1
|
Koochak P, Lin M, Afzalifar A, Hashemi A, Arunachalam S, Shoaib A, Turkki V, Ala-Nissila T, Daniel D, Vuckovac M, Wong WSY. Self-Accelerating Drops on Silicone-Based Super Liquid-Repellent Surfaces. ACS NANO 2025. [PMID: 40525848 DOI: 10.1021/acsnano.5c04250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2025]
Abstract
Design of super liquid-repellent surfaces has relied on an interplay between surface topography and surface energy. Perfluoroalkylated materials are often used, but they are environmentally unsustainable and notorious for building up static charge. Therefore, there is a need for understanding the performance of sustainable low surface energy materials with antistatic properties. Here, we explore drop interactions with perfluoroalkyl- and silicone-based surfaces, focusing on three modes of drop-to-surface interactions. The behavior of drops rolling under gravity is compared to those subjected to lateral and normal forces under constant slide (i.e., friction) and detachment (i.e., adhesion) velocities. We demonstrate that a drop's characteristic and dynamic mobility depends on surface chemistry, with sequential drop interactions being particularly affected. By utilizing force-and-charge instruments, we show how rolling drops are primarily governed by adhesion and its associated electrostatic effects, instead of friction. Perfluoroalkylated surfaces continuously accumulate charges, while silicone surfaces rapidly saturate. Consequently, sequentially contacting drops accumulate significant charges on the former while rapidly diminishing on the latter. The drop charge suppressing behavior of silicones enhances drop mobility despite their higher surface energy compared to perfluoroalkyls. Quantum mechanical density functional theory calculations show significant differences in surface charge distributions at the atomic level. Simulations suggest that variations in the lifetimes of surface hydroxyl ions likely drive the markedly different drop charging behaviors. Our findings demonstrate the critical role of surface chemistry and its coupled electrostatics in drop mobility, providing valuable insights for designing environmentally friendly, antistatic, super liquid-repellent surfaces.
Collapse
Affiliation(s)
- Parham Koochak
- Department of Applied Physics, School of Science, Aalto University, FI-02150 Espoo, Finland
| | - Marcus Lin
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Ali Afzalifar
- Department of Applied Physics, School of Science, Aalto University, FI-02150 Espoo, Finland
| | - Arsalan Hashemi
- MSP Group, Quantum Technology Finland Center of Excellence, Department of Applied Physics, Aalto University, FI-00076 Espoo, Finland
| | - Sankara Arunachalam
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Ayan Shoaib
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Valtteri Turkki
- Department of Applied Physics, School of Science, Aalto University, FI-02150 Espoo, Finland
| | - Tapio Ala-Nissila
- MSP Group, Quantum Technology Finland Center of Excellence, Department of Applied Physics, Aalto University, FI-00076 Espoo, Finland
- Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, U.K
| | - Dan Daniel
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Maja Vuckovac
- Department of Applied Physics, School of Science, Aalto University, FI-02150 Espoo, Finland
| | - William S Y Wong
- Department of Applied Physics, School of Science, Aalto University, FI-02150 Espoo, Finland
| |
Collapse
|
2
|
Badr RGM, Hauer L, Vollmer D, Schmid F. Dynamics of Droplets Moving on Lubricated Polymer Brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12368-12380. [PMID: 38834186 PMCID: PMC11192036 DOI: 10.1021/acs.langmuir.4c00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024]
Abstract
Understanding the dynamics of drops on polymer-coated surfaces is crucial for optimizing applications such as self-cleaning materials or microfluidic devices. While the static and dynamic properties of deposited drops have been well characterized, a microscopic understanding of the underlying dynamics is missing. In particular, it is unclear how drop dynamics depends on the amount of uncross-linked chains in the brush, because experimental techniques fail to quantify those. Here we use coarse-grained simulations to study droplets moving on a lubricated polymer brush substrate under the influence of an external body force. The simulation model is based on the many body dissipative particle dynamics (MDPD) method and designed to mimic a system of water droplets on poly(dimethylsiloxane) (PDMS) brushes with chemically identical PDMS lubricant. In agreement with experiments, we find a sublinear power law dependence between the external force F and the droplet velocity v, F ∝ vα with α < 1; however, the exponents differ (α ∼ 0.6-0.7 in simulations versus α ∼ 0.25 in experiments). With increasing velocity, the droplets elongate and the receding contact angle decreases, whereas the advancing contact angle remains roughly constant. Analyzing the flow profiles inside the droplet reveals that the droplets do not slide but roll, with vanishing slip at the substrate surface. Surprisingly, adding lubricant has very little effect on the effective friction force between the droplet and the substrate, even though it has a pronounced effect on the size and structure of the wetting ridge, especially above the cloaking transition.
