1
|
Synthesis and photochromic properties of dithienylethenes axially coordinating with Mn(II)-porphyrins. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2016.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
2
|
Satriano C, Forte G, Magrì A, Di Pietro P, Travaglia A, Pandini G, Gianì F, La Mendola D. Neurotrophin-mimicking peptides at the biointerface with gold respond to copper ion stimuli. Phys Chem Chem Phys 2018; 18:30595-30604. [PMID: 27786317 DOI: 10.1039/c6cp05476e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The peptide fragments NGF1-14 and BDNF1-12, encompassing the N-terminal domains, respectively, of the proteins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) were used in this study for the fabrication of a hybrid gold/peptide biointerface. These peptides mimic the Trk receptor activation of the respective whole protein - with a crucial role played by copper ions - and exhibit, in bulk solution, a pH-dependent capability to complex copper. We demonstrate here the maintenance of peptide-specific responses at different pH values as well as the copper binding also for the adlayers formed upon physisorption at the gold surface. The physicochemical properties, including viscoelastic behavior of the adlayer and competitive vs. synergic interactions in sequential adsorption processes, were addressed both experimentally, by quartz crystal microbalance with dissipation monitoring (QCM-D) and circular dichroism (CD), and theoretically, by molecular dynamics (MD) calculations. Proof-of work biological assays with the neuroblastoma SY-SH5H cell line demonstrated that the developed hybrid Au/peptide nanoplatforms are very promising for implementation in pH- and metal-responsive systems for application in nanomedicine.
Collapse
Affiliation(s)
- C Satriano
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria, 6, I-95125 Catania, Italy.
| | - G Forte
- Department of Pharmaceutical Sciences, University of Catania, Viale Andrea Doria, 6, I-95125 Catania, Italy
| | - A Magrì
- Institute of Biostructures and Bioimages - Catania, National Council of Research (IBB-CNR), Via Paolo Gaifami, 16, I-95125 Catania, Italy
| | - P Di Pietro
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria, 6, I-95125 Catania, Italy.
| | - A Travaglia
- Centre for Neural Science, New York University, Washington Place, 4, New York, NY 10003, USA
| | - G Pandini
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Medical Center, University of Catania, via Palermo n. 636, 95122 Catania, Italy
| | - F Gianì
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Medical Center, University of Catania, via Palermo n. 636, 95122 Catania, Italy
| | - D La Mendola
- Department of Pharmacy, University of Pisa, via Bonanno Pisano, 6, I-56100 Pisa, Italy.
| |
Collapse
|
3
|
Menanteau T, Dabos-Seignon S, Levillain E, Breton T. Impact of the Diazonium Grafting Control on the Interfacial Reactivity: Monolayer versus Multilayer. ChemElectroChem 2016. [DOI: 10.1002/celc.201600710] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Thibaud Menanteau
- MOLTECH-Anjou; Université d'Angers, UMR CNRS 6200; 2 Boulevard Lavoisier 49045 Angers France
| | - Sylvie Dabos-Seignon
- MOLTECH-Anjou; Université d'Angers, UMR CNRS 6200; 2 Boulevard Lavoisier 49045 Angers France
| | - Eric Levillain
- MOLTECH-Anjou; Université d'Angers, UMR CNRS 6200; 2 Boulevard Lavoisier 49045 Angers France
| | - Tony Breton
- MOLTECH-Anjou; Université d'Angers, UMR CNRS 6200; 2 Boulevard Lavoisier 49045 Angers France
| |
Collapse
|
4
|
Yu CM, Hu BC, Gong ZH, Liu C, Li JT. A novel photochromic fulgide based on porphyrin for nondestructive information processing. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2016.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Yu C, Hu B, Liu C, Li J. Design, syntheses and photochromic properties of dithienylcyclopentene optical molecular switches. J PHYS ORG CHEM 2016. [DOI: 10.1002/poc.3584] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chuanming Yu
- School of Chemical Engineering; Nanjing University of Science and Technology; Nanjing 210094 China
| | - Bingcheng Hu
- School of Chemical Engineering; Nanjing University of Science and Technology; Nanjing 210094 China
| | - Cheng Liu
- School of Chemical Engineering; Nanjing University of Science and Technology; Nanjing 210094 China
| | - Jiting Li
- School of Chemical Engineering; Nanjing University of Science and Technology; Nanjing 210094 China
| |
Collapse
|
6
|
Berisha A, Chehimi M, Pinson J, Podvorica F. Electrode Surface Modification Using Diazonium Salts. ELECTROANALYTICAL CHEMISTRY: A SERIES OF ADVANCES 2015. [DOI: 10.1201/b19196-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Olaru A, Bala C, Jaffrezic-Renault N, Aboul-Enein HY. Surface Plasmon Resonance (SPR) Biosensors in Pharmaceutical Analysis. Crit Rev Anal Chem 2015; 45:97-105. [DOI: 10.1080/10408347.2014.881250] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
8
|
Credou J, Volland H, Berthelot T. Photolinker-free photoimmobilization of antibodies onto cellulose for the preparation of immunoassay membranes. J Mater Chem B 2015; 3:1079-1088. [DOI: 10.1039/c4tb01138d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Immunoassay membranes were produced by photoimmobilization of antibodies onto cellulose without any photocoupling intermediate nor any biomolecule or substrate pretreatment.
Collapse
Affiliation(s)
- Julie Credou
- CEA Saclay
- IRAMIS
- NIMBE
- LICSEN (Laboratory of Innovation in Surface Chemistry and Nanosciences)
- F-91191 Gif sur Yvette
| | - Hervé Volland
- CEA Saclay
- iBiTec-S
- SPI
- LERI (Laboratory of Study and Research in Immunoanalysis)
- F-91191 Gif sur Yvette
| | - Thomas Berthelot
- CEA Saclay
- IRAMIS
- NIMBE
- LICSEN (Laboratory of Innovation in Surface Chemistry and Nanosciences)
- F-91191 Gif sur Yvette
| |
Collapse
|
9
|
Le XT, Doan ND, Dequivre T, Viel P, Palacin S. Covalent grafting of chitosan onto stainless steel through aryldiazonium self-adhesive layers. ACS APPLIED MATERIALS & INTERFACES 2014; 6:9085-9092. [PMID: 24870015 DOI: 10.1021/am500582e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Although the conventional methods for strong attachment of chitosan onto stainless steel require many steps in different solvents, it has been demonstrated in this work that covalent grafting of chitosan on a steel surface can be easily achieved through the formation of a self-adhesive surface based on aryldiazonium seed layers. Initially, a polyaminophenyl layer is grafted on a stainless steel surface by means of the one-step GraftFast(TM) process (diazonium induced anchoring process). The grafted aminophenyl groups are then converted to an aryldiazonium seed layer by simply dipping the substrate in a sodium nitrite acidic solution. That diazonium-rich grafted layer can be used as a self-adhesive surface for subsequent spontaneous coating of chitosan onto the steel surface. X-ray photoelectron and impedance electrochemical spectroscopies were used to characterize the pristine and modified steel samples. As evidenced from impedance and linear polarization results, the primary polyaminophenyl layer characterized by a high charge transfer resistance contributed to better protection against corrosion of the resulting chitosan-coated steel in sulfuric acid medium.
Collapse
Affiliation(s)
- Xuan Tuan Le
- MiQro Innovation Collaborative Centre (C2MI) , 45, Boulevard de l'Aéroport, Bromont, Québec J2L 1S8, Canada
| | | | | | | | | |
Collapse
|