1
|
Dinda S, Ghosh D, Govindaraju T. Cooperative dissolution of peptidomimetic vesicles and amyloid β fibrils. NANOSCALE 2024; 16:2993-3005. [PMID: 38259156 DOI: 10.1039/d3nr04847k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The aggregation of amyloid proteins in the brain is a significant neurotoxic event that contributes to neurodegenerative disorders. The aggregation of amyloid beta (Aβ), particularly Aβ42 monomers, into various forms such as oligomers, protofibrils, fibrils, and amyloid plaques is a key pathological feature in Alzheimer's disease. As a result, Aβ42 is a primary target and the development of molecular strategies for the dissolution of Aβ42 aggregates is considered a promising approach to mitigating Alzheimer's disease pathology. A set of pyrene-conjugated peptidomimetics derived from Aβ14-23 (AkdcPy, AkdmPy, and AkdnPy) by incorporating an unnatural amino acid [kd: cyclo(Lys-Asp)] were studied for their ability to modulate Aβ42 aggregation. AkdcPy and AkdmPy formed vesicular structures in aqueous media. The vesicles of AkdmPy loaded with the neuroprotective compound berberine (Ber), dissipated mutually in the presence of preformed Aβ42 fibrils. During this process, the active drug Ber was released. This work is expected to inspire the development of drug-loaded peptidomimetic-based therapeutic formulations to modulate disorders associated with amyloid toxicity.
Collapse
Affiliation(s)
- Soumik Dinda
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka, India.
| | - Debasis Ghosh
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka, India.
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka, India.
| |
Collapse
|
2
|
Ortega-Valdovinos LR, Chino-Cruz JG, Yatsimirsky AK. Zwitterion-neutral form equilibria and binding selectivity of pyridineboronic acids. Org Biomol Chem 2023; 21:7395-7409. [PMID: 37661801 DOI: 10.1039/d3ob01211e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
A 11B NMR study of 3-pyridineboronic acid at variable pH in water and 50 vol% aqueous dioxane confirms that the tautomeric equilibrium of the acid is shifted to the zwitterionic form in water, but to the molecular form in the mixed organic solvent. Interactions of 3- and 4-pyridineboronic acids with sialic acid, fructose and several other diols were studied by potentiometric titrations in a wide range of pH in water and water-organic mixtures. In all reaction media the stability of boronate complexes increases upon an increase in pH for neutral low acidic diols such as fructose and glucose but has the opposite trend for highly acidic sialic and lactic acids occurring as anionic species. The selectivity of pyridineboronic acids to sialate anions in an acidic medium is interpreted quantitatively by combining the pH-profiles with Brønsted type correlations for binding constants. In addition, mathematical expressions allowing one to predict the optimum pKa value of a boronic acid for the strongest binding of a given diol (sialic acid or fructose) at a given pH are suggested. The shifts in the tautomeric equilibrium induced by changing the solvent polarity in aqueous-organic mixtures are manifested in the magnitude of relative shifts of pKa of pyridineboronic acids induced by diol complexation.
Collapse
Affiliation(s)
| | | | - Anatoly K Yatsimirsky
- Facultad de Química, Universidad Nacional Autónoma de México, 04510 México D. F., Mexico.
| |
Collapse
|
3
|
Mixed Oxime-Functionalized IL/16-s-16 Gemini Surfactants System: Physicochemical Study and Structural Transitions in the Presence of Promethazine as a Potential Chiral Pollutant. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10020046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The increasing concern about chiral pharmaceutical pollutants is connected to environmental contamination causing both chronic and acute harmful effects on living organisms. The design and application of sustainable surfactants in the remediation of polluted sites require knowledge of partitioning between surfactants and potential pollutants. The interfacial and thermodynamic properties of two gemini surfactants, namely, alkanediyi-α,ω-bis(dimethylhexadecyl ammonium bromide) (16-s-16, where s = 10, 12), were studied in the presence of the inherently biodegradable oxime-functionalized ionic liquid (IL) 4-((hydroxyimino)methyl)-1-(2-(octylamino)-2-oxoethyl)pyridin-1-ium bromide (4-PyC8) in an aqueous solution using surface tension, conductivity, fluorescence, FTIR and 1H NMR spectroscopic techniques. The conductivity, surface tension and fluorescence measurements indicated that the presence of the IL 4-PyC8 resulted in decreasing CMC and facilitated the aggregation process. The various thermodynamic parameters, interfacial properties, aggregation number and Stern–Volmer constant were also evaluated. The IL 4-PyC8-gemini interactions were studied using DLS, FTIR and NMR spectroscopic techniques. The hydrodynamic diameter of the gemini aggregates in the presence of promethazine (PMZ) as a potential chiral pollutant and the IL 4-PyC8 underwent a transition when the drug was added, from large aggregates (270 nm) to small micelles, which supported the gemini:IL 4-PyC8:promethazine interaction. The structural transitions in the presence of promethazine may be used for designing systems that are responsive to changes in size and shape of the aggregates as an analytical signal for selective detection and binding pollutants.