Collapse
Affiliation(s)
- Rodrique G. M. Badr
- Institut
für Physik, Johannes Gutenberg-Universität
Mainz, Staudingerweg 7-9, D-55099 Mainz, Germany
| | - Lukas Hauer
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Doris Vollmer
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Friederike Schmid
- Institut
für Physik, Johannes Gutenberg-Universität
Mainz, Staudingerweg 7-9, D-55099 Mainz, Germany
| |
Collapse
|
3
|
Carneri M, Ferraro D, Azarpour A, Meggiolaro A, Cremaschini S, Filippi D, Pierno M, Zanchetta G, Mistura G. Sliding and rolling of yield stress fluid droplets on highly slippery lubricated surfaces. J Colloid Interface Sci 2023; 644:487-495. [PMID: 37146485 DOI: 10.1016/j.jcis.2023.04.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 05/07/2023]
Abstract
HYPOTHESIS Droplets of yield stress fluids (YSFs), i.e. fluids that can flow only if they are subjected to a stress above a critical value and otherwise deform like solids, hardly move on solid surfaces due to their high viscosity. The use of highly slippery lubricated surfaces can shed light on the mobility of YSF droplets, which include everyday soft materials, such as toothpaste or mayonnaise, and biological fluids, such as mucus. EXPERIMENTS The spreading and mobility of droplets of aqueous solutions of swollen Carbopol microgels were studied on lubricant infused surfaces. These solutions represent a model system of YSFs. Dynamical phase diagrams were established by varying the concentration of the solutions and the inclination angle of the surfaces. FINDINGS Carbopol droplets deposited on lubricated surfaces could move even at low inclination angles. The droplets were found to slide because of the slip of the flowing oil that covered the solid substrate. However, as the descending speed increased, the droplets rolled down. Rolling was favored at high inclinations and low concentrations. A simple criterion based on the ratio between the yield stress of the Carbopol suspensions and the gravitational stress acting on the Carbopol droplets was found to nicely identify the transition between the two regimes.
Collapse
Affiliation(s)
- Mattia Carneri
- Dipartimento di Fisica e Astronomia "G. Galilei", Università di Padova, via Marzolo 8, 35131 Padova, Italy
| | - Davide Ferraro
- Dipartimento di Fisica e Astronomia "G. Galilei", Università di Padova, via Marzolo 8, 35131 Padova, Italy
| | - Afshin Azarpour
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università di Milano, via F.lli Cervi 93, 20054 Segrate, Italy
| | - Alessio Meggiolaro
- Dipartimento di Fisica e Astronomia "G. Galilei", Università di Padova, via Marzolo 8, 35131 Padova, Italy
| | - Sebastian Cremaschini
- Dipartimento di Fisica e Astronomia "G. Galilei", Università di Padova, via Marzolo 8, 35131 Padova, Italy
| | - Daniele Filippi
- Dipartimento di Fisica e Astronomia "G. Galilei", Università di Padova, via Marzolo 8, 35131 Padova, Italy
| | - Matteo Pierno
- Dipartimento di Fisica e Astronomia "G. Galilei", Università di Padova, via Marzolo 8, 35131 Padova, Italy
| | - Giuliano Zanchetta
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università di Milano, via F.lli Cervi 93, 20054 Segrate, Italy.
| | - Giampaolo Mistura
- Dipartimento di Fisica e Astronomia "G. Galilei", Università di Padova, via Marzolo 8, 35131 Padova, Italy.
| |
Collapse
|
4
|
Foday EH, Sesay T, Baion YM, Koroma EB, Jalloh AY, Kokofele K, Baion FW. Efficient Water Collection from Biodesigned and Natural Inclined Surfaces: Influence of Inclination Angle on Atmospheric Water Collection. ACS OMEGA 2022; 7:43574-43581. [PMID: 36506142 PMCID: PMC9730469 DOI: 10.1021/acsomega.2c04344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Water is one of the most important and crucial indicators of sustainable development goals (SDGs) for humans and other living organisms. Water demand has outstripped supply, resulting in shortage on a worldwide scale, particularly in arid regions. This water scarcity has impeded agricultural productivity and other developmental projects with the ongoing global warming and other anthropogenic activities making it more complicated. To address the worldwide water crisis, it is worthwhile to convert atmospheric air to drinking water. Sequel to that, a hydrophobic surface was designed using facile lithography to compare its water harvesting efficiency with a hydrophilic surface at different orientation angles. For the research, the hydrophobic designed surface is called biodesigned material, while the hydrophilic natural surface is a Mangifera indica leaf (MIL). It is against this background that we seek to investigate the most suitable orientation angle good for efficient water harvesting. To that end, a 60° inclination angle is the most efficacious orientation for water collection as it outperformed the 30 and 45° orientation angles. To minimize re-evaporation, absorption, suction, and other environmental challenges that impede efficient collection, atmospheric moisture should be collected immediately from functional surfaces.
Collapse
Affiliation(s)
- Edward Hingha Foday
- Department
of Environmental Engineering, School of Water and Environment, Chang’an University, Xi’an, Shaanxi Province 710064, P.R China
- Faculty of
Education, Eastern Technical University
of Sierra Leone, Combema
Road, Kenema City 00232, Sierra Leone
| | - Taiwo Sesay
- School
of Highway, Chang’an University, Xi’an, Shaanxi Province 710064, P.R China
| | - Yagbasuah Maada Baion
- College
of Economics and Management, Jilin Agricultural
University, Changchun 130118, China
| | - Emmanuel Bartholomew Koroma
- Department
of Geography-Environment and Natural Resources Management, Faculty
of Social and Management Sciences, Ernest
Bai Koroma University of Science and Technology, Magburaka City 00232, Sierra Leone
| | - Alpha Yayah Jalloh
- School
of Economics and Management, Chang’an
University, Xi’an 710064, China
| | - Kejan Kokofele
- Faculty of
Education, Eastern Technical University
of Sierra Leone, Combema
Road, Kenema City 00232, Sierra Leone
| | - Florence Wuyah Baion
- Faculty of
Education, Eastern Technical University
of Sierra Leone, Combema
Road, Kenema City 00232, Sierra Leone
| |
Collapse
|
5
|
Li H, Zhang Y, Gu XS, Qi H, Yu J, Zhuang J. Study on the shear stress and interfacial friction of droplets moving on a superhydrophobic surface. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
The sliding mode and dissipative force of moving nanodroplets on smooth and striped hydrophobic surfaces. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Abubakar AA, Yilbas BS, Al-Qahtani H, Mohammed AS. Droplet Rolling Dynamics over a Hydrophobic Surface with a Minute Width Channel. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7851-7861. [PMID: 34137254 DOI: 10.1021/acs.langmuir.1c01268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Unidirectional and stabilize droplet rolling over hydrophobic surfaces is critical for self-cleaning applications of large areas. Introducing minute size channels on hydrophobic surfaces in the droplet rolling direction can minimize droplet wobbling and enables unidirectional rolling. The droplet rolling behavior over an inclined hydrophobic surface having a minute size channel is investigated. The flow field developed inside the droplet fluid is numerically simulated in a three-dimensional domain pertinent to experimental conditions. Experiments are carried out using a high-speed facility to monitor and evaluate droplet motion over channeled and flat hydrophobic surfaces. The findings revealed that predictions of the droplet translational velocity and those obtained from the experiments are in good agreement. The presence of a minute channel on the hydrophobic surface gives rise to droplet fluid inflection into the minute channel, which in turn modifies the center of mass of the droplet during rolling. This lowers the droplet wobbling height and enables the droplet to roll unidirectionally along the channel length. Enlarging the channel width on the hydrophobic surface increases droplet kinetic energy dissipation while reducing the droplet rolling speed. The complex flow structures formed in the droplet fluid modifies the pressure along the droplet centerline; however, the droplet fluid pressure remains almost the same order as the Laplace pressure in the upper region of a rolling droplet over the channeled hydrophobic surface.
