1
|
Madhu J, Santhanam A, Velauthapillai D. Synthesis of "Ice Cube" Shaped Zeolite A Type and Cu 2+ Ion-Exchanged Zeolites and Study of Their CO 2 Adsorption Performance. ACS OMEGA 2024; 9:45926-45942. [PMID: 39583737 PMCID: PMC11579726 DOI: 10.1021/acsomega.4c05487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/26/2024]
Abstract
In this study, zeolite type A and four Cu2+ ion-exchanged zeolites were synthesized through cationic ion exchange process with Cu concentrations of 0.05, 0.1, 0.15, and 0.2 M respectively. The physicochemical properties of both the prepared and ion-exchanged zeolites were thoroughly analyzed. Field Emission Scanning Electron Microscopy (FESEM) micrographs revealed that the synthesized zeolites exhibited an "ice cube"-shaped morphology, and this morphology was maintained even after the ion exchange process. N2 adsorption/desorption studies indicated a typical type IV isotherm with an H3 hysteresis loop for both the prepared and Cu2+ ion-exchanged zeolites. CO2 adsorption data followed a type I isotherm, with the highest adsorption capacity of 4.02 mmol/g observed for the 0.1 M Cu2+ ion-exchanged zeolites. The adsorption behavior was modeled using a nonlinear isotherm, with good agreement between experimental and fitted data.
Collapse
Affiliation(s)
- Jayaprakash Madhu
- Department
of Physics, Coimbatore Institute of Technology, Coimbatore, Tamil Nadu-641014, India
| | - Agilan Santhanam
- Department
of Physics, Coimbatore Institute of Technology, Coimbatore, Tamil Nadu-641014, India
| | - Dhayalan Velauthapillai
- Faculty
of Engineering and Science, Western Norway
University of Applied Sciences, Postbox 7030, 5020 Bergen, Norway
| |
Collapse
|
2
|
Ke Q, Xiong F, Fang G, Chen J, Niu X, Pan P, Cui G, Xing H, Lu H. The Reinforced Separation of Intractable Gas Mixtures by Using Porous Adsorbents. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408416. [PMID: 39161083 DOI: 10.1002/adma.202408416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/31/2024] [Indexed: 08/21/2024]
Abstract
This review focuses on the mechanism and driving force in the intractable gas separation using porous adsorbents. A variety of intractable mixtures have been discussed, including air separation, carbon capture, and hydrocarbon purification. Moreover, the separation systems are categorized according to distinctly biased modes depending on the minor differences in the kinetic diameter, dipole/quadruple moment, and polarizability of the adsorbates, or sorted by the varied separation occasions (e.g., CO2 capture from flue gas or air) and driving forces (thermodynamic and kinetic separation, molecular sieving). Each section highlights the functionalization strategies for porous materials, like synthesis condition optimization and organic group modifications for porous carbon materials, cation exchange and heteroatom doping for zeolites, and metal node-organic ligand adjustments for MOFs. These functionalization strategies are subsequently associated with enhanced adsorption performances (capacity, selectivity, structural/thermal stability, moisture resistance, etc.) toward the analog gas mixtures. Finally, this review also discusses future challenges and prospects for using porous materials in intractable gas separation. Therein, the combination of theoretical calculation with the synthesis condition and adsorption parameters optimization of porous adsorbents may have great potential, given its fast targeting of candidate adsorbents and deeper insights into the adsorption forces in the confined pores and cages.
Collapse
Affiliation(s)
- Quanli Ke
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Feng Xiong
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Guonan Fang
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jing Chen
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xiaopo Niu
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Pengyun Pan
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Guokai Cui
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Huabin Xing
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Hanfeng Lu
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
3
|
Chen G, Liu G, Pan Y, Liu G, Gu X, Jin W, Xu N. Zeolites and metal-organic frameworks for gas separation: the possibility of translating adsorbents into membranes. Chem Soc Rev 2023. [PMID: 37377411 DOI: 10.1039/d3cs00370a] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Zeolites and metal-organic frameworks (MOFs) represent an attractive class of crystalline porous materials that possesses regular pore structures. The inherent porosity of these materials has led to an increasing focus on gas separation applications, encompassing adsorption and membrane separation techniques. Here, a brief overview of the critical properties and fabrication approaches for zeolites and MOFs as adsorbents and membranes is given. The separation mechanisms, based on pore sizes and the chemical properties of nanochannels, are explored in depth, considering the distinct characteristics of adsorption and membrane separation. Recommendations for judicious selection and design of zeolites and MOFs for gas separation purposes are emphasized. By examining the similarities and differences between the roles of nanoporous materials as adsorbents and membranes, the feasibility of zeolites and MOFs from adsorption separation to membrane separation is discussed. With the rapid development of zeolites and MOFs towards adsorption and membrane separation, challenges and perspectives of this cutting-edge area are also addressed.
Collapse
Affiliation(s)
- Guining Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China.
| | - Guozhen Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China.
| | - Yang Pan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China.
| | - Gongping Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China.
- Suzhou Laboratory, Suzhou 215125, China
| | - Xuehong Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China.
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China.
| | - Nanping Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China.
- Suzhou Laboratory, Suzhou 215125, China
| |
Collapse
|
4
|
Hasegawa Y, Natsui M, Abe C, Ikeda A, Lundin STB. Estimation of CO 2 Separation Performances through CHA-Type Zeolite Membranes Using Molecular Simulation. MEMBRANES 2023; 13:60. [PMID: 36676867 PMCID: PMC9863776 DOI: 10.3390/membranes13010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Chabazite (CHA)-type zeolite membranes are a potential material for CO2 separations because of their small pore aperture, large pore volume, and low aluminum content. In this study, the permeation and separation properties were evaluated using a molecular simulation technique with a focus on improving the CO2 separation performance. The adsorption isotherms of CO2 and CH4 on CHA-type zeolite with Si/Al = 18.2 were predicted by grand canonical Monte Carlo, and the diffusivities in zeolite micropores were simulated by molecular dynamics. The CO2 separation performance of the CHA-type zeolite membrane was estimated by a Maxwell-Stefan equation, accounting for mass transfer through the support tube. The results indicated that the permeances of CO2 and CH4 were influenced mainly by the porosity of the support, with the CO2 permeance reduced due to preferential adsorption with increasing pressure drop. In contrast, it was important for estimation of the CH4 permeance to predict the amounts of adsorbed CH4. Using molecular simulation and the Maxwell-Stefan equation is shown to be a useful technique for estimating the permeation properties of zeolite membranes, although some problems such as predicting accurate adsorption terms remain.