Collapse
|
4
|
Pandya SJ, Kapitanov IV, Banjare MK, Behera K, Borovkov V, Ghosh KK, Karpichev Y. Mixed Oxime-Functionalized IL/16-s-16 Gemini Surfactants System: Physicochemical Study and Structural Transitions in the Presence of Promethazine as a Potential Chiral Pollutant. CHEMOSENSORS 2022; 10:46. [DOI: https:/doi.org/10.3390/chemosensors10020046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
Abstract
The increasing concern about chiral pharmaceutical pollutants is connected to environmental contamination causing both chronic and acute harmful effects on living organisms. The design and application of sustainable surfactants in the remediation of polluted sites require knowledge of partitioning between surfactants and potential pollutants. The interfacial and thermodynamic properties of two gemini surfactants, namely, alkanediyi-α,ω-bis(dimethylhexadecyl ammonium bromide) (16-s-16, where s = 10, 12), were studied in the presence of the inherently biodegradable oxime-functionalized ionic liquid (IL) 4-((hydroxyimino)methyl)-1-(2-(octylamino)-2-oxoethyl)pyridin-1-ium bromide (4-PyC8) in an aqueous solution using surface tension, conductivity, fluorescence, FTIR and 1H NMR spectroscopic techniques. The conductivity, surface tension and fluorescence measurements indicated that the presence of the IL 4-PyC8 resulted in decreasing CMC and facilitated the aggregation process. The various thermodynamic parameters, interfacial properties, aggregation number and Stern–Volmer constant were also evaluated. The IL 4-PyC8-gemini interactions were studied using DLS, FTIR and NMR spectroscopic techniques. The hydrodynamic diameter of the gemini aggregates in the presence of promethazine (PMZ) as a potential chiral pollutant and the IL 4-PyC8 underwent a transition when the drug was added, from large aggregates (270 nm) to small micelles, which supported the gemini:IL 4-PyC8:promethazine interaction. The structural transitions in the presence of promethazine may be used for designing systems that are responsive to changes in size and shape of the aggregates as an analytical signal for selective detection and binding pollutants.
Collapse
|
5
|
Tsuchido Y, Nodomi N, Hashimoto T, Hayashita T. Micelle-Type Sensor for Saccharide Recognition by Using Boronic Acid Fluorescence Amphiphilic Probe and Surfactants. SOLVENT EXTRACTION AND ION EXCHANGE 2021. [DOI: 10.1080/07366299.2021.1876988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Yuji Tsuchido
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University (TWIns), Tokyo, Japan
| | - Nana Nodomi
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Takeshi Hashimoto
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Takashi Hayashita
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| |
Collapse
|
6
|
Casulli MA, Taurino I, Hashimoto T, Carrara S, Hayashita T. Electrochemical Assay for Extremely Selective Recognition of Fructose Based on 4-Ferrocene-Phenylboronic Acid Probe and β-Cyclodextrins Supramolecular Complex. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003359. [PMID: 33035400 DOI: 10.1002/smll.202003359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Indexed: 06/11/2023]
Abstract
The aim of the present paper is to highlight a novel electrochemical assay for an extremely-selective detection of fructose thanks to the use of a supramolecular complex between β-cyclodextrins (β-CDs) and a chemically modified ferrocene with boronic acid named 4-Fc-PB/natural-β-CDs. Another kind of β-CDs, the 4-Fc-PB/3-phenylboronic-β-CDs, is proposed for the detection of glucose. The novel electrochemical probe is fully characterized by 1 H nuclear magnetic resonance, mass spectroscopy, and elemental analysis, while the superior electrochemical performance is assessed in terms of sensitivity and detection limit. The novelty of the present work consists in the role of CDs that for the first time are employed in electrochemistry with a unique detection mechanism based on specific chemical interactions with the target molecule by the introduction of proper binding groups. A highly selective detection of fructose is obtained and it is believed that the proposed mechanism of detection represents a new way to electrochemically sense other molecules by varying the combination of specific groups of the supramolecular complex. The findings are of impactful importance since a quick, easy, cheap, and extremely selective detection of fructose is not yet available in the market, here achieved by using electrochemical methods which are a very growing field.