Collapse
Affiliation(s)
- Abba Abdulhamid Abubakar
- Mechanical Engineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Bekir Sami Yilbas
- Mechanical Engineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
- Center of Research Excellence in Renewable Energy (CoRE-RE), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
- K.A.CARE Energy Research & Innovation Center, Dhahran 31261, Saudi Arabia
| | - Hussain Al-Qahtani
- Mechanical Engineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Anwaruddin Siddiqui Mohammed
- Mechanical Engineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| |
Collapse
|
8
|
Pornea AM, Puguan JMC, Deonikar VG, Kim H. Fabrication of multifunctional wax infused porous PVDF film with switchable temperature response surface and anti corrosion property. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.10.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Draper TC, Fullarton C, Mayne R, Phillips N, Canciani GE, de Lacy Costello BPJ, Adamatzky A. Mapping outcomes of liquid marble collisions. SOFT MATTER 2019; 15:3541-3551. [PMID: 30945723 DOI: 10.1039/c9sm00328b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Liquid marbles (LMs) have many promising roles in the ongoing development of microfluidics, microreactors, bioreactors, and unconventional computing. In many of these applications, the coalescence of two LMs is either required or actively discouraged, therefore it is important to study liquid marble collisions and establish parameters which enable the desired collision outcome. Recent reports on LM coalescence have focused on either two mobile LMs colliding, or an accelerating LM hitting a sessile LM with a backstop. A further possible scenario is the impact of a mobile LM against a non-supported static LM. This paper investigates such a collision, using high-speed videography for single-frame analysis. Multiple collisions were undertaken whilst varying the modified Weber number (We*) and offset ratios (X*). Parameter ranges of 1.0 < We* < 1.4 and 0.0 < X* < 0.1, resulted in a coalescence rate of approximately 50%. Whereas, parameter ranges X* > 0.25, and We* < 0.95 or We* > 1.55 resulted in 100% non-coalescence. Additionally, observations of LMs moving above a threshold velocity of 0.6 m s-1 have revealed a new and unusual deformation. Comparisons of the outcome of collisions whilst varying both the LM volume and the powder grain size have also been made, revealing a strong link. The results of this work provide a deeper understanding of LM coalescence, allowing improved control when designing future collision experiments.
Collapse
Affiliation(s)
- Thomas C Draper
- Unconventional Computing Laboratory, University of the West of England, Bristol, BS16 1QY, UK.
| | | | | | | | | | | | | |
Collapse
|
10
|
Kumar M, Bhardwaj R, Sahu KC. Motion of a Droplet on an Anisotropic Microgrooved Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2957-2965. [PMID: 30681868 DOI: 10.1021/acs.langmuir.8b03604] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We experimentally characterize the sliding angle of water droplets (volume 3.1-22.2 μL) migrating on inclined microgrooved surfaces along the longitudinal and transverse directions of the grooves. The rectangular microgrooves are manufactured on silicon wafers using standard photolithography techniques. We tilt the surface gradually using a rotating stage mechanism until the incipience of the sliding. The droplet migration in the longitudinal and transverse directions to the grooves is recorded using a high-speed camera. For the droplets migrating downward in the transverse direction, the contact line exhibits a "stick-slip" type motion, that is, the advancing contact line is attached to the surface, whereas the receding contact line is detached from the surface. However, no significant change in the relative position of the advancing and receding contact lines is observed in the case of the longitudinal migration of the droplets. The sliding behavior of the droplet in the longitudinal direction is similar to that observed in the case of a smooth surface. The sliding angle in the longitudinal direction of motion is found to be smaller as compared to that in the transverse motion of the droplet. In both longitudinal and transverse migrations, increasing the pitch of the grooves increases the contact angle, which in turn decreases the sliding angle. As the droplet volume is increased, the component of the gravitational force in the direction of inclination increases, which acts to decrease the sliding angle. A theoretical analysis is also conducted to predict the sliding angle of a droplet on microgrooved surfaces. The model predictions agree with the trends observed in our experiments and thus validate the proposed sliding mechanisms in the longitudinal and transverse migrations of the droplet.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Mechanical Engineering , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | - Rajneesh Bhardwaj
- Department of Mechanical Engineering , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | - Kirti Chandra Sahu
- Department of Chemical Engineering , Indian Institute of Technology Hyderabad , Sangareddy 502 285 , Telangana , India
| |
Collapse
|
11
|
Sadullah MS, Semprebon C, Kusumaatmaja H. Drop Dynamics on Liquid-Infused Surfaces: The Role of the Lubricant Ridge. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8112-8118. [PMID: 29893571 DOI: 10.1021/acs.langmuir.8b01660] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We employ a free-energy lattice-Boltzmann method to study the dynamics of a ternary fluid system consisting of a liquid drop driven by a body force across a regularly textured substrate, infused by a lubricating liquid. We focus on the case of partial wetting lubricants and observe a rich interplay between contact line pinning and viscous dissipation at the lubricant ridge, which become dominant at large and small apparent angles, respectively. Our numerical investigations further demonstrate that the relative importance of viscous dissipation at the lubricant ridge depends on the drop to lubricant viscosity ratio, as well as on the shape of the wetting ridge.
