1
|
Mkhohlakali A, Fuku X, Seo MH, Modibedi M, Khotseng L, Mathe M. Electro-Design of Bimetallic PdTe Electrocatalyst for Ethanol Oxidation: Combined Experimental Approach and Ab Initio Density Functional Theory (DFT)-Based Study. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3607. [PMID: 36296796 PMCID: PMC9610566 DOI: 10.3390/nano12203607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
An alternative electrosynthesis of PdTe, using the electrochemical atomic layer deposition (E-ALD) method, is reported. The cyclic voltammetry technique was used to analyze Au substrate in copper (Cu2+), and a tellurous (Te4+) solution was used to identify UPDs and set the E-ALD cycle program. Results obtained using atomic force microscopy (AFM) and scanning electron microscopy (SEM) techniques reveal the nanometer-sized flat morphology of the systems, indicating the epitaxial characteristics of Pd and PdTe nanofilms. The effect of the Pd:Te ratio on the crystalline structure, electronic properties, and magnetic properties was investigated using a combination of density functional theory (DFT) and X-ray diffraction techniques. Te-containing electrocatalysts showed improved peak current response and negative onset potential toward ethanol oxidation (5 mA; -0.49 V) than Pd (2.0 mA; -0.3 V). Moreover, DFT ab initio calculation results obtained when the effect of Te content on oxygen adsorption was studied revealed that the d-band center shifted relative to the Fermi level: -1.83 eV, -1.98 eV, and -2.14 eV for Pd, Pd3Te, and Pd3Te2, respectively. The results signify the weakening of the CO-like species and the improvement in the PdTe catalytic activity. Thus, the electronic and geometric effects are the descriptors of Pd3Te2 activity. The results suggest that Pd2Te2 is a potential candidate electrocatalyst that can be used for the fabrication of ethanol fuel cells.
Collapse
Affiliation(s)
- Andile Mkhohlakali
- Analytical Chemistry Division, Mintek, 200 Malibongwe Drive, Randburg 2194, South Africa
- Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville,
Cape Town 7535, South Africa
| | - Xolile Fuku
- Institute of Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Roodepoort 1710, South Africa
| | - Min Ho Seo
- Department of Nanotechnology Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48547, Korea
| | - Mmalewane Modibedi
- Council for Scientific and Industrial Research (CSIR), Energy Center, Pretoria 0012, South Africa
| | - Lindiwe Khotseng
- Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville,
Cape Town 7535, South Africa
| | - Mkhulu Mathe
- Department of Chemistry, ICES, CSET, University of South Africa, Florida Science Campus, Roodepoort 1710, South Africa
| |
Collapse
|
2
|
Mkhohlakali AC, Fuku X, Modibedi RM, Khotseng LE, Mathe MK. Electroformation of Pd‐modified Thin Film Electrocatalysts Using E‐ALD Technique. ELECTROANAL 2021. [DOI: 10.1002/elan.202100040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- A. C. Mkhohlakali
- Smart Places Energy Centre Council for Scientific and Industrial Research (CSIR) Pretoria 0012 South Africa
- Department of Chemistry University of the Western Cape, Bellville Cape Town South Africa
| | - X. Fuku
- Smart Places Energy Centre Council for Scientific and Industrial Research (CSIR) Pretoria 0012 South Africa
| | - R. M. Modibedi
- Smart Places Energy Centre Council for Scientific and Industrial Research (CSIR) Pretoria 0012 South Africa
| | - L. E. Khotseng
- Department of Chemistry University of the Western Cape, Bellville Cape Town South Africa
| | - M. K. Mathe
- Smart Places Energy Centre Council for Scientific and Industrial Research (CSIR) Pretoria 0012 South Africa
| |
Collapse
|
3
|
Xaba N, Modibedi RM, Mathe MK, Khotseng LE. Electrochemical Deposition of PdBiSn Catalyst for Glycerol Oxidation in Alkaline Medium. ELECTROANAL 2020. [DOI: 10.1002/elan.202060301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nqobile Xaba
- Energy Centre Council for Scientific and Industrial Research (CSIR) Pretoria South Africa
- Department of Chemistry University of Western Cape Private Bag X17, Bellville 7535 South Africa
| | - Remegia M. Modibedi
- Energy Centre Council for Scientific and Industrial Research (CSIR) Pretoria South Africa
| | - Mkhulu K. Mathe
- Energy Centre Council for Scientific and Industrial Research (CSIR) Pretoria South Africa
| | - Lindiwe E. Khotseng
- Department of Chemistry University of Western Cape Private Bag X17, Bellville 7535 South Africa
| |
Collapse
|
4
|