Collapse
|
5
|
Pérez-Botella E, Valencia S, Rey F. Zeolites in Adsorption Processes: State of the Art and Future Prospects. Chem Rev 2022; 122:17647-17695. [PMID: 36260918 PMCID: PMC9801387 DOI: 10.1021/acs.chemrev.2c00140] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Zeolites have been widely used as catalysts, ion exchangers, and adsorbents since their industrial breakthrough in the 1950s and continue to be state-of the-art adsorbents in many separation processes. Furthermore, their properties make them materials of choice for developing and emerging separation applications. The aim of this review is to put into context the relevance of zeolites and their use and prospects in adsorption technology. It has been divided into three different sections, i.e., zeolites, adsorption on nanoporous materials, and chemical separations by zeolites. In the first section, zeolites are explained in terms of their structure, composition, preparation, and properties, and a brief review of their applications is given. In the second section, the fundamentals of adsorption science are presented, with special attention to its industrial application and our case of interest, which is adsorption on zeolites. Finally, the state-of-the-art relevant separations related to chemical and energy production, in which zeolites have a practical or potential applicability, are presented. The replacement of some of the current separation methods by optimized adsorption processes using zeolites could mean an improvement in terms of sustainability and energy savings. Different separation mechanisms and the underlying adsorption properties that make zeolites interesting for these applications are discussed.
Collapse
Affiliation(s)
| | | | - Fernando Rey
- . Phone: +34 96 387 78 00.
Fax: +34 96 387 94
44
| |
Collapse
|
6
|
Tan X, Robijns S, Thür R, Ke Q, De Witte N, Lamaire A, Li Y, Aslam I, Van Havere D, Donckels T, Van Assche T, Van Speybroeck V, Dusselier M, Vankelecom I. Truly combining the advantages of polymeric and zeolite membranes for gas separations. Science 2022; 378:1189-1194. [PMID: 36520897 DOI: 10.1126/science.ade1411] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mixed-matrix membranes (MMMs) have been investigated to render energy-intensive separations more efficiently by combining the selectivity and permeability performance, robustness, and nonaging properties of the filler with the easy processing, handling, and scaling up of the polymer. However, truly combining all in one single material has proven very challenging. In this work, we filled a commercial polyimide with ultrahigh loadings of a high-aspect ratio, CO2-philic Na-SSZ-39 zeolite with a three-dimensional channel system that precisely separates gas molecules. By carefully designing both zeolite and MMM synthesis, we created a gas-percolation highway across a flexible and aging-resistant (more than 1 year) membrane. The combination of a CO2-CH4 mixed-gas selectivity of ~423 and a CO2 permeability of ~8300 Barrer outperformed all existing polymer-based membranes and even most zeolite-only membranes.
Collapse
Affiliation(s)
- Xiaoyu Tan
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Sven Robijns
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Raymond Thür
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Quanli Ke
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Niels De Witte
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Aran Lamaire
- Center for Molecular Modeling, Ghent University, Tech Lane Ghent Science Park, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Yun Li
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Imran Aslam
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Daan Van Havere
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Thibaut Donckels
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Tom Van Assche
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Veronique Van Speybroeck
- Center for Molecular Modeling, Ghent University, Tech Lane Ghent Science Park, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Michiel Dusselier
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Ivo Vankelecom
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
7
|
A Comparative Study of the NH3-SCR Activity of Cu/SSZ-39 and Cu/SSZ-13 with Similar Cu/Al Ratios. Top Catal 2022. [DOI: 10.1007/s11244-022-01696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Scalable fabrication of highly selective SSZ-13 membranes on 19-channel monolithic supports for efficient CO2 capture. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Fabrication of Si-CHA/SSZ-13 bilayer membrane for CO2/CH4 separation in wet conditions. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02202-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Adsorption of CO2 on ZSM-5 Zeolite: Analytical Investigation via a Multilayer Statistical Physics Model. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this paper, a synthesized zeolite (ZSM-5) is used as an adsorbent to analyze the adsorption phenomenon of carbon dioxide. This investigation, based on the statistical physics treatment, applied the multilayer model with saturation to understand the CO2 adsorption on four samples, namely M-ZSM-5 (M = Na+, Mg2+, Zn2+, La3+), at various temperatures T = 0 °C, 30 °C and 60 °C. The modeling results indicated that CO2 adsorption occurred via a non-parallel orientation on the ZSM-5 surface. The CO2 adsorption capacities varied from 26.14 to 28.65 cm3/g for Na-ZSM-5, from 25.82 to 27.97 cm3/g for Mg-ZSM-5, from 54.82 to 68.63 cm3/g for La-ZSM-5 and from 56.53 to 74.72 cm3/g for Zn-ZSM-5. Thus, Zn-ZSM-5 exhibits the highest adsorption amount. The analysis of the adsorption energies shows that the adsorption of CO2 on ZSM-5 zeolite is a physisorption phenomenon that could be controlled thanks to the energy parameters obtained via the numerical findings using the multilayer statistical model. Finally, the distribution of site energy was determined to confirm the physical character of the interactions between adsorbate/adsorbent and the heterogeneity of the zeolite surface.
Collapse
|
11
|
Fu D, Park Y, Davis ME. Zinc Containing Small‐Pore Zeolites for Capture of Low Concentration Carbon Dioxide. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Donglong Fu
- Chemical Engineering California Institute of Technology 1200 E. California Blvd. Pasadena CA 91125 USA
| | - Youngkyu Park
- Chemical Engineering California Institute of Technology 1200 E. California Blvd. Pasadena CA 91125 USA
| | - Mark E. Davis
- Chemical Engineering California Institute of Technology 1200 E. California Blvd. Pasadena CA 91125 USA
| |
Collapse
|
12
|
Yousefzadeh H, Bozbag SE, Erkey C. Supercritical ion exchange: A new method to synthesize copper exchanged zeolites. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2021.105417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Fu D, Davis ME. Carbon dioxide capture with zeotype materials. Chem Soc Rev 2022; 51:9340-9370. [DOI: 10.1039/d2cs00508e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review describes the application of zeotype materials for the capture of CO2 in different scenarios, the critical parameters defining the adsorption performances, and the challenges of zeolitic adsorbents for CO2 capture.