Collapse
Affiliation(s)
- Maria Antonietta Casulli
- Department of Materials and Life Sciences, Sophia University Yotsuya Campus, 7-1 Kioi-cho, Chiyoda-ku, Tokyo, 102-8554, Japan
| | - Irene Taurino
- Integrated System Laboratory (LSI), INF 338 (Bâtiment INF), Station 14, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Takeshi Hashimoto
- Department of Materials and Life Sciences, Sophia University Yotsuya Campus, 7-1 Kioi-cho, Chiyoda-ku, Tokyo, 102-8554, Japan
| | - Sandro Carrara
- Integrated System Laboratory (LSI), INF 338 (Bâtiment INF), Station 14, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Takashi Hayashita
- Department of Materials and Life Sciences, Sophia University Yotsuya Campus, 7-1 Kioi-cho, Chiyoda-ku, Tokyo, 102-8554, Japan
| |
Collapse
|
7
|
Dinda S, Das PK. Metal Ion (Fe2+ and Co2+) Induced Morphological Transformation of Self-Aggregates of Cholesterol-Tethered Bipyridine Amphiphiles: Selective Cancer Cell Killing by Pro-Drug Activation. ACS APPLIED BIO MATERIALS 2019; 2:3737-3747. [DOI: 10.1021/acsabm.9b00340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Soumik Dinda
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Prasanta Kumar Das
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
8
|
Wu Q, Tu F, Long L, Qin B. Self-assembly of intramolecularly hydrogen-bonded amphiphilic diboronic acid for saccharide recognition. J Colloid Interface Sci 2019; 537:325-332. [DOI: 10.1016/j.jcis.2018.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 11/03/2018] [Accepted: 11/07/2018] [Indexed: 01/25/2023]
|
9
|
Sarkar S, Choudhury P, Dinda S, Das PK. Tailor-Made Self-Assemblies from Functionalized Amphiphiles: Diversity and Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10449-10468. [PMID: 29575902 DOI: 10.1021/acs.langmuir.8b00259] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The objective of this feature article is to coalesce our recent advancements on different expressions of tailor-made supramolecular self-assemblies and to explore them as a function of molecular architecture. In the last decade, we have developed a library of elegant and simple functional amphiphilic small molecules, which have very interesting abilities to form diverse manifestations of supramolecular self-assemblies such as micelles, reverse micelles, vesicles, fibers, supramolecular gels, and so on. Each of the expressions of the self-aggregated structures has its individual prominence and finds important applications in the fields of chemistry, physics, biology, and others. In this feature article, the major emphasis is mostly on how to attain precise control over the development of various well-defined supramolecular self-assemblies through the judicious design of low-molecular-weight amphiphiles. By tuning only the functional moieties of the amphiphilic structure, diverse supramolecular architectures can be constructed with task-specific applications. We expect that this article will provide a general and conceptual demonstration of various approaches to the development of different functional supramolecular systems and their prospective applications in numerous domains.
