1
|
Prudlik A, Mohebbati N, Hildebrandt L, Heck A, Nuhn L, Francke R. TEMPO-Modified Polymethacrylates as Mediators in Electrosynthesis: Influence of the Molecular Weight on Redox Properties and Electrocatalytic Activity. Chemistry 2023; 29:e202202730. [PMID: 36426862 DOI: 10.1002/chem.202202730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/13/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
Abstract
Homogeneous catalysts ("mediators") are frequently employed in organic electrosynthesis to control selectivity. Despite their advantages, they can have a negative influence on the overall energy and mass balance if used only once or recycled inefficiently. Polymediators are soluble redox-active polymers applicable as electrocatalysts, enabling recovery by dialysis or membrane filtration. Using anodic alcohol oxidation as an example, we have demonstrated that TEMPO-modified polymethacrylates (TPMA) can act as efficient and recyclable catalysts. In the present work, the influence of the molecular size on the redox properties and the catalytic activity was carefully elaborated using a series of TPMAs with well-defined molecular weight distributions. Cyclic voltammetry studies show that the polymer chain length has a pronounced impact on the key-properties. Together with preparative-scale electrolysis experiments, an optimum size range was identified for polymediator-guided sustainable reaction control.
Collapse
Affiliation(s)
- Adrian Prudlik
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany.,Institute of Chemistry, Rostock University, Albert-Einstein-Str. 3a, 18059, Rostock, Germany
| | - Nayereh Mohebbati
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany.,Institute of Chemistry, Rostock University, Albert-Einstein-Str. 3a, 18059, Rostock, Germany
| | - Laura Hildebrandt
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Alina Heck
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Chair of Macromolecular Chemistry, Faculty of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070, Würzburg, Germany
| | - Lutz Nuhn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Chair of Macromolecular Chemistry, Faculty of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070, Würzburg, Germany
| | - Robert Francke
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany.,Institute of Chemistry, Rostock University, Albert-Einstein-Str. 3a, 18059, Rostock, Germany
| |
Collapse
|
2
|
Ainsworth J, Cook TC, Stack TDP. Fast and Versatile Functionalization of Glassy Carbon. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13814-13821. [PMID: 36326209 DOI: 10.1021/acs.langmuir.2c01964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A rapid procedure for the functionalization of glassy carbon surfaces (GCSs) is disclosed. A three-step sequence of bromomethylation, azide displacement, and copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) allows ethynylated molecules to be attached covalently to the carbon surface through a methylene functional group. Redox-active ethynyl ferrocene and [RuII(Cl)(DMSO)(ethynyl-TPA)]1+ (DMSO = dimethylsulfoxide; TPA = tris(2-pyridylmethyl)amine) are attached with high coverages as assessed by cyclic voltammetry, and the elemental composition of the surface is confirmed by X-ray photoelectron spectroscopy. In less than 1 h, surface coverages of 1 × 1014 molecules/cm2 are possible that exhibit good durability in both acidic and basic media. Attached [RuII(Cl)(DMSO)(ethynyl-TPA)]1+ catalytically oxidizes alcohols, yet the currents and potentials are less impressive compared to an attachment without the intervening methylene group. The advantages of this covalent attachment procedure for GCSs are its short reaction times, mild reaction conditions, and the use of standard laboratory reagents and glassware, allowing for many types of ethynylated molecules to be attached rapidly to the surface.