Collapse
Affiliation(s)
- Donglong Fu
- Chemical Engineering, California Institute of Technology, Mail Code 210-41, Pasadena, California 91125, USA
| | - Mark E. Davis
- Chemical Engineering, California Institute of Technology, Mail Code 210-41, Pasadena, California 91125, USA
| |
Collapse
|
14
|
Growth Study of Hierarchical Pore SSZ-13 Molecular Sieves with Improved CO 2 Adsorption Performance. NANOMATERIALS 2021; 11:nano11123171. [PMID: 34947520 PMCID: PMC8704635 DOI: 10.3390/nano11123171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022]
Abstract
SSZ-13, with a unique pore structure and excellent thermal stability, showed a potential application in the adsorption and catalysis industry. In this work, Al(NO3)3 was used as an Al source to study the performance and morphology of the zeolite. The zeolite was prepared with an unconventional process by adding an Al source before the structure-directing agent and base. When inorganic oxygen-containing anions were introduced into the unconventional synthesis system, the crystals of the zeolite conform to the unconventional growth mode. The zeolites with large crystals were assembled from small unit nanocrystals. Extending the reaction time, aging time and adding fluoride ions introduced a multistage pore structure on the surface of the molecular sieve, which improved the CO2 adsorption performance. When aging for 24 h, reaction for 96 h, and the amount of fluorine added was 0.05 (F/Si), the sample had the best hierarchical pore structure. The SSZ-13 molecular sieve with an added amount of 0.1 (F/Si) has the highest CO2 adsorption performance. The adsorption amount was 4.55 mmol/g at 1 bar, which is 20.4% higher than that of zeolite SSZ-13 prepared by the conventional process.
Collapse
|
15
|
Fu D, Park Y, Davis ME. Zinc Containing Small-Pore Zeolites for Capture of Low Concentration Carbon Dioxide. Angew Chem Int Ed Engl 2021; 61:e202112916. [PMID: 34799943 DOI: 10.1002/anie.202112916] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Indexed: 02/02/2023]
Abstract
The capture of low concentration CO2 presents numerous challenges. Here, we report that zinc containing chabazite (CHA) zeolites can realize high capacity, fast adsorption kinetics, and low desorption energy when capturing ca. 400 ppm CO2 . Control of the state and location of the zinc ions in the CHA cage is critical to the performance. Zn2+ loaded onto paired anionic sites in the six-membered rings (6MRs) in the CHA cage are the primary sites to adsorb ca. 0.51 mmol CO2 /g-zeolite with Si/Al=ca. 7, a 17-fold increase compared to the parent H-form. The capacity is increased further to ca. 0.67 mmol CO2 /g-zeolite with Si/Al=ca. 2 due to more paired sites for zinc exchange. Zeolites with double six-membered rings (D6MRs) that orient 6MRs into the cages give enhanced uptakes for CO2 adsorption with zinc exchange. The results reveal that zinc exchanged CHA and several other small pore, cage containing zeolites merit further investigation for the capture of low concentration CO2 .
Collapse
Affiliation(s)
- Donglong Fu
- Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, USA
| | - Youngkyu Park
- Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, USA
| | - Mark E Davis
- Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, USA
| |
Collapse
|
16
|
Hierarchical Mesoporous SSZ-13 Chabazite Zeolites for Carbon Dioxide Capture. Catalysts 2021. [DOI: 10.3390/catal11111355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Artificial carbon dioxide capture is an alternative method to remove the carbon dioxide already accumulated in the atmosphere as well as to stop its release at its large-scale emission points at the source, such as at power plants. However, new adsorbents are needed to make the approach feasible. For this purpose, in this study, hierarchical mesoporous-microporous chabazite-type zeolites were synthesised by applying a dual-templating method. The microporous zeolite structure-directing agent N,N,N-trimethyl-1-adamantanammonium hydroxide was combined with an organosilane mesopore-generating template, 3-(trimethoxysilyl)propyl octadecyl dimethyl ammonium chloride. Materials were characterised for their structural and textural properties and tested for their carbon dioxide capture capacity both in their original sodium form and in their proton-exchanged form by means of breakthrough curve analysis and sorption isotherms. The influence of template ratios on their structure, carbon dioxide capture, and capacity have been identified. All mesoporous materials showed fast adsorption-desorption kinetics due to a reduction in the steric limitations via the introduction of a meso range network of pores. The hierarchical zeolites are recyclable with a negligible loss in crystallinity and carbon dioxide capture capacity, which makes them potential materials for larger-scale application.
Collapse
|
17
|
Power-to-decarbonization: Mesoporous carbon-MgO nanohybrid derived from plasma-activated seawater salt-loaded biomass for efficient CO2 capture. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Sarker M, Yoo DK, Lee S, Kim TW, Kim CU, Jhung SH. Conversion of Y into SSZ-13 zeolite, in the absence of extra silica, alumina and seed crystals, with N,N,N-dimethylethylcyclohexylammonium bromide, and application of the SSZ-13 zeolite in the propylene production from ethylene. Catal Today 2021. [DOI: 10.1016/j.cattod.2019.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Gollakota ARK, Munagapati VS, Volli V, Gautam S, Wen JC, Shu CM. Coal bottom ash derived zeolite (SSZ-13) for the sorption of synthetic anion Alizarin Red S (ARS) dye. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125925. [PMID: 34492857 DOI: 10.1016/j.jhazmat.2021.125925] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/08/2021] [Accepted: 04/16/2021] [Indexed: 06/13/2023]
Abstract
SSZ-13 zeolite was successfully synthesized from coal bottom ash (CBA) upon hydrothermal treatment for selective sorption of Alizarin Red S (ARS) dye. The characterization of CBA, and SSZ-13 were performed using BET, SEM, FTIR, XRF, and XRD techniques. The optimal fusion ratio (CBA: NaOH) was identified as 1:3, resulting zeolite SSZ-13 with a specific surface area of 206.6 m2/g, compared to raw CBA (7.81 m2/g). The kinetics, isotherms, and thermodynamics of the ARS adsorption onto the SSZ-13, and CBA were assessed under various conditions. The results indicated that the adsorption phenomenon is optimal under acidic medium (pH = 2 for CBA, pH = 3 for SSZ-13); at ambient room temperature of 298 K; adsorbent dosage of 0.03 g, contact time of 120 min. Further, the equilibrium data fitted well to Langmuir isotherm (qe = 210.75 mg/g), following pseudo-second-order kinetics. Moreover, the chemisorption phenomenon is clearly described using Elovich kinetic model. Various thermodynamic parameters signifies the adsorption phenomenon is spontaneous, and endothermic in nature. Finally, regeneration studies revealed the sensitivity of SSZ-13 zeolite towards 0.1 M NaOH/EtOH eluent in recovery and the possibility of reuse to five successive adsorption/desorption cycles. Thus, hydrothermal treatment of CBA has potential in producing zeolites suitable to adsorption.