Collapse
Affiliation(s)
- Saheli Sarkar
- Department of Biological Chemistry , Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032 , India
| | - Pritam Choudhury
- Department of Biological Chemistry , Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032 , India
| | - Soumik Dinda
- Department of Biological Chemistry , Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032 , India
| | - Prasanta Kumar Das
- Department of Biological Chemistry , Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032 , India
| |
Collapse
|
10
|
Physicochemical properties and esterolytic reactivity of oxime functionalized surfactants in pH-responsive mixed micellar system. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.04.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Tsuchido Y, Sato R, Nodomi N, Hashimoto T, Akiyoshi K, Hayashita T. Saccharide Recognition Based on Self-Assembly of Amphiphilic Phenylboronic Acid Azoprobes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10761-10766. [PMID: 27658017 DOI: 10.1021/acs.langmuir.6b02917] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We designed amphiphilic phenylboronic acid azoprobes (B-Azo-Cn) and evaluated their saccharide recognition function in relation to the micelle formation changes of the self-assembled B-Azo-Cn. First, we evaluated B-Azo-C8 in a 1% methanol-99% water solution under basic conditions. The wavelength of maximum absorption in the ultraviolet-visible (UV-vis) spectra of B-Azo-C8 was shifted, and the solution showed a color change with the addition of saccharides. The morphology of B-Azo-C8 was evaluated using dynamic light scattering (DLS) measurements and transmission electron microscopy (TEM) observations. B-Azo-C8 formed aggregates in the absence of saccharides and in the presence of glucose. In the presence of fructose, micelle-formed B-Azo-C8 was dispersed, indicating that B-Azo-C8 changed its dispersion state by recognizing fructose. The effect of alkyl chain length on the saccharide recognition ability was examined as well. B-Azo-C4 and B-Azo-C12 did not recognize saccharides in a 1% methanol-99% water solution under basic conditions, indicating that an appropriate alkyl chain length was required for recognizing saccharides. The control of the hydrophilic-lipophilic balance (HLB) was a key factor for saccharide recognition.
Collapse
Affiliation(s)
- Yuji Tsuchido
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University , 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Ryo Sato
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University , 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Nana Nodomi
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University , 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Takeshi Hashimoto
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University , 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University , Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO Bio-Nanotransporter Project, Japan Science and Technology Agency (JST), Katsura Int'tech Center , Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| | - Takashi Hayashita
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University , 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| |
Collapse
|
12
|
Himmelein S, Ravoo BJ. A Self-Assembled Sensor for Carbohydrates on the Surface of Cyclodextrin Vesicles. Chemistry 2016; 23:6034-6041. [DOI: 10.1002/chem.201603115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Sabine Himmelein
- Organic Chemistry Institute and Graduate School of Chemistry; Westfälische Wilhelms-Universität Münster; Corrensstrasse 40 48149 Münster Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Graduate School of Chemistry; Westfälische Wilhelms-Universität Münster; Corrensstrasse 40 48149 Münster Germany
| |
Collapse
|
13
|
Aminophenylboronic acid polymer nanoparticles for quantitation of glucose and for insulin release. Anal Bioanal Chem 2016; 408:6557-65. [DOI: 10.1007/s00216-016-9842-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/12/2016] [Accepted: 07/27/2016] [Indexed: 10/21/2022]
|
14
|
Dinda S, Ghosh M, Das PK. Spontaneous Formation of a Vesicular Assembly by a Trimesic Acid Based Triple Tailed Amphiphile. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6701-6712. [PMID: 27300311 DOI: 10.1021/acs.langmuir.6b01942] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Trimesic acid based amino acid functionalized triple tailed amphiphiles (TMA-1 and TMA-2) were synthesized. The triskelion amphiphile TMA-1 with a neutral side chain self-assembled into a vesicle in 2:1 (v/v) DMSO-water, while the ammonium side chain decorated TMA-2 formed vesicles in pure water. Microscopic and spectroscopic characterizations were carried out to confirm the self-aggregated vesicular morphology and its size which is around 250-300 nm in the case of TMA-1 and around 100-150 nm for TMA-2 vesicles. The unique structure of these amphiphiles with an aromatic core and three hydrophilic side chains led to an interlamellar orientation of their hydrophobic (aromatic) domain, while hydrophilic terminals were directed toward the aqueous domain. These amphiphiles formed monolayered vesicles possibly through H-aggregation during the process of self-assembly, which is different from conventional bilayered vesicles formed by twin-chain lipid molecules. The time resolved decay curve of hydrophobic dye entrapped within these vesicles indicated that the hydrophobicity within the microenvironment of TMA-1 and TMA-2 vesicles is higher than that in pure water; however, at the same time, it is comparatively lower than that observed in bilayered phosphocholine vesicles. Furthermore, calcein dye was entrapped within these vesicles to ensure their encapsulation efficiency (65-85%). The ability to entrap dye molecules by these synthesized vesicles was utilized to encapsulate and deliver anticancer drug doxorubicin inside the mammalian cells. A simple synthetic procedure and facile aggregation to vesicular self-assembly with superior dye/drug encapsulation proficiency made these vesicles a potential cellular transporter.