Collapse
Affiliation(s)
| | - Ciro Semprebon
- Department of Mathematics, Physics and Electrical Engineering, Faculty of Engineering and Environment , Northumbria University , Newcastle upon Tyne NE1 8ST , U.K
| | | |
Collapse
|
12
|
Jaensson NO, Mitrias C, Hulsen MA, Anderson PD. Shear-Induced Migration of Rigid Particles near an Interface between a Newtonian and a Viscoelastic Fluid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1795-1806. [PMID: 29287149 PMCID: PMC5997405 DOI: 10.1021/acs.langmuir.7b03482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/21/2017] [Indexed: 06/07/2023]
Abstract
Simulations of rigid particles suspended in two-phase shear flow are presented, where one of the suspending fluids is viscoelastic, whereas the other is Newtonian. The Cahn-Hilliard diffuse-interface model is employed for the fluid-fluid interface, which can naturally describe the interactions between the particle and the interface (e.g., particle adsorption). It is shown that particles can migrate across streamlines of the base flow, which is due to the surface tension of the fluid-fluid interface and a difference in normal stresses between the two fluids. The particle is initially located in the viscoelastic fluid, and its migration is investigated in terms of the Weissenberg number Wi (shear rate times relaxation time) and capillary number Ca (viscous stress over capillary stress). Four regimes of particle migration are observed, which can roughly be described by migration away from the interface for Wi = 0, halted migration toward the interface for low Wi and low Ca, particle adsorption at the interface for high Wi and low Ca, and penetration into the Newtonian fluid for high Wi and high Ca. It is found that the angular velocity of the particle plays a large role in determining the final location of the particle, especially for high Wi. From morphology plots, it is deduced that the different dynamics can be described well by considering a balance in the first-normal stress difference and Laplace pressure. However, it is shown that other parameters, such as the equilibrium contact angle and diffusion of the fluid, are also important in determining the final location of the particle.
Collapse
Affiliation(s)
- Nick. O. Jaensson
- Department
of Mechanical Engineering, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Dutch
Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven, The Netherlands
| | - Christos Mitrias
- Department
of Mechanical Engineering, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Martien A. Hulsen
- Department
of Mechanical Engineering, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Patrick D. Anderson
- Department
of Mechanical Engineering, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
13
|
Yilbas BS, Al-Sharafi A, Ali H, Al-Aqeeli N. Dynamics of a water droplet on a hydrophobic inclined surface: influence of droplet size and surface inclination angle on droplet rolling. RSC Adv 2017. [DOI: 10.1039/c7ra09345d] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An understanding of the dynamic motion of a water droplet is critical to reduce the effort required to remove dust particles from such surfaces.
Collapse
Affiliation(s)
- Bekir Sami Yilbas
- Mechanical Engineering Department
- King Fahd University of Petroleum & Minerals
- Dhahran
- Saudi Arabia
- Center of Excellence in Renewable Energy
| | - Abudllah Al-Sharafi
- Mechanical Engineering Department
- King Fahd University of Petroleum & Minerals
- Dhahran
- Saudi Arabia
| | - Haider Ali
- Mechanical Engineering Department
- King Fahd University of Petroleum & Minerals
- Dhahran
- Saudi Arabia
| | - Nasser Al-Aqeeli
- Mechanical Engineering Department
- King Fahd University of Petroleum & Minerals
- Dhahran
- Saudi Arabia
| |
Collapse
|
14
|
Gupta A, Sbragaglia M, Belardinelli D, Sugiyama K. Lattice Boltzmann simulations of droplet formation in confined channels with thermocapillary flows. Phys Rev E 2016; 94:063302. [PMID: 28085339 DOI: 10.1103/physreve.94.063302] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Indexed: 06/06/2023]
Abstract
Based on mesoscale lattice Boltzmann simulations with the "Shan-Chen" model, we explore the influence of thermocapillarity on the breakup properties of fluid threads in a microfluidic T-junction, where a dispersed phase is injected perpendicularly into a main channel containing a continuous phase, and the latter induces periodic breakup of droplets due to the cross-flowing. Temperature effects are investigated by switching on-off both positive-negative temperature gradients along the main channel direction, thus promoting a different thread dynamics with anticipated-delayed breakup. Numerical simulations are performed at changing the flow rates of both the continuous and dispersed phases, as well as the relative importance of viscous forces, surface tension forces, and thermocapillary stresses. The range of parameters is broad enough to characterize the effects of thermocapillarity on different mechanisms of breakup in the confined T-junction, including the so-called "squeezing" and "dripping" regimes, previously identified in the literature. Some simple scaling arguments are proposed to rationalize the observed behavior, and to provide quantitative guidelines on how to predict the droplet size after breakup.