Collapse
Affiliation(s)
- Anjani R K Gollakota
- Department of Safety, Health, and Environmental Engineering, National Yunlin University of Science and Technology, Douliou City 64002, Yunlin County, Taiwan, ROC.
| | - Venkata Subbaiah Munagapati
- Research Centre for Soil & Water Resources and Natural Disaster Prevention (SWAN), National Yunlin University of Science & Technology, Douliou 64002, Taiwan, ROC
| | - Vikranth Volli
- Department of Safety, Health, and Environmental Engineering, National Yunlin University of Science and Technology, Douliou City 64002, Yunlin County, Taiwan, ROC
| | - Sneha Gautam
- Department of Civil Engineering, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu 641114, India
| | - Jet-Chau Wen
- Department of Safety, Health, and Environmental Engineering, National Yunlin University of Science and Technology, Douliou City 64002, Yunlin County, Taiwan, ROC; Research Centre for Soil & Water Resources and Natural Disaster Prevention (SWAN), National Yunlin University of Science & Technology, Douliou 64002, Taiwan, ROC.
| | - Chi-Min Shu
- Department of Safety, Health, and Environmental Engineering, National Yunlin University of Science and Technology, Douliou City 64002, Yunlin County, Taiwan, ROC.
| |
Collapse
|
20
|
Water adsorption in fresh and thermally aged zeolites: equilibrium and kinetics. ADSORPTION 2021. [DOI: 10.1007/s10450-021-00331-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Andonova S, Akbari SS, Karadaş F, Spassova I, Paneva D, Hadjiivanov K. Structure and properties of KNi–hexacyanoferrate Prussian Blue Analogues for efficient CO2 capture: Host–guest interaction chemistry and dynamics of CO2 adsorption. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Evaluation of different potassium salts as activators for hierarchically porous carbons and their applications in CO2 adsorption. J Colloid Interface Sci 2021; 583:40-49. [DOI: 10.1016/j.jcis.2020.09.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 11/21/2022]
|
23
|
Møller KH, Debost M, Lakiss L, Kegnæs S, Mintova S. Interzeolite conversion of a micronsized FAU to a nanosized CHA zeolite free of organic structure directing agent with a high CO 2 capacity. RSC Adv 2020; 10:42953-42959. [PMID: 35514926 PMCID: PMC9058122 DOI: 10.1039/d0ra04937a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/13/2020] [Indexed: 11/21/2022] Open
Abstract
The interzeolite transformation of a micronsized FAU zeolite to a nanosized CHA zeolite via alkali treatment is presented. The impact of the selection of the FAU zeolite starting material on the properties of the produced CHA zeolite was analyzed by XRD, ICP, SEM, TEM, N2 and CO2 adsorption, and in situ FT-IR. The analysis showed that the choice of starting FAU zeolite had a large impact on the chemical composition, size, morphology, and porosity of the produced CHA zeolite. The as prepared CHA samples show high capacity toward CO2 (4.26 mmol g−1) and it was demonstrated that the chemisorbed vs. physisorbed CO2 was controlled by varying the amount of alkali cations in the CHA zeolite. The interzeolite transformation of a micronsized FAU zeolite to a nanosized CHA zeolite via alkali treatment is presented.![]()
Collapse
Affiliation(s)
- Kristoffer H Møller
- Technical University of Denmark, Department of Chemistry Kemitorvet 207, 2800 Kongens Lyngby Denmark .,ENSICAEN, Laboratoire Catalyse & Spectrochimie 6 Boulevard Maréchal Juin 14050 Caen Cedex 4 France
| | - Maxime Debost
- ENSICAEN, Laboratoire Catalyse & Spectrochimie 6 Boulevard Maréchal Juin 14050 Caen Cedex 4 France
| | - Louwanda Lakiss
- ENSICAEN, Laboratoire Catalyse & Spectrochimie 6 Boulevard Maréchal Juin 14050 Caen Cedex 4 France
| | - Søren Kegnæs
- Technical University of Denmark, Department of Chemistry Kemitorvet 207, 2800 Kongens Lyngby Denmark
| | - Svetlana Mintova
- ENSICAEN, Laboratoire Catalyse & Spectrochimie 6 Boulevard Maréchal Juin 14050 Caen Cedex 4 France
| |
Collapse
|
24
|
Liu YT, Cheng CW, Lu HC, Chang TY, Chen CY, Yang HC, Yu SH, Zehra S, Liu SH, Leung MK, Lee KM, Chen HH. One-Pot CuI/DBU-Catalyzed Carboxylative Cyclization toward Oxazolidinones Using Recyclable Molecular Sieves as Efficient Promoters for Fixation of CO 2 in Water Medium. J Org Chem 2020; 85:13655-13663. [PMID: 33045828 DOI: 10.1021/acs.joc.0c01833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient one-pot synthesis of oxazolidinones was developed through CuI/DBU/MS joint system-catalyzed carboxylative cyclization of arylacetylene, arylaldehyde, and arylamine in water medium under a 1 atm carbon dioxide (CO2) atmosphere. The 4 Å molecular sieves (MSs) were added to improve CO2 capture and facilitate carboxylation to give the products in high yields. The CuI/DBU/MS system is robust and highly effective for the reactions with different substrates, and some target products were obtained in an excellent yield of ∼96%, with no side products in the final step.