Collapse
Affiliation(s)
- Jasper Ainsworth
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Thomas C Cook
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - T Daniel P Stack
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
3
|
Rouvière L, Al-Hajj N, Hunel J, Aupetit C, Buffeteau T, Vellutini L, Genin E. Silane-Based SAMs Deposited by Spin Coating as a Versatile Alternative Process to Solution Immersion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6464-6471. [PMID: 35544953 DOI: 10.1021/acs.langmuir.2c00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Functionalization of silica surfaces with silane-based self-assembled monolayers (SAMs) is widely used in material sciences to tune surface properties and introduce terminal functional groups enabling subsequent chemical surface reactions and immobilization of (bio)molecules. Here, we report on the synthesis of four organotrimethoxysilanes with various molecular structures and we compare their grafting by spin coating with the one performed by the conventional solution immersion method. Strikingly, this study clearly demonstrates that the spin coating technique is a versatile, fast, and more convenient alternative process to prepare robust, smooth, and homogeneous SAMs with similar properties and quality as those deposited via immersion. SAMs were characterized by PM-IRRAS, AFM, and wettability measurements. SAMs can undergo several chemical surface modifications, and the reactivity of amine-terminated SAM was confirmed by PM-IRRAS and fluorescence measurements.
Collapse
Affiliation(s)
- Lisa Rouvière
- Université Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Nisreen Al-Hajj
- Université Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
- Department of Chemistry, Faculty of Science, An-Najah National University, P.O. Box 7, 400 Nablus, Palestine
| | - Julien Hunel
- Université Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Christian Aupetit
- Université Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Thierry Buffeteau
- Université Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Luc Vellutini
- Université Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Emilie Genin
- Université Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| |
Collapse
|
4
|
Bisht H, Jeong J, Hong Y, Park S, Hong D. Development of Universal and Clickable Film by Mimicking Melanogenesis: On-Demand Oxidation of Tyrosine-Based Azido Derivative by Tyrosinase. Macromol Rapid Commun 2022; 43:e2200089. [PMID: 35332614 DOI: 10.1002/marc.202200089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/12/2022] [Indexed: 11/10/2022]
Abstract
In this study, we synthesized a tyrosine-based azido derivative (TBAD) that permits both substrate-independent surface coating and clickable film functionalization by mimicking natural melanogenesis. In contrast to catechol derivatives, which are generally susceptible to oxidation by air under ambient conditions, the monophenol-based TBAD remains stable under alkaline and neutral conditions, and is activated to oxidized quinone in situ by tyrosinase to initiate melanin-like polymerization. The resulting poly(TBAD) film can be formed on various substrates including noble metals, metal oxides, and synthetic polymers, which can undergo click reaction with terminal alkyne moieties on the entire surface or a specific region through Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The enzyme-mediated coating can rapidly form thin films (∼10 nm) and produce a uniform film morphology, which are important aspects in surface chemistry. This on-demand, clickable coating may become a significant tool for bioconjugation, soft lithography, and labeling techniques. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Himani Bisht
- Department of Chemistry, Pusan National University, Busan, 46241, Korea
| | - Jaehoon Jeong
- Department of Chemistry, Pusan National University, Busan, 46241, Korea
| | - Yubin Hong
- Department of Chemistry, Pusan National University, Busan, 46241, Korea
| | - Suho Park
- Department of Chemistry, Pusan National University, Busan, 46241, Korea
| | - Daewha Hong
- Department of Chemistry, Pusan National University, Busan, 46241, Korea
| |
Collapse
|
5
|
Electrocatalytic alcohol oxidation by covalently immobilized ruthenium complex on carbon. J Inorg Biochem 2022; 231:111784. [DOI: 10.1016/j.jinorgbio.2022.111784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 11/23/2022]
|
6
|
Mohebbati N, Prudlik A, Scherkus A, Gudkova A, Francke R. TEMPO‐Modified Polymethacrylates as Mediators in Electrosynthesis – Redox Behavior and Electrocatalytic Activity toward Alcohol Substrates. ChemElectroChem 2021. [DOI: 10.1002/celc.202100768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nayereh Mohebbati