Collapse
Affiliation(s)
- Soumik Dinda
- Department of Biological Chemistry, Indian Association for the Cultivation of Science Jadavpur , Kolkata 700 032, India
| | - Moumita Ghosh
- Department of Biological Chemistry, Indian Association for the Cultivation of Science Jadavpur , Kolkata 700 032, India
| | - Prasanta Kumar Das
- Department of Biological Chemistry, Indian Association for the Cultivation of Science Jadavpur , Kolkata 700 032, India
| |
Collapse
|
15
|
Saleem M, Yu H, Wang L, Zain-ul-Abdin, Khalid H, Akram M, Abbasi NM, Chen Y. Study on synthesis of ferrocene-based boronic acid derivatives and their saccharides sensing properties. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2015.12.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Li Q, Kamra T, Ye L. Nanoparticle-enhanced fluorescence emission for non-separation assays of carbohydrates using a boronic acid–alizarin complex. Chem Commun (Camb) 2016; 52:3701-4. [DOI: 10.1039/c5cc10516a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Addition of crosslinked polymer nanoparticles into a solution of a 3-nitrophenylboronic acid–alizarin complex leads to significant enhancement of fluorescence emission.
Collapse
Affiliation(s)
- Qianjin Li
- Division of Pure and Applied Biochemistry
- Lund University
- 221 00 Lund
- Sweden
| | - Tripta Kamra
- Division of Pure and Applied Biochemistry
- Lund University
- 221 00 Lund
- Sweden
| | - Lei Ye
- Division of Pure and Applied Biochemistry
- Lund University
- 221 00 Lund
- Sweden
| |
Collapse
|
17
|
Matuszewska A, Uchman M, Adamczyk-Woźniak A, Sporzyński A, Pispas S, Kováčik L, Štěpánek M. Glucose-Responsive Hybrid Nanoassemblies in Aqueous Solutions: Ordered Phenylboronic Acid within Intermixed Poly(4-hydroxystyrene)-block-poly(ethylene oxide) Block Copolymer. Biomacromolecules 2015; 16:3731-9. [DOI: 10.1021/acs.biomac.5b01325] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alicja Matuszewska
- Department
of Physical and Macromolecular Chemistry Faculty of Science, Charles University in Prague, Hlavova 2030, 128
40 Prague 2, Czech Republic
- Department
of Physical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00664 Warsaw, Poland
| | - Mariusz Uchman
- Department
of Physical and Macromolecular Chemistry Faculty of Science, Charles University in Prague, Hlavova 2030, 128
40 Prague 2, Czech Republic
| | - Agnieszka Adamczyk-Woźniak
- Department
of Physical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00664 Warsaw, Poland
| | - Andrzej Sporzyński
- Department
of Physical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00664 Warsaw, Poland
| | - Stergios Pispas
- Theoretical & Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Lubomír Kováčik
- Institute
of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Albertov 4, 128 01 Prague 2, Czech Republic
| | - Miroslav Štěpánek
- Department
of Physical and Macromolecular Chemistry Faculty of Science, Charles University in Prague, Hlavova 2030, 128
40 Prague 2, Czech Republic
| |
Collapse
|
18
|
Maiti M, Roy A, Roy S. Surface and self-organization of sodium salt of 2-decyl pyridine-5-boronic acid and sodium salt of 2-oxydecyl pyridine-5-boronic acid at two different pHs. Colloid Polym Sci 2015. [DOI: 10.1007/s00396-015-3760-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Zhai W, Sun X, James TD, Fossey JS. Boronic Acid-Based Carbohydrate Sensing. Chem Asian J 2015; 10:1836-48. [DOI: 10.1002/asia.201500444] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Wenlei Zhai
- School of Chemistry; University of Birmingham; Birmingham, West Midlands B15 2TT UK
| | - Xiaolong Sun
- Department of Chemistry; University of Bath; Bath BA2 7AY UK
| | - Tony D. James
- Department of Chemistry; University of Bath; Bath BA2 7AY UK
| | - John S. Fossey
- School of Chemistry; University of Birmingham; Birmingham, West Midlands B15 2TT UK
| |
Collapse
|
20
|
Affiliation(s)
- Xiaolong Sun
- Department
of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| |
Collapse
|
21
|