Collapse
Affiliation(s)
- Yu-Te Liu
- Department of Chemistry, National Kaohsiung Normal University, Kaohsiung 824, Taiwan
| | - Chi-Wei Cheng
- Department of Chemistry, National Kaohsiung Normal University, Kaohsiung 824, Taiwan
| | - Huan-Chang Lu
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Ting-Yu Chang
- Department of Chemistry, National Kaohsiung Normal University, Kaohsiung 824, Taiwan
| | - Chun-Ying Chen
- Department of Chemistry, National Kaohsiung Normal University, Kaohsiung 824, Taiwan
| | - Hao-Chun Yang
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Shih-Hsien Yu
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Syeda Zehra
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.,Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 106, Taiwan.,Taiwan International Graduate Program, Academia Sinica, Taipei 106, Taiwan
| | - Shu-Hui Liu
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Man-Kit Leung
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Kwang-Ming Lee
- Department of Chemistry, National Kaohsiung Normal University, Kaohsiung 824, Taiwan
| | - Hsiu-Hui Chen
- Department of Chemistry, National Kaohsiung Normal University, Kaohsiung 824, Taiwan.,Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 106, Taiwan
| |
Collapse
|
25
|
Thompson JA, Zones SI. Binary- and Pure-Component Adsorption of CO 2, H 2O, and C 6H 14 on SSZ-13. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03480] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Joshua A. Thompson
- Chevron Energy Technology Company, 100 Chevron Way, Richmond 94801, California, United States
| | - Stacey I. Zones
- Chevron Energy Technology Company, 100 Chevron Way, Richmond 94801, California, United States
| |
Collapse
|
26
|
Thompson JA. Acid gas adsorption on zeolite
SSZ
‐13: Equilibrium and dynamic behavior for natural gas applications. AIChE J 2020. [DOI: 10.1002/aic.16549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Li M, Tian M, Chen H, Mahurin SM, Wu Z, Dai S. H 2O-prompted CO 2 capture on metal silicates in situ generated from SBA-15. RSC Adv 2020; 10:28731-28740. [PMID: 35520067 PMCID: PMC9055863 DOI: 10.1039/d0ra02736g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/07/2020] [Indexed: 01/29/2023] Open
Abstract
A series of metal silicates, NaMSi10Ox (M = Cu, Mn and Ni), were prepared by in situ doping of metals into mesoporous SBA-15 under a hydrothermal process, displaying a continuous framework of SiO4 structure with a narrow pore size distribution. These metal silicate materials were tested for CO2 adsorption behavior in the absence and presence of water. The results exhibited that the effect of H2O on the CO2 capture capability of metal silicates depends on the types of metal inserted into SBA-15. Compared to the dry condition, H2O addition enhances CO2 uptake dramatically for NaCuSi10Ox by 25%, and slightly for NaNiSi10Ox (∼10%), whereas little effect is shown on NaMnSi10Ox. The metal silicate materials are stable after adsorption of CO2 under wet conditions, which is benefited from their synthesis method, hydrothermal conditions. The improvement of CO2 uptake on metal silicates by H2O is attributed to the competitive and synergistic adsorption mechanism on the basis of IR investigations, where initially adsorbed H2O acts as a promoter for further CO2 capture through a hydration reaction, i.e., formation of bicarbonate and carbonates on the surface of the samples. These observations provide new possibilities for the design and synthesis of porous metal silicate materials for CO2 capture under practical conditions where moisture is present. Porous metal silicates prepared by an in situ doping strategy of metals into SBA-15 under hydrothermal conditions display efficient CO2 capture performances in the absence and presence of moisture.![]()
Collapse
Affiliation(s)
- Meijun Li
- Chemical Sciences Division, Oak Ridge National Laboratory 1 Bethel Valley Road Oak Ridge TN 37831 USA
| | - Mengkun Tian
- Department of Material Science and Engineer, University of Tennessee 1420 Circle Drive Knoxville TN 38996 USA
| | - Hao Chen
- Department of Chemistry, University of Tennessee 1420 Circle Drive Knoxville TN 38996 USA
| | - Shannon Mark Mahurin
- Chemical Sciences Division, Oak Ridge National Laboratory 1 Bethel Valley Road Oak Ridge TN 37831 USA
| | - Zili Wu
- Chemical Sciences Division, Oak Ridge National Laboratory 1 Bethel Valley Road Oak Ridge TN 37831 USA
| | - Sheng Dai
- Department of Chemistry, University of Tennessee 1420 Circle Drive Knoxville TN 38996 USA.,Chemical Sciences Division, Oak Ridge National Laboratory 1 Bethel Valley Road Oak Ridge TN 37831 USA
| |
Collapse
|
28
|
Niu K, Li G, Liu J, Wei Y. One step synthesis of Fe-SSZ-13 zeolite by hydrothermal method. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121330] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Wang Y, Jia H, Fang X, Qiu Z, Du T. CO 2 and water vapor adsorption properties of framework hybrid W-ZSM-5/silicalite-1 prepared from RHA. RSC Adv 2020; 10:24642-24652. [PMID: 35516192 PMCID: PMC9055144 DOI: 10.1039/d0ra03736b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/03/2020] [Indexed: 11/29/2022] Open
Abstract
Framework hybrid W-ZSM-5 and W-silicalite-1 zeolites were synthesized by hydrothermal methods using rice husk ash (RHA) as a silicon raw material. RHA is a low-cost precursor material, and its use can also alleviate the environmental and human health related problems that may occur when it is stacked in open fields. A series of comparative samples were characterized by XRD, FTIR, ICP-OES, SEM, N2 adsorption-desorption and pore size analysis in order to examine their crystal structure, hybrid state, morphology and textural properties. The maximum CO2 adsorption capacities of W-ZSM-5 and W-silicalite-1 are 81.69 and 69.96 cm3 g-1, respectively, measured at 15 bar. The isotherms of CO2, N2 and O2 are perfectly fitted by the Toth model, and it is noted that the presence of Al atoms increases the heterogeneity. It can be seen that the greater the heterogeneity of the adsorbent, the larger the CO2 adsorption capacity achieved. The incorporation of tungsten into the framework does not affect the crystallization of the zeolite, but it prevents the formation of silanol and O-H groups at the adsorption sites. Therefore, the CO2/H2O selectivity of W-ZSM-5 is slightly higher than that of ZSM-5, and that of W-silicalite-1 is three times that of silicalite-1. W-ZSM-5/silicalite-1 are promising adsorbents for separating CO2 under humid industrial conditions.
Collapse
Affiliation(s)
- Yisong Wang
- State Environmental Protection Key Laboratory of Eco-Industry, Northeastern University Shenyang 110819 China
| | - He Jia
- State Environmental Protection Key Laboratory of Eco-Industry, Northeastern University Shenyang 110819 China
| | - Xin Fang
- State Environmental Protection Key Laboratory of Eco-Industry, Northeastern University Shenyang 110819 China
| | - Ziyang Qiu
- State Environmental Protection Key Laboratory of Eco-Industry, Northeastern University Shenyang 110819 China
| | - Tao Du
- State Environmental Protection Key Laboratory of Eco-Industry, Northeastern University Shenyang 110819 China
| |
Collapse
|
30
|
Liang J, Li J, Li X, Liu K, Wu L, Shan G. The sorption behavior of CHA-type zeolite for removing radioactive strontium from aqueous solutions. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.115874] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Haw KG, Moldovan S, Tang L, Qin Z, Fang Q, Qiu S, Valtchev V. A sponge-like small pore zeolite with great accessibility to its micropores. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00261e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The accessibility of SSZ-13 is enhanced by having a sponge-like structure after etching under neutral pH conditions.