Collapse
Affiliation(s)
- A Gupta
- Department of Physics & INFN, University of Rome "Tor Vergata," Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - M Sbragaglia
- Department of Physics & INFN, University of Rome "Tor Vergata," Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - D Belardinelli
- Department of Physics & INFN, University of Rome "Tor Vergata," Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - K Sugiyama
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
15
|
Hu H, Yu S, Song D. No-Loss Transportation of Water Droplets by Patterning a Desired Hydrophobic Path on a Superhydrophobic Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7339-7345. [PMID: 27359261 DOI: 10.1021/acs.langmuir.6b01654] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The directional transportation of droplets on solid surfaces is essential in a wide range of engineering applications. It is convenient to guide liquid droplets in a given direction by utilizing the gradient of wettability, by which the binding forces can be produced. In contrast to the mass-loss transportation of a droplet moving along hydrophilic paths on a horizontal superhydrophobic surface, we present no-loss transportation by fabricating a hydrophobic path on the same surface under tangential wind. In experimental exploration and theoretical analysis, the conditions of no-loss transportation of a droplet are mainly considered. We demonstrate that the lower (or upper) critical wind velocity, under which the droplet starts on the path (or is derailed from the path), is determined by the width of the path, the length of the contact area in the direction parallel to the path, the drift angle between the path and the wind direction, and the surface wettability of the pattern. Meanwhile, the no-loss transportation of water droplets along the desired path zigzagging on a superhydrophobic surface can be achieved steadily under appropriate conditions. We anticipate that such robust no-loss transportation will find an extensive range of applications.
Collapse
Affiliation(s)
- Haibao Hu
- School of Marine Science and Technology, Northwestern Polytechnical University , Xi'an 710072, People's Republic of China
| | - Sixiao Yu
- School of Marine Science and Technology, Northwestern Polytechnical University , Xi'an 710072, People's Republic of China
| | - Dong Song
- School of Marine Science and Technology, Northwestern Polytechnical University , Xi'an 710072, People's Republic of China
- The Institute of NPU in Shenzhen, Northwestern Polytechnical University , Shenzhen 518057, People's Republic of China
| |
Collapse
|
16
|
Thampi SP, Pagonabarraga I, Adhikari R, Govindarajan R. Universal evolution of a viscous-capillary spreading drop. SOFT MATTER 2016; 12:6073-6078. [PMID: 27374245 DOI: 10.1039/c6sm01167e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The rate of spreading or retraction of a drop on a flat substrate is determined through a balance of surface tension and hydrodynamic flow. While asymptotic regimes are known, no general rate equation has hitherto been available. Here, we revisit this classic problem, in a regime governed by capillary and viscous forces, by performing an exhaustive numerical study of drop evolution as a function of the contact angle with the substrate. Our study reveals a universal evolution of the drop radius parameterised only by the substrate wettability. Two limits of this evolution recover the familiar exponential and algebraic regimes. Our results show quantitative comparison with the evolution derived from lubrication theory, indicating that dissipation at the contact line is the key determinant in drop evolution. Our work, both numerical and theoretical, provides a foundation for studying the full temporal dynamics of droplet evolution under the influence of external fields and thermal fluctuations, which are of importance in nanofluidics.
Collapse
Affiliation(s)
- Sumesh P Thampi
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ignacio Pagonabarraga
- Department de Fisica Fonamental, Universitat de Barcelona, Avinguda Diagonal 647, E-08028 Barcelona, Spain
| | - Ronojoy Adhikari
- The Institute of Mathematical Sciences, CIT Campus, Chennai 600113, India
| | - Rama Govindarajan
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500075, India.
| |
Collapse
|
17
|
Onset of sliding motion in sessile drops with initially non-circular contact lines. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.03.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Gupta A, Sbragaglia M. Effects of viscoelasticity on droplet dynamics and break-up in microfluidic T-Junctions: a lattice Boltzmann study. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2016; 39:6. [PMID: 26810396 DOI: 10.1140/epje/i2016-16006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/29/2015] [Indexed: 06/05/2023]
Abstract
The effects of viscoelasticity on the dynamics and break-up of fluid threads in microfluidic T-junctions are investigated using numerical simulations of dilute polymer solutions at changing the Capillary number (Ca), i.e. at changing the balance between the viscous forces and the surface tension at the interface, up to Ca ≈ 3×10(-2). A Navier-Stokes (NS) description of the solvent based on the lattice Boltzmann models (LBM) is here coupled to constitutive equations for finite extensible non-linear elastic dumbbells with the closure proposed by Peterlin (FENE-P model). We present the results of three-dimensional simulations in a range of Ca which is broad enough to characterize all the three characteristic mechanisms of break-up in the confined T-junction, i.e. squeezing, dripping and jetting regimes. The various model parameters of the FENE-P constitutive equations, including the polymer relaxation time τP and the finite extensibility parameter L2, are changed to provide quantitative details on how the dynamics and break-up properties are affected by viscoelasticity. We will analyze cases with Droplet Viscoelasticity (DV), where viscoelastic properties are confined in the dispersed (d) phase, as well as cases with Matrix Viscoelasticity (MV), where viscoelastic properties are confined in the continuous (c) phase. Moderate flow-rate ratios Q ≈ O(1) of the two phases are considered in the present study. Overall, we find that the effects are more pronounced in the case with MV, as the flow driving the break-up process upstream of the emerging thread can be sensibly perturbed by the polymer stresses.