Yang H, Zhang C, Li C, Liu Y, An Y, Ma R, Shi L. Glucose-responsive polymer vesicles templated by α-CD/PEG inclusion complex. Biomacromolecules 2015; 16:1372-81. [PMID: 25803265 DOI: 10.1021/acs.biomac.5b00155] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Polymeric nanoparticles with glucose-responsiveness are of great interest in developing a self-regulated drug delivery system. In this work, glucose-responsive polymer vesicles were fabricated based on the complexation between a glucosamine (GA)-containing block copolymer PEG45-b-P(Asp-co-AspGA) and a phenylboronic acid (PBA)-containing block copolymer PEG114-b-P(Asp-co-AspPBA) with α-CD/PEG45 inclusion complex as the sacrificial template. The obtained polymer vesicles composed of cross-linked P(Asp-co-AspGA)/P(Asp-co-AspPBA) layer as wall and PEG chains as both inner and outer coronas. The vesicular morphology was observed by transmission electron microscopy (TEM), and the glucose-responsiveness was investigated by monitoring the variations of hydrodynamic diameter (Dh) and light scattering intensity (LSI) in the polymer vesicle solution with glucose using dynamic light scattering (DLS). Vancomycin as a model drug was encapsulated in the polymer vesicles and sugar-triggered drug release was carried out. This kind of polymer vesicle may be a promising candidate for glucose-responsive drug delivery.
Collapse
Affiliation(s)
- Hao Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Chuan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Chang Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yong Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yingli An
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Rujiang Ma
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
22
|
Lacina K, Skládal P, James TD. Boronic acids for sensing and other applications - a mini-review of papers published in 2013. Chem Cent J 2014; 8:60. [PMID: 25371705 PMCID: PMC4218984 DOI: 10.1186/s13065-014-0060-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/06/2014] [Indexed: 12/20/2022] Open
Abstract
Boronic acids are increasingly utilised in diverse areas of research. Including the interactions of boronic acids with diols and strong Lewis bases as fluoride or cyanide anions, which leads to their utility in various sensing applications. The sensing applications can be homogeneous assays or heterogeneous detection. Detection can be at the interface of the sensing material or within the bulk sample. Furthermore, the key interaction of boronic acids with diols allows utilisation in various areas ranging from biological labelling, protein manipulation and modification, separation and the development of therapeutics. All the above uses and applications are covered by this mini-review of papers published during 2013.
Collapse
Affiliation(s)
- Karel Lacina
- />CEITEC, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- />Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY UK
| | - Petr Skládal
- />CEITEC, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- />Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Tony D James
- />Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY UK
| |
Collapse
|
23
|
Affiliation(s)
- Vanderlei G. Machado
- Departamento
de Química, Universidade Federal de Santa Catarina, UFSC, Florianópolis, SC 88040-900, Brazil
| | - Rafaela I. Stock
- Departamento
de Química, Universidade Federal de Santa Catarina, UFSC, Florianópolis, SC 88040-900, Brazil
| | - Christian Reichardt
- Fachbereich
Chemie, Philipps-Universität, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| |
Collapse
|
24
|
|
25
|
Brown JRD, Pintre IC, Webb SJ. Fructose controlled ionophoric activity of a cholate-boronic acid. Org Biomol Chem 2014; 12:2576-83. [PMID: 24615337 DOI: 10.1039/c4ob00165f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Wulff-type boronic acids have been shown to act as ionophores at pH 8.2 by transporting Na(+) through phospholipid bilayers. A cholate-boronic acid conjugate was synthesised and shown to be an ionophore, although the hydroxyl-lined face of the cholate moiety did not enhance ion transport. Mechanistic studies suggested a carrier mechanism for Na(+) transport. The addition of fructose (>5 mM) strongly inhibited ionophoric activity of the cholate-boronic acid conjugate, mirrored by a strong decrease in the ability of this compound to partition into an organic phase. Modelling of the partitioning and ion transport data, using a fructose/boronic acid binding constant measured at pH 8.2, showed a good correlation with the extent of fructose/boronic acid complexation and suggested high polarity fructose/boronic acid complexes are poor ionophores. The sensitivity of ion transport to fructose implies that boronic acid-based antibiotic ionophores with activity modulated by polysaccharides in the surrounding environment may be accessible.