Collapse
Affiliation(s)
- Kok-Giap Haw
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- Jilin University
- Changchun 130012
- China
| | - Simona Moldovan
- Institut des Sciences Appliquées de Rouen
- Rouen University
- Groupe de Physique des Matériaux (GPM)
- 76801 Rouen
- France
| | - Lingxue Tang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- Jilin University
- Changchun 130012
- China
| | - Zhengxing Qin
- State Key Laboratory of Heavy Oil Processing
- College of Chemical Engineering
- China University of Petroleum (East China)
- 266580 Qingdao
- China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- Jilin University
- Changchun 130012
- China
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- Jilin University
- Changchun 130012
- China
| | - Valentin Valtchev
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- Jilin University
- Changchun 130012
- China
- Normandie Univ
| |
Collapse
|
32
|
Klimeš J, Tew DP. Efficient and accurate description of adsorption in zeolites. J Chem Phys 2019; 151:234108. [PMID: 31864262 DOI: 10.1063/1.5123425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Accurate theoretical methods are needed to correctly describe adsorption on solid surfaces or in porous materials. The random phase approximation (RPA) with singles corrections scheme and the second order Møller-Plesset perturbation theory (MP2) are two schemes, which offer high accuracy at affordable computational cost. However, there is little knowledge about their applicability and reliability for different adsorbates and surfaces. Here, we calculate adsorption energies of seven different molecules in zeolite chabazite to show that RPA with singles corrections is superior to MP2, not only in terms of accuracy but also in terms of computer time. Therefore, RPA with singles is a suitable scheme for obtaining highly accurate adsorption energies in porous materials and similar systems.
Collapse
Affiliation(s)
- Jiří Klimeš
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, CZ-12116 Prague 2, Czech Republic
| | - David P Tew
- Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| |
Collapse
|
33
|
Han J, Ha Y, Guo M, Zhao P, Liu Q, Liu C, Song C, Ji N, Lu X, Ma D, Li Z. Synthesis of zeolite SSZ-13 from coal gangue via ultrasonic pretreatment combined with hydrothermal growth method. ULTRASONICS SONOCHEMISTRY 2019; 59:104703. [PMID: 31421613 DOI: 10.1016/j.ultsonch.2019.104703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 07/17/2019] [Accepted: 07/20/2019] [Indexed: 06/10/2023]
Abstract
SSZ-13 zeolite has been widely used in catalysis and adsorption because of good hydrothermal stability and pore structure. However, long crystallization time is the main challenge limiting its industry application. As increased emissions and ineffective treatment, coal gangue not only occupies land, but also pollutes the waterbody and farmland. Using coal gangue as raw material to synthetize zeolite has been considered as an environmentally friendly and effective alternative to solve the issues of accumulation and pollution, which also improves the added value of coal gangue. The ultrasonic assistance has been proven to be one of the potential pretreatment methods to promote the dissolution of crystalline silicon aluminum and reduce the crystallization time of molecular sieve. In this work, SSZ-13 was synthesized by coal gangue via ultrasonic pretreatment combined with hydrothermal growth method. The ultrasonic frequency and power were 20 kHz and 120 W, respectively. The synthesized samples were characterized by XRD, SEM, EDS, BET. The results showed that the crystallization time was shorten to 18 h, which was about 12 h lower than the same conditions of conventional chemicals synthesis. Furthermore, the specific surface area of the synthesized sample was more than 620 m2/g, which also indicated over 95% NOx conversion across a broad range from 180 to 400 °C and over 94% NOx conversion at 200-400 °C after hydrothermal treatment 6 h. This study provides a reference for the environmentally friendly utilization of coal gangue and the low-cost rapid synthesis and application of SSZ-13.
Collapse
Affiliation(s)
- Jinfeng Han
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China; Tianjin University State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Ying Ha
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China; Tianjin University State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Mingyu Guo
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China; Tianjin University State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Peipei Zhao
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China; Tianjin University State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Qingling Liu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China; Tianjin University State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China.
| | - Caixia Liu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China; Tianjin University State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China.
| | - Chunfeng Song
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
| | - Na Ji
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
| | - Xuebin Lu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
| | - Degang Ma
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
| | - Zhenguo Li
- National Engineering Laboratory for Mobile Source Emission Control Technology, China Automotive Technology & Research Center, Tianjin 300300, China
| |
Collapse
|
34
|
Chehaibou B, Badawi M, Bučko T, Bazhirov T, Rocca D. Computing RPA Adsorption Enthalpies by Machine Learning Thermodynamic Perturbation Theory. J Chem Theory Comput 2019; 15:6333-6342. [DOI: 10.1021/acs.jctc.9b00782] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Bilal Chehaibou
- Université de Lorraine, LPCT, UMR 7019, 54506 Vandoeuvre-lès-Nancy, France
- CNRS, LPCT, UMR 7019, 54506 Vandoeuvre-lès-Nancy, France
| | - Michael Badawi
- Université de Lorraine, LPCT, UMR 7019, 54506 Vandoeuvre-lès-Nancy, France
- CNRS, LPCT, UMR 7019, 54506 Vandoeuvre-lès-Nancy, France
| | - Tomáš Bučko
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, SK-84215 Bratislava, Slovakia
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84236 Bratislava, Slovakia
| | - Timur Bazhirov
- Exabyte Inc., San Francisco, California 94103, United States
| | - Dario Rocca
- Université de Lorraine, LPCT, UMR 7019, 54506 Vandoeuvre-lès-Nancy, France
- CNRS, LPCT, UMR 7019, 54506 Vandoeuvre-lès-Nancy, France
| |
Collapse
|
35
|
Tang X, Liu Z, Huang L, Chen W, Li C, Wang G, Li G, Yi X, Zheng A. Violation or Abidance of Löwenstein’s Rule in Zeolites Under Synthesis Conditions? ACS Catal 2019. [DOI: 10.1021/acscatal.9b01844] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xiaomin Tang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zhiqiang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| | - Ling Huang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| | - Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| | - Chengbin Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| | - Guiru Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| | - Guangchao Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
36
|
Seed-assisted, organic structure-directing agent-free synthesis of KFI-type zeolite with enhanced micropore volume and CO2 adsorption capacity. ADSORPTION 2019. [DOI: 10.1007/s10450-019-00113-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
Shang H, Li Y, Liu J, Tang X, Yang J, Li J. CH4/N2 separation on methane molecules grade diameter channel molecular sieves with a CHA-type structure. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2018.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
38
|
Panda D, Kumar EA, Singh SK. Amine Modification of Binder-Containing Zeolite 4A Bodies for Post-Combustion CO2 Capture. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b03958] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - E. Anil Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Tirupati, Tirupati 517506, India
| | | |
Collapse
|
39
|
Wu J, Xu F, Li S, Ma P, Zhang X, Liu Q, Fu R, Wu D. Porous Polymers as Multifunctional Material Platforms toward Task-Specific Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1802922. [PMID: 30345562 DOI: 10.1002/adma.201802922] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/15/2018] [Indexed: 05/08/2023]
Abstract
Exploring advanced porous materials is of critical importance in the development of science and technology. Porous polymers, being famous for their all-organic components, tailored pore structures, and adjustable chemical components, have attracted an increasing level of research interest in a large number of applications, including gas adsorption/storage, separation, catalysis, environmental remediation, energy, optoelectronics, and health. Recent years have witnessed tremendous research breakthroughs in these fields thanks to the unique pore structures and versatile skeletons of porous polymers. Here, recent milestones in the diverse applications of porous polymers are presented, with an emphasis on the structural requirements or parameters that dominate their properties and functionalities. The Review covers the following applications: i) gas adsorption, ii) water treatment, iii) separation, iv) heterogeneous catalysis, v) electrochemical energy storage, vi) precursors for porous carbons, and vii) other applications (e.g., intelligent temperature control textiles, sensing, proton conduction, biomedicine, optoelectronics, and actuators). The key requirements for each application are discussed and an in-depth understanding of the structure-property relationships of these advanced materials is provided. Finally, a perspective on the future research directions and challenges in this field is presented for further studies.