Pd, PdSn, PdBi, and PdBiSn Nanostructured Thin Films for the Electro-Oxidation of Ethanol in Alkaline Media. Electrocatalysis (N Y) 2019. [DOI: 10.1007/s12678-019-0511-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Oxygen Electroreduction in Alkaline Solution on Pd Coatings Prepared by Galvanic Exchange of Copper. Electrocatalysis (N Y) 2017. [DOI: 10.1007/s12678-017-0445-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Yuan Q, Takakusagi S, Wakisaka Y, Uemura Y, Wada T, Ariga H, Asakura K. Polarization-dependent Total Reflection Fluorescence X-ray Absorption Fine Structure (PTRF-XAFS) Studies on the Structure of a Pt Monolayer on Au(111) Prepared by the Surface-limited Redox Replacement Reaction. CHEM LETT 2017. [DOI: 10.1246/cl.170423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Qiuyi Yuan
- ICAT, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021
| | - Satoru Takakusagi
- ICAT, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021
| | - Yuki Wakisaka
- ICAT, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021
| | - Yohei Uemura
- Institute for Molecular Science, Okazaki, Aichi 444-0867
| | | | - Hiroko Ariga
- ICAT, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021
| | - Kiyotaka Asakura
- ICAT, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021
| |
Collapse
|
7
|
Benson DM, Tsang CF, Sugar JD, Jagannathan K, Robinson DB, El Gabaly F, Cappillino PJ, Stickney JL. Enhanced Kinetics of Electrochemical Hydrogen Uptake and Release by Palladium Powders Modified by Electrochemical Atomic Layer Deposition. ACS APPLIED MATERIALS & INTERFACES 2017; 9:18338-18345. [PMID: 28449579 DOI: 10.1021/acsami.7b03005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Electrochemical atomic layer deposition (E-ALD) is a method for the formation of nanofilms of materials, one atomic layer at a time. It uses the galvanic exchange of a less noble metal, deposited using underpotential deposition (UPD), to produce an atomic layer of a more noble element by reduction of its ions. This process is referred to as surface limited redox replacement and can be repeated in a cycle to grow thicker deposits. It was previously performed on nanoparticles and planar substrates. In the present report, E-ALD is applied for coating a submicron-sized powder substrate, making use of a new flow cell design. E-ALD is used to coat a Pd powder substrate with different thicknesses of Rh by exchanging it for Cu UPD. Cyclic voltammetry and X-ray photoelectron spectroscopy indicate an increasing Rh coverage with increasing numbers of deposition cycles performed, in a manner consistent with the atomic layer deposition (ALD) mechanism. Cyclic voltammetry also indicated increased kinetics of H sorption and desorption in and out of the Pd powder with Rh present, relative to unmodified Pd.
Collapse
Affiliation(s)
- David M Benson
- Department of Chemistry, University of Georgia , Athens, Georgia 30602, United States
| | - Chu F Tsang
- Department of Chemistry, University of Georgia , Athens, Georgia 30602, United States
| | - Joshua D Sugar
- Sandia National Laboratories , Livermore, California 94550, United States
| | - Kaushik Jagannathan
- Department of Chemistry, University of Georgia , Athens, Georgia 30602, United States
| | - David B Robinson
- Sandia National Laboratories , Livermore, California 94550, United States
| | - Farid El Gabaly
- Sandia National Laboratories , Livermore, California 94550, United States
| | - Patrick J Cappillino
- Sandia National Laboratories , Livermore, California 94550, United States
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth , North Dartmouth, Massachusetts 02747, United States
| | - John L Stickney
- Department of Chemistry, University of Georgia , Athens, Georgia 30602, United States
| |
Collapse
|
8
|
|
9
|
Dimitrov N. Recent Advances in the Growth of Metals, Alloys, and Multilayers by Surface Limited Redox Replacement (SLRR) Based Approaches. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.05.115] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Fang J, Chen J, Chen G, Cheng Y, Chin T. Direct, sequential growth of copper film on TaN/Ta barrier substrates by alternation of Pb-UPD and Cu-SLRR. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.04.129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Ambrozik S, Dimitrov N. The Deposition of Pt via Electroless Surface Limited Redox Replacement. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.04.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Petrii OA. Electrosynthesis of nanostructures and nanomaterials. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4438] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Yan X, Xiong H, Bai Q, Frenzel J, Si C, Chen X, Eggeler G, Zhang Z. Atomic layer-by-layer construction of Pd on nanoporous gold via underpotential deposition and displacement reaction. RSC Adv 2015. [DOI: 10.1039/c4ra17014h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ultrathin Pd films with one to five atomic layers were decorated on nanoporous gold by underpotential deposition and galvanic displacement.