- Leibniz Institute for Catalysis Albert-Einstein-Str. 29a 18059 Rostock Germany
- Institute of Chemistry Rostock University Albert-Einstein-Str. 3a 18059 Rostock Germany
| | - Adrian Prudlik
- Leibniz Institute for Catalysis Albert-Einstein-Str. 29a 18059 Rostock Germany
- Institute of Chemistry Rostock University Albert-Einstein-Str. 3a 18059 Rostock Germany
| | - Anton Scherkus
- Institute of Chemistry Rostock University Albert-Einstein-Str. 3a 18059 Rostock Germany
| | - Aija Gudkova
- Institute of Chemistry Rostock University Albert-Einstein-Str. 3a 18059 Rostock Germany
| | - Robert Francke
- Leibniz Institute for Catalysis Albert-Einstein-Str. 29a 18059 Rostock Germany
- Institute of Chemistry Rostock University Albert-Einstein-Str. 3a 18059 Rostock Germany
| |
Collapse
|
7
|
Whang DR. Immobilization of molecular catalysts for artificial photosynthesis. NANO CONVERGENCE 2020; 7:37. [PMID: 33252707 PMCID: PMC7704885 DOI: 10.1186/s40580-020-00248-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/23/2020] [Indexed: 05/08/2023]
Abstract
Artificial photosynthesis offers a way of producing fuels or high-value chemicals using a limitless energy source of sunlight and abundant resources such as water, CO2, and/or O2. Inspired by the strategies in natural photosynthesis, researchers have developed a number of homogeneous molecular systems for photocatalytic, photoelectrocatalytic, and electrocatalytic artificial photosynthesis. However, their photochemical instability in homogeneous solution are hurdles for scaled application in real life. Immobilization of molecular catalysts in solid supports support provides a fine blueprint to tackle this issue. This review highlights the recent developments in (i) techniques for immobilizing molecular catalysts in solid supports and (ii) catalytic water splitting, CO2 reduction, and O2 reduction with the support-immobilized molecular catalysts. Remaining challenges for molecular catalyst-based devices for artificial photosynthesis are discussed in the end of this review.
Collapse
Affiliation(s)
- Dong Ryeol Whang
- Department of Advanced Materials, Hannam University, 34054, Daejeon, Republic of Korea.
| |
Collapse
|
8
|
Laghrib F, Bakasse M, Lahrich S, El Mhammedi MA. Electrochemical sensors for improved detection of paraquat in food samples: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110349. [PMID: 31761239 DOI: 10.1016/j.msec.2019.110349] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 10/06/2019] [Accepted: 10/20/2019] [Indexed: 12/20/2022]
Abstract
Paraquat (1,10-dimethyl-4,40-dipyridinium chloride), also known as methyl viologen, is widely used as a quaternary ammonium herbicide (broadleaf weed killer) all over the world owing to its excellent effect in plant cells for crop protection and horticultural use. However, it is dangerous because of its high acute toxicity even at low concentrations. Its detection in the environment is therefore necessary. As a consequence of its widespread usage, it causes genotoxic, teratogenic as well as other environmental and ecological adverse impacts. Exposure to PQ leads to a high mortality rate because no specific drug is effective for treatment. Excessive consumption of PQ can cause cellular damage and necrosis in the brain, heart, lungs, liver, and kidneys. The diversity and sensitivity of the analyses currently required have forced the experimenter to use more advanced and efficient techniques, which can provide qualitative and quantitative results in complex environments. Electrochemical methods generally meet these criteria while offering other advantages to achieve excellent accuracy and fast handling. This paper provides an overview of the determination of PQ using electrochemical methods combined with several modified electrodes in food samples, including milk, apple juice, tomato juice, and potato juice. Emphasis was placed on the most relevant modifiers used to generate high selectivity and sensitivity such as noble metals, metallic nanoparticles, polymers, biomolecules, clay, and apatite minerals. Comprehensively, it is strongly convincing that the synergy between the sensor substrate and the modifier architecture gives the electrodes a high capacity to detect paraquat in complex matrices such as food. In line with the context, information's on the mechanism of electrooxidation or reduction of PQ has been reported with the discussion of some future prospects and some insights. To the best of our knowledge, there is no review article relating the electrochemical determination of paraquat.