Collapse
Affiliation(s)
- Jinlun Wu
- Materials Science Institute, PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Fei Xu
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, P. R. China
| | - Shimei Li
- Materials Science Institute, PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Pengwei Ma
- Materials Science Institute, PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xingcai Zhang
- Materials Science Institute, PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Qianhui Liu
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, P. R. China
| | - Ruowen Fu
- Materials Science Institute, PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Dingcai Wu
- Materials Science Institute, PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
40
|
Guo Y, Sun T, Gu Y, Liu X, Ke Q, Wei X, Wang S. Rational Synthesis of Chabazite (CHA) Zeolites with Controlled Si/Al Ratio and Their CO 2 /CH 4 /N 2 Adsorptive Separation Performances. Chem Asian J 2018; 13:3222-3230. [PMID: 30129135 DOI: 10.1002/asia.201800930] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/08/2018] [Indexed: 11/08/2022]
Abstract
Separation of CO2 from CH4 and N2 is of great significance from the perspectives of energy production and environment protection. In this work, we report the rational synthesis of chabazite (CHA) zeolites with controlled Si/Al ratio by using N,N,N-trimethyl-1-adamantammonium hydroxide (TMAdaOH) as an organic structure-directing agent, wherein the dependence of TMAdaOH consumption on the initial Si/Al ratio was investigated systematically. More TMAdaOH is required to direct the crystallization of CHA with higher Si/Al ratio. Once the product Si/Al ratio is larger than 24, the amount of TMAdaOH consumption remains nearly constant. CHA zeolites with different Si/Al ratios and charge-compensating cations were then applied for the separation of CO2 /CH4 /N2 mixtures. The equilibrium selectivities predicted by ideal adsorbed solution theory (IAST) and ideal selectivities calculated from the ratio of Henry's constants for both CO2 /CH4 and CO2 /N2 decrease with the zeolite Si/Al ratio increasing, whereas the percentage regenerability of CO2 presents the opposite trend. Therefore, there is a trade-off between adsorption selectivity and regenerability for the adsorbents. There is a weaker interaction between CO2 molecules and the H-type zeolites than that on the Na-type ones, thus a higher regenerability can be achieved. This study indicates that it is possible to design CHA zeolites with different physicochemical properties to meet various adsorptive separation requirements.
Collapse
Affiliation(s)
- Ya Guo
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Tianjun Sun
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Yiming Gu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Xiaowei Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Quanli Ke
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Xiaoli Wei
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Shudong Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| |
Collapse
|
41
|
Rapid and efficient synthesis of CHA-type zeolite by interzeolite conversion of LTA-type zeolite in the presence of N, N, N-trimethyladamantammonium hydroxide. J SOLID STATE CHEM 2018. [DOI: 10.1016/j.jssc.2018.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
Conversion of ethylene into propylene with the siliceous SSZ-13 zeolite prepared without an organic structure-directing agent. J Catal 2018. [DOI: 10.1016/j.jcat.2018.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
43
|
Bower JK, Barpaga D, Prodinger S, Krishna R, Schaef HT, McGrail BP, Derewinski MA, Motkuri RK. Dynamic Adsorption of CO 2/N 2 on Cation-Exchanged Chabazite SSZ-13: A Breakthrough Analysis. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14287-14291. [PMID: 29664603 DOI: 10.1021/acsami.8b03848] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Alkali-exchanged SSZ-13 adsorbents were investigated for their applicability in separating N2 from CO2 in flue gas streams using a dynamic breakthrough method. In contrast to IAST calculations based on equilibrium isotherms, K+ exchanged SSZ-13 was found to yield the best N2 productivity, comparable to Ni-MOF-74, under dynamic conditions where diffusion properties play a significant role. This was attributed to the selective, partial blockage of access to the chabazite cavities, enhancing the separation potential in a 15/85 CO2/N2 binary gas mixture.
Collapse
Affiliation(s)
- Jamey K Bower
- Physical and Computational Sciences Division , Pacific Northwest National Laboratory (PNNL) , Richland , Washington 99352 , United States
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Dushyant Barpaga
- Energy and Environment Directorate , Pacific Northwest National Laboratory (PNNL) , Richland , Washington 99352 , United States
| | - Sebastian Prodinger
- Physical and Computational Sciences Division , Pacific Northwest National Laboratory (PNNL) , Richland , Washington 99352 , United States
| | - Rajamani Krishna
- Van't Hoff Institute for Molecular Sciences , University of Amsterdam , Science Park 904 , 1098 XH Amsterdam , The Netherlands
| | - H Todd Schaef
- Physical and Computational Sciences Division , Pacific Northwest National Laboratory (PNNL) , Richland , Washington 99352 , United States
| | - B Peter McGrail
- Energy and Environment Directorate , Pacific Northwest National Laboratory (PNNL) , Richland , Washington 99352 , United States
| | - Miroslaw A Derewinski
- Physical and Computational Sciences Division , Pacific Northwest National Laboratory (PNNL) , Richland , Washington 99352 , United States
| | - Radha Kishan Motkuri
- Energy and Environment Directorate , Pacific Northwest National Laboratory (PNNL) , Richland , Washington 99352 , United States
| |
Collapse
|
44
|
Wang Y, Chen J, Lei X, Ren Y, Wu J. Preparation of high silica microporous zeolite SSZ-13 using solid waste silica fume as silica source. ADV POWDER TECHNOL 2018. [DOI: 10.1016/j.apt.2018.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
Ogura M, Fukuzawa SY, Fukunaga S, Yamazaki H, Kondo JN, Morimoto M, Guillet-Nicolas R, Thommes M. Identification of the Basic Sites on Nitrogen-Substituted Microporous and Mesoporous Silicate Frameworks Using CO 2 as a Probe Molecule. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1376-1385. [PMID: 29293354 DOI: 10.1021/acs.langmuir.7b03769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Carbon dioxide was shown to identify surface basic properties of nitrogen-substituted microporous and mesoporous silicas, in addition to conventional basic oxides, by a detailed study using isotherm and heat of adsorption measurements as well as by infrared spectroscopy. A hydrogen-bonded weak interaction was primarily observed between CO2 and silanol (Si-OH) and silamine (Si-NH-Si) groups. The heat of adsorption of CO2 demonstrated that the latter adspecies were formed preferentially over the former, although a much higher amount of linear CO2 adspecies were found on SBA-15 mesoporous silica because of the presence of a large quantity of silanol groups on its surface. Carbamate-type chemisorbed adspecies were not detected on silamino sites, whereas carbonate-type adspecies were formed on alkali ion-exchanged zeolites and also residual sodium ions on the surface of silicalite-1. CO2 was shown to be a successful probe molecule for identifying weakly interactive hydrogen-bonding sites, and it has potential as a surface probe for strongly interactive nucleophilic sites derived from alkaline ions or a methylated silamino group, Si-N(CH3)-Si.