Collapse
Affiliation(s)
- Xuejiao Yan
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education)
- School of Materials Science and Engineering
- Shandong University
- Jinan
- P.R. China
| | - Haiyan Xiong
- Center for Advanced Energy Materials & Technology Research (AEMT), and School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- China
| | - Qingguo Bai
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education)
- School of Materials Science and Engineering
- Shandong University
- Jinan
- P.R. China
| | - Jan Frenzel
- Institut für Werkstoffe
- Ruhr Universität Bochum
- Bochum 44780
- Germany
| | - Conghui Si
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education)
- School of Materials Science and Engineering
- Shandong University
- Jinan
- P.R. China
| | - Xiaoting Chen
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education)
- School of Materials Science and Engineering
- Shandong University
- Jinan
- P.R. China
| | - Gunther Eggeler
- Institut für Werkstoffe
- Ruhr Universität Bochum
- Bochum 44780
- Germany
| | - Zhonghua Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education)
- School of Materials Science and Engineering
- Shandong University
- Jinan
- P.R. China
| |
Collapse
|
14
|
Jones CG, Cappillino PJ, Stavila V, Robinson DB. Control of both particle and pore size in nanoporous palladium alloy powders. POWDER TECHNOL 2014. [DOI: 10.1016/j.powtec.2014.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Birdja Y, Yang J, Koper M. Electrocatalytic Reduction of Nitrate on Tin-modified Palladium Electrodes. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.06.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Ambrozik S, Rawlings B, Vasiljevic N, Dimitrov N. Metal deposition via electroless surface limited redox replacement. Electrochem commun 2014. [DOI: 10.1016/j.elecom.2014.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
17
|
Hydrogen sorption properties of bare and Rh-modified Pd nanofilms grown via surface limited redox replacement reactions. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2013.10.096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Modibedi RM, Mathe MK, Motsoeneng RG, Khotseng LE, Ozoemena KI, Louw EK. Electro-deposition of Pd on Carbon paper and Ni foam via surface limited redox-replacement reaction for oxygen reduction reaction. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2013.11.062] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Cappillino PJ, Sugar JD, El Gabaly F, Cai TY, Liu Z, Stickney JL, Robinson DB. Atomic-layer electroless deposition: a scalable approach to surface-modified metal powders. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:4820-4829. [PMID: 24738575 DOI: 10.1021/la500477s] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Palladium has a number of important applications in energy and catalysis in which there is evidence that surface modification leads to enhanced properties. A strategy for preparing such materials is needed that combines the properties of (i) scalability (especially on high-surface-area substrates, e.g. powders); (ii) uniform deposition, even on substrates with complex, three-dimensional features; and (iii) low-temperature processing conditions that preserve nanopores and other nanostructures. Presented herein is a method that exhibits these properties and makes use of benign reagents without the use of specialized equipment. By exposing Pd powder to dilute hydrogen in nitrogen gas, sacrificial surface PdH is formed along with a controlled amount of dilute interstitial hydride. The lattice expansion that occurs in Pd under higher H2 partial pressures is avoided. Once the flow of reagent gas is terminated, addition of metal salts facilitates controlled, electroless deposition of an overlayer of subnanometer thickness. This process can be cycled to create thicker layers. The approach is carried out under ambient processing conditions, which is an advantage over some forms of atomic layer deposition. The hydride-mediated reaction is electroless in that it has no need for connection to an external source of electrical current and is thus amenable to deposition on high-surface-area substrates having rich, nanoscale topography as well as on insulator-supported catalyst particles. STEM-EDS measurements show that conformal Rh and Pt surface layers can be formed on Pd powder with this method. A growth model based on energy-resolved XPS depth profiling of Rh-modified Pd powder is in general agreement. After two cycles, deposits are consistent with 70-80% coverage and a surface layer with a thickness from 4 to 8 Å.
Collapse
|
20
|
Cai Y, Fan H. One-step self-assembly economical synthesis of hierarchical ZnO nanocrystals and their gas-sensing properties. CrystEngComm 2013. [DOI: 10.1039/c3ce41374h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|