Collapse
Affiliation(s)
- Anupam Gupta
- Department of Physics and INFN, University of "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome, Italy.
| | - Mauro Sbragaglia
- Department of Physics and INFN, University of "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome, Italy
| |
Collapse
|
19
|
Gupta A, Sbragaglia M. A lattice Boltzmann study of the effects of viscoelasticity on droplet formation in microfluidic cross-junctions. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2016; 39:2. [PMID: 26794502 DOI: 10.1140/epje/i2016-16002-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 12/17/2015] [Indexed: 06/05/2023]
Abstract
Based on mesoscale lattice Boltzmann (LB) numerical simulations, we investigate the effects of viscoelasticity on the break-up of liquid threads in microfluidic cross-junctions, where droplets are formed by focusing a liquid thread of a dispersed (d) phase into another co-flowing continuous (c) immiscible phase. Working at small Capillary numbers, we investigate the effects of non-Newtonian phases in the transition from droplet formation at the cross-junction (DCJ) to droplet formation downstream of the cross-junction (DC) (Liu and Zhang, Phys. Fluids. 23, 082101 (2011)). We will analyze cases with Droplet Viscoelasticity (DV), where viscoelastic properties are confined in the dispersed phase, as well as cases with Matrix Viscoelasticity (MV), where viscoelastic properties are confined in the continuous phase. Moderate flow-rate ratios Q≈O(1) of the two phases are considered in the present study. Overall, we find that the effects are more pronounced with MV, where viscoelasticity is found to influence the break-up point of the threads, which moves closer to the cross-junction and stabilizes. This is attributed to an increase of the polymer feedback stress forming in the corner flows, where the side channels of the device meet the main channel. Quantitative predictions on the break-up point of the threads are provided as a function of the Deborah number, i.e., the dimensionless number measuring the importance of viscoelasticity with respect to Capillary forces.
Collapse
Affiliation(s)
- Anupam Gupta
- Department of Physics and INFN, University of "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome, Italy.
| | - Mauro Sbragaglia
- Department of Physics and INFN, University of "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome, Italy
| |
Collapse
|
20
|
Khoromskaia D, Alexander GP. Motility of active fluid drops on surfaces. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:062311. [PMID: 26764696 DOI: 10.1103/physreve.92.062311] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Indexed: 06/05/2023]
Abstract
Drops of active liquid crystal have recently shown the ability to self-propel, which was associated with topological defects in the orientation of active filaments [Sanchez et al., Nature 491, 431 (2013)]. Here, we study the onset and different aspects of motility of a three-dimensional drop of active fluid on a planar surface. We analyze theoretically how motility is affected by orientation profiles with defects of various types and locations, by the shape of the drop, and by surface friction at the substrate. In the scope of a thin drop approximation, we derive exact expressions for the flow in the drop that is generated by a given orientation profile. The flow has a natural decomposition into terms that depend entirely on the geometrical properties of the orientation profile, i.e., its bend and splay, and a term coupling the orientation to the shape of the drop. We find that asymmetric splay or bend generates a directed bulk flow and enables the drop to move, with maximal speeds achieved when the splay or bend is induced by a topological defect in the interior of the drop. In motile drops the direction and speed of self-propulsion is controlled by friction at the substrate.
Collapse
Affiliation(s)
- Diana Khoromskaia
- Department of Physics and Centre for Complexity Science, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Gareth P Alexander
- Department of Physics and Centre for Complexity Science, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
21
|
Berim GO, Ruckenstein E. Nanodrop on a smooth solid surface with hidden roughness. Density functional theory considerations. NANOSCALE 2015; 7:7873-7884. [PMID: 25855034 DOI: 10.1039/c5nr00678c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A nanodrop of a test fluid placed on a smooth surface of a solid material of nonuniform density which covers a rough solid surface (hidden roughness) is examined, on the basis of the density functional theory (DFT), in the presence of an external perturbative force parallel to the surface. The contact angles which the drop profile makes with the surface at the leading edges of the drop are determined as functions of drop size and perturbative external force. A critical sticking force, defined as the largest value of the perturbative force for which the drop remains at equilibrium, is determined and its dependence on the size of the drop is explained on the basis of the shape of the interaction potential generated by the solid in vicinity of the leading edges of the drop. For even larger values of the perturbative force no drop-like solution of the Euler-Lagrange equation of the DFT was found. The upper bound of the inclination angle of a surface containing a macroscopic drop is estimated on the basis of results obtained for nanodrops and some experimental results are interpreted. The main conclusion is that the hidden roughness has a similar effect on the drop features as the traditionally considered physical and chemical roughnesses.
Collapse
Affiliation(s)
- Gersh O Berim
- Department of Chemical and Biological Engineering, State University of New York at Buffalo, Buffalo, New York 14260, USA.
| | | |
Collapse
|
22
|
Randive P, Dalal A, Sahu KC, Biswas G, Mukherjee PP. Wettability effects on contact line dynamics of droplet motion in an inclined channel. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:053006. [PMID: 26066248 DOI: 10.1103/physreve.91.053006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Indexed: 06/04/2023]
Abstract
The present work discusses the implications of wall wettability and inclination of the surface on droplet dynamics. In this work, mesoscopic illustration of droplet dynamics in a duct with different inclination angles, based on the two-phase lattice Boltzmann model, is reported. Temporal evolution of wetted length, wetted area, and maximum height of the droplet for surfaces with different inclination angles and wettabilities is furnished in detail in order to elucidate the droplet displacement dynamics. It has been observed that the effect of inclination of the surface on droplet dynamics is more pronounced on a hydrophobic surface as compared to a hydrophilic surface. The time evolution of height and contact line motion of the droplet shows that higher angle of inclination of substrate affects the dynamics strongly irrespective of wettability.