Collapse
Affiliation(s)
- Masaru Ogura
- Institute of Industrial Science, The University of Tokyo , Komaba 4-6-1, Meguro, Tokyo 153-8505, Japan
- Unit of Elements Strategy Initiative for Catalysts & Batteries, Kyoto University , Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Shin-Ya Fukuzawa
- Institute of Industrial Science, The University of Tokyo , Komaba 4-6-1, Meguro, Tokyo 153-8505, Japan
| | - Seiichiro Fukunaga
- Institute of Industrial Science, The University of Tokyo , Komaba 4-6-1, Meguro, Tokyo 153-8505, Japan
| | - Hiroshi Yamazaki
- Chemical Resources Laboratory, Tokyo Institute of Technology , Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Junko N Kondo
- Chemical Resources Laboratory, Tokyo Institute of Technology , Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Masafumi Morimoto
- Quantachrome Instruments Japan , KSP W311, Sakado, Takatsu, Kawasaki 213-0012, Japan
| | | | - Matthias Thommes
- Quantachrome Corporation , Boynton Beach, Florida 33426, United States
| |
Collapse
|
46
|
Bhadra BN, Seo PW, Khan NA, Jun JW, Kim TW, Kim CU, Jhung SH. Conversion of Y into SSZ-13 zeolite in the presence of tetraethylammonium hydroxide and ethylene-to-propylene reactions over SSZ-13 zeolites. Catal Today 2017. [DOI: 10.1016/j.cattod.2017.05.073] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Ke Q, Sun T, Wei X, Guo Y, Wang S. Enhanced Trace Carbon Dioxide Capture on Heteroatom-Substituted RHO Zeolites under Humid Conditions. CHEMSUSCHEM 2017; 10:4207-4214. [PMID: 28895649 DOI: 10.1002/cssc.201701162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/21/2017] [Indexed: 06/07/2023]
Abstract
Boron and copper heteroatoms were successfully incorporated into the frameworks of high-silica RHO zeolite by adopting a bulky alkali-metal-crown ether (AMCE) complex as the template. These heteroatom-doped zeolites show both larger micropore surface areas and volumes than those of their aluminosilicate analogue. Proton-type RHO zeolites were then applied for the separation of CO2 /CH4 /N2 mixtures, as these zeolites have weaker electric fields and, thus, lower heats of adsorption. The adsorption results showed that a balance between working capacity and adsorption heat could be achieved for these heteroatom-doped zeolites. Ideal adsorbed solution theory predictions indicate that these zeolites should have high selectivities even for remarkably dilute sources of CO2 . Finally, the heteroatom-substituted zeolites, especially the boron-substituted one, could be thermally regenerated rapidly at 150 °C after full hydration and maintained high regenerability for up to 30 cycles; therefore, they are potential candidates for trace CO2 removal under humid conditions.
Collapse
Affiliation(s)
- Quanli Ke
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Tianjun Sun
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Xiaoli Wei
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Ya Guo
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Shudong Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| |
Collapse
|
48
|
Maghsoudi H, Aidani A. Experimental adsorption isotherms of CO2 and CH4 on STT zeolite: comparison with high- and pure-silica zeolites. ADSORPTION 2017. [DOI: 10.1007/s10450-017-9911-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Fischer M. Computational evaluation of aluminophosphate zeotypes for CO 2/N 2 separation. Phys Chem Chem Phys 2017; 19:22801-22812. [PMID: 28812079 DOI: 10.1039/c7cp03841k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zeolites and structurally related materials (zeotypes) have received considerable attention as potential adsorbents for selective carbon dioxide adsorption. Within this group, zeotypes with aluminophosphate composition (AlPOs) could be an interesting alternative to the more frequently studied aluminosilicate zeolites. So far, however, only a few AlPOs have been characterised experimentally in terms of their CO2 adsorption properties. In this study, force-field based grand-canonical Monte Carlo (GCMC) simulations were used to evaluate the potential of AlPOs for CO2/N2 separation, a binary mixture that constitutes a suitable model system for the removal of carbon dioxide from flue gases. A total of 51 frameworks were considered, all of which have been reported either as pure AlPOs or as heteroatom-containing AlPO derivatives. Prior to the GCMC simulations, all structures were optimised using dispersion-corrected density-functional theory calculations. The potential of these 51 systems for CO2/N2 separation was assessed in preliminary calculations (Henry constants and CO2 uptake at selected pressures). On the basis of these calculations, 21 AlPOs of particular interest were selected, for which 15 : 85 CO2/N2 mixture adsorption isotherms were calculated up to 10 bar. For adsorption-based separations using an adsorption pressure of 1 bar (vacuum-swing adsorption), AlPOs with GIS, ATN, ATT, and SIV topologies were predicted to be most attractive, as they combine high CO2/N2 selectivities (75 to 140) and reasonable CO2 working capacities (1 to 1.7 mmol g-1). Under pressure-swing adsorption conditions, there is a tradeoff between selectivity and working capacity: while highly selective AlPOs like GIS reach only moderate working capacities, the frameworks with the highest working capacities above 2 mmol g-1, AFY, KFI, and SAV, have lower selectivities between 25 and 35. To gain atomic-level insights into the host-guest interactions, interaction energy maps were computed for selected AlPOs. The computational assessment presented here can guide future experimental efforts in the development and optimisation of AlPO-based adsorbents for selective CO2 adsorption.
Collapse
Affiliation(s)
- Michael Fischer
- University of Bremen, Crystallography Group, Department of Geosciences, Klagenfurter Straße 2-4, 28359 Bremen, Germany. and University of Bremen, MAPEX Center for Materials and Processes, 28359 Bremen, Germany
| |
Collapse
|
50
|
Pourmahdi Z, Maghsoudi H. Adsorption isotherms of carbon dioxide and methane on CHA-type zeolite synthesized in fluoride medium. ADSORPTION 2017. [DOI: 10.1007/s10450-017-9894-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|