Collapse
Affiliation(s)
- F Laghrib
- Univ. Sultan Moulay Slimane, Laboratoire de Chimie, Modélisation et Sciences de l'Environnement, Faculté Polydisciplinaire, 25 000, Khouribga, Morocco
| | - M Bakasse
- Univ. Chouaib Doukkali, Equipe d'Analyse des Micropolluants Organiques, Faculté de Sciences, El-Jadida, Morocco
| | - S Lahrich
- Univ. Sultan Moulay Slimane, Laboratoire de Chimie, Modélisation et Sciences de l'Environnement, Faculté Polydisciplinaire, 25 000, Khouribga, Morocco
| | - M A El Mhammedi
- Univ. Sultan Moulay Slimane, Laboratoire de Chimie, Modélisation et Sciences de l'Environnement, Faculté Polydisciplinaire, 25 000, Khouribga, Morocco.
| |
Collapse
|
9
|
Cluff DB, Arnold A, Fettinger JC, Berben LA. Electrocatalytic Reduction of CO2 into Formate with Glassy Carbon Modified by [Fe4N(CO)11(PPh2Ph-linker)]−. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00396] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- David B. Cluff
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Amela Arnold
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - James C. Fettinger
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Louise A. Berben
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
10
|
Mousli Y, Rouvière L, Traboulsi I, Hunel J, Buffeteau T, Heuzé K, Vellutini L, Genin E. Hydrosilylation of Azide-Containing Olefins as a Convenient Access to Azidoorganotrialkoxysilanes for Self-Assembled Monolayer Elaboration onto Silica by Spin Coating. ChemistrySelect 2018. [DOI: 10.1002/slct.201800858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yannick Mousli
- ISM, UMR 5255 CNRS; University of Bordeaux; F-33400 Talence France
| | - Lisa Rouvière
- ISM, UMR 5255 CNRS; University of Bordeaux; F-33400 Talence France
| | - Iman Traboulsi
- ISM, UMR 5255 CNRS; University of Bordeaux; F-33400 Talence France
| | - Julien Hunel
- ISM, UMR 5255 CNRS; University of Bordeaux; F-33400 Talence France
| | | | - Karine Heuzé
- ISM, UMR 5255 CNRS; University of Bordeaux; F-33400 Talence France
| | - Luc Vellutini
- ISM, UMR 5255 CNRS; University of Bordeaux; F-33400 Talence France
| | - Emilie Genin
- ISM, UMR 5255 CNRS; University of Bordeaux; F-33400 Talence France
| |
Collapse
|
11
|
Johnson BM, Francke R, Little RD, Berben LA. High turnover in electro-oxidation of alcohols and ethers with a glassy carbon-supported phenanthroimidazole mediator. Chem Sci 2017; 8:6493-6498. [PMID: 28989674 PMCID: PMC5628575 DOI: 10.1039/c7sc02482g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 07/14/2017] [Indexed: 11/21/2022] Open
Abstract
Glassy carbon electrodes covalently modified with a phenanthroimidazole mediator promote electrochemical alcohol and ether oxidation: three orders of magnitude increase in TON, to ∼15 000 in each case, was observed compared with homogeneous mediated reactions.
Glassy carbon electrodes covalently modified with a phenanthroimidazole mediator promote electrochemical alcohol and ether oxidation: three orders of magnitude increase in TON, to ∼15 000 in each case, was observed compared with homogeneous mediated reactions. We propose the deactivation pathways in homogeneous solution are prevented by the immobilization: modified electrode reversibility is increased for a one-electron oxidation reaction. The modified electrodes were used to catalytically oxidize p-anisyl alcohol and 1-((benzyloxy)methyl)-4-methoxybenzene, selectively, to the corresponding benzaldehyde and benzyl ester, respectively.
