated using the SC/MS approach are found to be the most promising candidate that demonstrates the optimum cytotoxic efficiency and significant potential for drug delivery.
Collapse
Affiliation(s)
- Emma C Goethals
- NanoBiotechnology Research Lab (NBRL) and ‡Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Applied Sciences, RMIT University , GPO Box 2476 V, Melbourne, VIC 3001, Australia
| | | | | | | | | |
Collapse
|