Collapse
Affiliation(s)
- Pitambar Randive
- Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Amaresh Dalal
- Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Kirti Chandra Sahu
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Yeddumailaram 502 205, India
| | - Gautam Biswas
- Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Partha P Mukherjee
- Department of Mechanical Engineering, Texas A & M University, College Station, Texas 77843-3123, USA
| |
Collapse
|
23
|
Mayo LC, McCue SW, Moroney TJ, Forster WA, Kempthorne DM, Belward JA, Turner IW. Simulating droplet motion on virtual leaf surfaces. ROYAL SOCIETY OPEN SCIENCE 2015; 2:140528. [PMID: 26064657 PMCID: PMC4453263 DOI: 10.1098/rsos.140528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/14/2015] [Indexed: 06/04/2023]
Abstract
A curvilinear thin film model is used to simulate the motion of droplets on a virtual leaf surface, with a view to better understand the retention of agricultural sprays on plants. The governing model, adapted from Roy et al. (2002 J. Fluid Mech. 454, 235-261 (doi:10.1017/S0022112001007133)) with the addition of a disjoining pressure term, describes the gravity- and curvature-driven flow of a small droplet on a complex substrate: a cotton leaf reconstructed from digitized scan data. Coalescence is the key mechanism behind spray coating of foliage, and our simulations demonstrate that various experimentally observed coalescence behaviours can be reproduced qualitatively. By varying the contact angle over the domain, we also demonstrate that the presence of a chemical defect can act as an obstacle to the droplet's path, causing break-up. In simulations on the virtual leaf, it is found that the movement of a typical spray size droplet is driven almost exclusively by substrate curvature gradients. It is not until droplet mass is sufficiently increased via coalescence that gravity becomes the dominating force.
Collapse
Affiliation(s)
- Lisa C. Mayo
- Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Scott W. McCue
- Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Timothy J. Moroney
- Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | | | - Daryl M. Kempthorne
- Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - John A. Belward
- Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Ian W. Turner
- Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| |
Collapse
|
24
|
Deen J, Sempels W, De Dier R, Vermant J, Dedecker P, Hofkens J, Neely RK. Combing of genomic DNA from droplets containing picograms of material. ACS NANO 2015; 9:809-816. [PMID: 25561163 PMCID: PMC4344373 DOI: 10.1021/nn5063497] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/05/2015] [Indexed: 05/30/2023]
Abstract
Deposition of linear DNA molecules is a critical step in many single-molecule genomic approaches including DNA mapping, fiber-FISH, and several emerging sequencing technologies. In the ideal situation, the DNA that is deposited for these experiments is absolutely linear and uniformly stretched, thereby enabling accurate distance measurements. However, this is rarely the case, and furthermore, current approaches for the capture and linearization of DNA on a surface tend to require complex surface preparation and large amounts of starting material to achieve genomic-scale mapping. This makes them technically demanding and prevents their application in emerging fields of genomics, such as single-cell based analyses. Here we describe a simple and extremely efficient approach to the deposition and linearization of genomic DNA molecules. We employ droplets containing as little as tens of picograms of material and simply drag them, using a pipet tip, over a polymer-coated coverslip. In this report we highlight one particular polymer, Zeonex, which is remarkably efficient at capturing DNA. We characterize the method of DNA capture on the Zeonex surface and find that the use of droplets greatly facilitates the efficient deposition of DNA. This is the result of a circulating flow in the droplet that maintains a high DNA concentration at the interface of the surface/solution. Overall, our approach provides an accessible route to the study of genomic structural variation from samples containing no more than a handful of cells.
Collapse
Affiliation(s)
- Jochem Deen
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Heverlee 3001, Belgium
| | - Wouter Sempels
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Heverlee 3001, Belgium
| | - Raf De Dier
- Department of Chemical Engineering, KU Leuven, Willem de Croylaan 46, Heverlee 3001, Belgium
| | - Jan Vermant
- Department of Chemical Engineering, KU Leuven, Willem de Croylaan 46, Heverlee 3001, Belgium
- Department of Materials, ETH Zürich, Vladimir Prelog Weg 5, CH 8093 Zürich, Switzerland
| | - Peter Dedecker
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Heverlee 3001, Belgium
| | - Johan Hofkens
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Heverlee 3001, Belgium
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Robert K. Neely
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Heverlee 3001, Belgium
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
25
|
Datt C, Thampi SP, Govindarajan R. Morphological evolution of domains in spinodal decomposition. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:010101. [PMID: 25679549 DOI: 10.1103/physreve.91.010101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Indexed: 06/04/2023]
Abstract
Domain growth in spinodal decomposition is usually described by a single time-evolving length scale. We show that the evolution of morphology of domains is nonmonotonic. The domains elongate rapidly at first and then, with the help of hydrodynamics, return to a more circular shape. The initial elongation phase does not alter with hydrodynamics. A small deviation from critical composition changes the morphology dramatically.