Collapse
Affiliation(s)
- James R D Brown
- Manchester Institute of Biotechnology (MIB) and School of Chemistry, University of Manchester, 131 Princess St., Manchester M1 7DN, UK.
| | | | | |
Collapse
|
26
|
Celis NA, Godoy-Alcántar C, Guerrero-Álvarez J, Barba V. Boron Macrocycles Based on Multicomponent Assemblies using (3-Aminophenyl)boronic Acid and Pentaerythritol as Common Reagents; Molecular Receptors toward Lewis Bases. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201301450] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
27
|
Lima FS, Chaimovich H, Cuccovia IM, Horinek D. Molecular dynamics shows that ion pairing and counterion anchoring control the properties of triflate micelles: a comparison with triflate at the air/water interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:1239-1249. [PMID: 24467445 DOI: 10.1021/la404260y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Micellar properties of dodecyltrimethylammonium triflate (DTA-triflate, DTATf) are very different from those of DTA-bromide (DTAB). DTATf aggregates show high aggregation numbers (Nagg), low degree of counterion dissociation (α), disk-like shape, high packing, ordering, and low hydration. These micellar properties and the low surface tension of NaTf aqueous solutions point to a high affinity of Tf(-) to the micellar and air/water interfaces. Although the micellar properties of DTATf are well defined, the source of the Tf(-) effect upon the DTA aggregates is unclear. Molecular dynamics (MD) simulations of Tf(-) (and Br(-)) at the air/water interface and as counterion of a DTA aggregate were performed to clarify the nature of Tf(-) preferences for these interfaces. The effect of NaTf or NaBr on surface tension calculated from MD simulations agreed with the reported experimental values. From the MD simulations a high affinity of Tf(-) toward the interface, which occurred in a specific orientation, was calculated. The micellar properties calculated from the MD simulations for DTATf and DTAB were consistent with experimental data: in MD simulations, the DTATf aggregate was more ordered, packed, and dehydrated than the DTAB aggregate. The Tf(-)/alkyltrimethylammonium interaction energies, calculated from the MD simulations, suggested ion pair formation at the micellar interface, stabilized by the preferential orientation of the adsorbed Tf(-) at the micellar interface.
Collapse
Affiliation(s)
- Filipe S Lima
- Instituto de Química, Universidade de São Paulo , São Paulo 05508-000, Brazil
| | | | | | | |
Collapse
|
28
|
Ma R, Shi L. Phenylboronic acid-based glucose-responsive polymeric nanoparticles: synthesis and applications in drug delivery. Polym Chem 2014. [DOI: 10.1039/c3py01202f] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Hansen JS, Christensen JB. Recent advances in fluorescent arylboronic acids for glucose sensing. BIOSENSORS 2013; 3:400-18. [PMID: 25586415 PMCID: PMC4263566 DOI: 10.3390/bios3040400] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 11/13/2013] [Accepted: 12/02/2013] [Indexed: 01/08/2023]
Abstract
Continuous glucose monitoring (CGM) is crucial in order to avoid complications caused by change in blood glucose for patients suffering from diabetes mellitus. The long-term consequences of high blood glucose levels include damage to the heart, eyes, kidneys, nerves and other organs, among others, caused by malign glycation of vital protein structures. Fluorescent monitors based on arylboronic acids are promising candidates for optical CGM, since arylboronic acids are capable of forming arylboronate esters with 1,2-cis-diols or 1,3-diols fast and reversibly, even in aqueous solution. These properties enable arylboronic acid dyes to provide immediate information of glucose concentrations. Thus, the replacement of the commonly applied semi-invasive and non-invasive techniques relying on glucose binding proteins, such as concanavalin A, or enzymes, such as glucose oxidase, glucose dehydrogenase and hexokinases/glucokinases, might be possible. The recent progress in the development of fluorescent arylboronic acid dyes will be emphasized in this review.