Collapse
Affiliation(s)
- Bruce M Johnson
- Department of Chemistry , University of California , Davis , CA 95616 , USA .
| | - Robert Francke
- Institut für Chemie , Abteilung Technische Chemie , Universität Rostock , Germany .
| | - R Daniel Little
- Department of Chemistry and Biochemistry , University of California , Santa Barbara , CA 93106 , USA .
| | - Louise A Berben
- Department of Chemistry , University of California , Davis , CA 95616 , USA .
| |
Collapse
|
12
|
Bullock RM, Das AK, Appel AM. Surface Immobilization of Molecular Electrocatalysts for Energy Conversion. Chemistry 2017; 23:7626-7641. [PMID: 28178367 DOI: 10.1002/chem.201605066] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/29/2017] [Indexed: 12/23/2022]
Abstract
Electrocatalysts are critically important for a secure energy future, as they facilitate the conversion between electrical and chemical energy. Molecular catalysts offer precise control of structure that enables understanding of structure-reactivity relationships, which can be difficult to achieve with heterogeneous catalysts. Molecular electrocatalysts can be immobilized on surfaces by covalent bonds or through non-covalent interactions. Advantages of surface immobilization include the need for less catalyst, avoidance of bimolecular decomposition pathways, and easier determination of catalyst lifetime. This Minireview highlights surface immobilization of molecular electrocatalysts for reduction of O2 , oxidation of H2 O, production of H2 , and reduction of CO2 .
Collapse
Affiliation(s)
- R Morris Bullock
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Atanu K Das
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Aaron M Appel
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| |
Collapse
|
13
|
|
14
|
Unger EL, Fretz SJ, Lim B, Margulis GY, McGehee MD, Stack TDP. Sequential “click” functionalization of mesoporous titania for energy-relay dye enhanced dye-sensitized solar cells. Phys Chem Chem Phys 2015; 17:6565-71. [DOI: 10.1039/c4cp04878d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Energy relay dyes (ERDs) were immobilized in vicinity of energy-accepting injection dyes (IDs) via a sequential functionalization approach of mesoporous titania photo anodes in dye-sensitized solar cells.
Collapse
Affiliation(s)
- Eva L. Unger
- Department of Materials Science and Engineering
- Stanford University
- USA
| | | | - Bogyu Lim
- Department of Materials Science and Engineering
- Stanford University
- USA
| | | | | | | |
Collapse
|
15
|
Enrı́quez A, González-Vadillo AM, Martı́nez-Montero I, Bruña S, Leemans L, Cuadrado I. Efficient Thiol–Yne Click Chemistry of Redox-Active Ethynylferrocene. Organometallics 2014. [DOI: 10.1021/om501110w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Alejandra Enrı́quez
- Departamento
de Quı́mica
Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Ana Ma. González-Vadillo
- Departamento
de Quı́mica
Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Ignacio Martı́nez-Montero
- Departamento
de Quı́mica
Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Sonia Bruña
- Departamento
de Quı́mica
Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Laura Leemans
- Departamento
de Quı́mica
Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Isabel Cuadrado
- Departamento
de Quı́mica
Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
16
|
Espeel P, Du Prez FE. “Click”-Inspired Chemistry in Macromolecular Science: Matching Recent Progress and User Expectations. Macromolecules 2014. [DOI: 10.1021/ma501386v] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Pieter Espeel
- Department
of Organic and
Macromolecular Chemistry, Polymer Chemistry Research Group, Ghent University, Krijgslaan 281 S4-bis, B-9000 Ghent, Belgium
| | - Filip E. Du Prez
- Department
of Organic and
Macromolecular Chemistry, Polymer Chemistry Research Group, Ghent University, Krijgslaan 281 S4-bis, B-9000 Ghent, Belgium
| |
Collapse
|
17
|
Han X, Bian S, Liang Y, Houk KN, Braunschweig AB. Reactions in Elastomeric Nanoreactors Reveal the Role of Force on the Kinetics of the Huisgen Reaction on Surfaces. J Am Chem Soc 2014; 136:10553-6. [DOI: 10.1021/ja504137u] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Xu Han
- Department
of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Shudan Bian
- Department
of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Yong Liang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Adam B. Braunschweig
- Department
of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|