Collapse
Affiliation(s)
- Charu Datt
- Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 21 Brundavan Colony, Narsingi, Hyderabad 500075, India
| | - Sumesh P Thampi
- Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, United Kingdom
| | - Rama Govindarajan
- Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 21 Brundavan Colony, Narsingi, Hyderabad 500075, India
| |
Collapse
|
26
|
Wind-Willassen Ø, Sørensen MP. A finite-element method model for droplets moving down a hydrophobic surface. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2014; 37:21. [PMID: 25080173 DOI: 10.1140/epje/i2014-14065-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 04/25/2014] [Accepted: 07/01/2014] [Indexed: 06/03/2023]
Abstract
We set up a 2D computational Finite-Element Method (FEM) model describing the initial descent of a droplet down an inclined hydrophobic substrate. We solve the full Navier-Stokes equations inside the drop domain, and use the arbitrary Lagrangian-Eulerian method to keep track of the droplet surface. The contact angle is included by using the Frennet-Serret equations. We investigate the behaviour of the drop velocity as a function of the slip length and compare with experimental results. Furthermore, we quantify the energy associated with centre-of-mass translation and internal fluid motion, and we also compute the local dissipation of energy inside the drop. The model predicts trajectories for tracer particles deposited inside the drop, and satisfactorily describes the sliding motion of steadily accelerating droplets. The model can be used for determining a characteristic slip parameter, associated with slip lengths and drag reduction for hydrophobic surfaces.
Collapse
Affiliation(s)
- Øistein Wind-Willassen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800, Kongens Lyngby, Denmark,
| | | |
Collapse
|
27
|
Casavant B, Guckenberger DJ, Beebe DJ, Berry SM. Efficient sample preparation from complex biological samples using a sliding lid for immobilized droplet extractions. Anal Chem 2014; 86:6355-62. [PMID: 24927449 PMCID: PMC4079323 DOI: 10.1021/ac500574t] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/20/2014] [Indexed: 01/25/2023]
Abstract
Sample preparation is a major bottleneck in many biological processes. Paramagnetic particles (PMPs) are a ubiquitous method for isolating analytes of interest from biological samples and are used for their ability to thoroughly sample a solution and be easily collected with a magnet. There are three main methods by which PMPs are used for sample preparation: (1) removal of fluid from the analyte-bound PMPs, (2) removal of analyte-bound PMPs from the solution, and (3) removal of the substrate (with immobilized analyte-bound PMPs). In this paper, we explore the third and least studied method for PMP-based sample preparation using a platform termed Sliding Lid for Immobilized Droplet Extractions (SLIDE). SLIDE leverages principles of surface tension and patterned hydrophobicity to create a simple-to-operate platform for sample isolation (cells, DNA, RNA, protein) and preparation (cell staining) without the need for time-intensive wash steps, use of immiscible fluids, or precise pinning geometries. Compared to other standard isolation protocols using PMPs, SLIDE is able to perform rapid sample preparation with low (0.6%) carryover of contaminants from the original sample. The natural recirculation occurring within the pinned droplets of SLIDE make possible the performance of multistep cell staining protocols within the SLIDE by simply resting the lid over the various sample droplets. SLIDE demonstrates a simple easy to use platform for sample preparation on a range of complex biological samples.
Collapse
Affiliation(s)
| | | | - David J. Beebe
- Department of Biomedical
Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Scott M. Berry
- Department of Biomedical
Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, Wisconsin 53705, United States
| |
Collapse
|
28
|
Sbragaglia M, Biferale L, Amati G, Varagnolo S, Ferraro D, Mistura G, Pierno M. Sliding drops across alternating hydrophobic and hydrophilic stripes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:012406. [PMID: 24580236 DOI: 10.1103/physreve.89.012406] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Indexed: 05/14/2023]
Abstract
We perform a joint numerical and experimental study to systematically characterize the motion of 30 μl drops of pure water and of ethanol in water solutions, sliding over a periodic array of alternating hydrophobic and hydrophilic stripes with a large wettability contrast and a typical width of hundreds of microns. The fraction of the hydrophobic areas has been varied from about 20% to 80%. The effects of the heterogeneous patterning can be described by a renormalized value of the critical Bond number, i.e., the critical dimensionless force needed to depin the drop before it starts to move. Close to the critical Bond number we observe a jerky motion characterized by an evident stick-slip dynamics. As a result, dissipation is strongly localized in time, and the mean velocity of the drops can easily decrease by an order of magnitude compared to the sliding on the homogeneous surface. Lattice Boltzmann numerical simulations are crucial for disclosing to what extent the sliding dynamics can be deduced from the computed balance of capillary, viscous, and body forces by varying the Bond number, the surface composition, and the liquid viscosity. Beyond the critical Bond number, we characterize both experimentally and numerically the dissipation inside the droplet by studying the relation between the average velocity and the applied volume forces.
Collapse
Affiliation(s)
- M Sbragaglia
- Department of Physics and INFN, University of "Tor Vergata," Via della Ricerca Scientifica 1, I-00133 Rome, Italy
| | - L Biferale
- Department of Physics and INFN, University of "Tor Vergata," Via della Ricerca Scientifica 1, I-00133 Rome, Italy
| | - G Amati
- SCAI, SuperComputing Applications and Innovation, Department CINECA, Via dei Tizii, I-00185 Roma, Italy
| | - S Varagnolo
- Dipartimento di Fisica e Astronomia "G. Galilei" and CNISM, Universitá di Padova, Via Marzolo 8, I-35131 Padova, Italy
| | - D Ferraro
- Dipartimento di Fisica e Astronomia "G. Galilei" and CNISM, Universitá di Padova, Via Marzolo 8, I-35131 Padova, Italy
| | - G Mistura
- Dipartimento di Fisica e Astronomia "G. Galilei" and CNISM, Universitá di Padova, Via Marzolo 8, I-35131 Padova, Italy
| | - M Pierno
- Dipartimento di Fisica e Astronomia "G. Galilei" and CNISM, Universitá di Padova, Via Marzolo 8, I-35131 Padova, Italy
| |
Collapse
|