Collapse
Affiliation(s)
- Jon Stefan Hansen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark.
| | - Jørn Bolstad Christensen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark.
| |
Collapse
|
30
|
Maiti M, Roy A, Roy S. Effect of pH and oxygen atom of the hydrophobic chain on the self-assembly property and morphology of the pyridyl boronic acid based amphiphiles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:13329-13338. [PMID: 24083447 DOI: 10.1021/la403379g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The surface activity and aggregation behavior of two synthesized boronic acid based anionic surfactants, sodium salt of 2-dodecyl pyridine-5-boronic acid (SDDPB) and sodium salt of 2-oxydodecyl pyridine-5-boronic acid (SODDPB), were studied in buffer solution at pH 9 and 13 containing carbohydrates. The self-assembly formation was investigated by use of a number of techniques including surface tension, conductivity, fluorescence spectroscopy, dynamic light scattering, X-ray diffraction, and transmission electron microscopy (TEM). Both of the amphiphiles exhibit a single break in the surface tension vs log(concentration) plots, indicating existence of one critical aggregation concentration. Steady state fluorescence spectroscopy was used to determine the polarity indexes using pyrene and the rigidity of the microenvironments of the aggregates using 1,6-diphenyl-1,3,5-hexatriene (DPH) as fluorescence probe molecules. The pKa's of both amphiphiles were determined in buffer solutions of different pH's. XRD studies were performed to shed light on the morphology of the self-assemblies. TEM micrographs revealed the existence of vesicles for both the amphiphiles in buffer solution of pH 9, but at pH 13, TEM pictures indicate the existence of closed vesicles in SDDPB solution and at concentrated solution the vesicles are fused to form sponge-like micelles. After aging the vesicular solution of pH 13 of SDDPB, the closed vesicles are destroyed. In contrast, for SODDPB at pH 13, TEM pictures suggest the existence of spherical and complex micelles in solution which were further transformed into crystal-like structure upon aging. The average hydrodynamic radii were determined by dynamic light scattering measurement. Therefore, for the first time, we have successfully synthesized two new surfactants containing pyridyl-boronic acid as a headgroup which shows remarkable tuning of morphology in two different pH's and in the presence of two different carbohydrates.
Collapse
Affiliation(s)
- Monali Maiti
- Department of Chemistry and Chemical Technology, Vidyasagar University , Paschim Medinipur 721 102, India
| | | | | |
Collapse
|
31
|
Lima FS, Chaimovich H, Cuccovia IM, Buchner R. Dielectric relaxation spectroscopy shows a sparingly hydrated interface and low counterion mobility in triflate micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:10037-10046. [PMID: 23899188 DOI: 10.1021/la401728g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The properties of ionic micelles are affected by the nature of the counterion. Specific ion effects can be dramatic, inducing even shape and phase changes in micellar solutions, transitions apparently related to micellar hydration and counterion binding at the micellar interface. Thus, determining the hydration and dynamics of ions in micellar systems capable of undergoing such transitions is a crucial step in understanding shape and phase changes. For cationic micelles, such transitions are common with large organic anions as counterions. Interestingly, however, phase separation also occurs for dodecyltrimethylammonium triflate (DTATf) micelles in the presence of sodium triflate (NaTf). Specific ion effects for micellar solutions of dodecyltrimethylammonium chloride (DTAC), bromide (DTAB), methanesulfonate (DTAMs), and triflate (DTATf) were studied with dielectric relaxation spectroscopy (DRS), a technique capable of monitoring hydration and counterion dynamics of micellar aggregates. In comparison to DTAB, DTAC, and DTAMs, DTATf micelles were found to be considerably less hydrated and showed reduced counterion mobility at the micellar interface. The obtained DTATf and DTAMs data support the reported central role of the anion's -CF3 moiety with respect to the properties of DTATf micelles. The reduced hydration observed for DTATf micelles was rationalized in terms of the higher packing of this surfactant compared to that of other DTA-based systems. The decreased mobility of Tf(-) anions condensed at the DTATf interface strongly suggests the insertion of Tf(-) in the micellar interface, which is apparently driven by the strong hydrophobicity of -CF3.
Collapse
Affiliation(s)
- Filipe S Lima
- Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | |
Collapse
|