1
|
Temperature Responsive Polymer Conjugate Prepared by "Grafting from" Proteins toward the Adsorption and Removal of Uremic Toxin. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27031051. [PMID: 35164316 PMCID: PMC8839407 DOI: 10.3390/molecules27031051] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 01/28/2023]
Abstract
In this study, temperature-responsive polymer-protein conjugate was synthesized using a “grafting from” concept by introducing a chain transfer agent (CTA) into bovine serum albumin (BSA). The BSA-CTA was used as a starting point for poly(N-isopropylacrylamide) (PNIPAAm) through reversible addition-fragmentation chain transfer polymerization. The research investigations suggest that the thermally responsive behavior of PNIPAAm was controlled by the monomer ratio to CTA, as well as the amount of CTA introduced to BSA. The study further synthesized the human serum albumin (HSA)-PNIPAAm conjugate, taking the advantage that HSA can specifically adsorb indoxyl sulfate (IS) as a uremic toxin. The HSA-PNIPAAm conjugate could capture IS and decreased the concentration by about 40% by thermal precipitation. It was also revealed that the protein activity was not impaired by the conjugation with PNIPAAm. The proposed strategy is promising in not only removal of uremic toxins but also enrichment of biomarkers for early diagnostic applications.
Collapse
|
2
|
Yu H, Wang Z, Long T, Li Y, Thushara D, Bao B, Zhao S. Permeability and Selectivity Analysis for Affinity‐based Nanoparticle Separation through Nanochannels. AIChE J 2022. [DOI: 10.1002/aic.17583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hongping Yu
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering East China University of Science and Technology Shanghai People's Republic of China
| | - Zhichao Wang
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering East China University of Science and Technology Shanghai People's Republic of China
| | - Ting Long
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering East China University of Science and Technology Shanghai People's Republic of China
| | - Yu Li
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering East China University of Science and Technology Shanghai People's Republic of China
| | - Dilantha Thushara
- Department of Chemical and Process Engineering University of Moratuwa Moratuwa Sri Lanka
| | - Bo Bao
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering East China University of Science and Technology Shanghai People's Republic of China
| | - Shuangliang Zhao
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering East China University of Science and Technology Shanghai People's Republic of China
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering Guangxi University Nanning People's Republic of China
| |
Collapse
|
3
|
Kim YJ, Matsunaga YT. Thermo-responsive polymers and their application as smart biomaterials. J Mater Chem B 2017; 5:4307-4321. [DOI: 10.1039/c7tb00157f] [Citation(s) in RCA: 324] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review summarises smart thermo-responsive polymeric materials with reversible and ‘on–off’ remotely switchable properties for a wide range of biomedical and biomaterials applications.
Collapse
Affiliation(s)
- Young-Jin Kim
- Center for International Research on Integrative Biomedical Systems (CIBiS)
- The University of Tokyo
- Tokyo 153-8505
- Japan
- Bioengineering Laboratory
| | - Yukiko T. Matsunaga
- Center for International Research on Integrative Biomedical Systems (CIBiS)
- The University of Tokyo
- Tokyo 153-8505
- Japan
| |
Collapse
|
4
|
Salafi T, Zeming KK, Zhang Y. Advancements in microfluidics for nanoparticle separation. LAB ON A CHIP 2016; 17:11-33. [PMID: 27830852 DOI: 10.1039/c6lc01045h] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nanoparticles have been widely implemented for healthcare and nanoscience industrial applications. Thus, efficient and effective nanoparticle separation methods are essential for advancement in these fields. However, current technologies for separation, such as ultracentrifugation, electrophoresis, filtration, chromatography, and selective precipitation, are not continuous and require multiple preparation steps and a minimum sample volume. Microfluidics has offered a relatively simple, low-cost, and continuous particle separation approach, and has been well-established for micron-sized particle sorting. Here, we review the recent advances in nanoparticle separation using microfluidic devices, focusing on its techniques, its advantages over conventional methods, and its potential applications, as well as foreseeable challenges in the separation of synthetic nanoparticles and biological molecules, especially DNA, proteins, viruses, and exosomes.
Collapse
Affiliation(s)
- Thoriq Salafi
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences (CeLS), National University of Singapore, 05-01 28 Medical Drive, 117456 Singapore. and Department of Biomedical Engineering, National University of Singapore, 9 Engineering Drive 1, Block EA #03-12, 117576 Singapore
| | - Kerwin Kwek Zeming
- Department of Biomedical Engineering, National University of Singapore, 9 Engineering Drive 1, Block EA #03-12, 117576 Singapore
| | - Yong Zhang
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences (CeLS), National University of Singapore, 05-01 28 Medical Drive, 117456 Singapore. and Department of Biomedical Engineering, National University of Singapore, 9 Engineering Drive 1, Block EA #03-12, 117576 Singapore
| |
Collapse
|
5
|
Qu X, Yang Z. Benzoic-Imine-Based Physiological-pH-Responsive Materials for Biomedical Applications. Chem Asian J 2016; 11:2633-2641. [DOI: 10.1002/asia.201600452] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Xiaozhong Qu
- State Key Laboratory of Polymer Physics and Chemistry; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- College of Materials Science and Opto-Electronic Technology; University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Zhenzhong Yang
- State Key Laboratory of Polymer Physics and Chemistry; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| |
Collapse
|
6
|
Boken J, Soni SK, Kumar D. Microfluidic Synthesis of Nanoparticles and their Biosensing Applications. Crit Rev Anal Chem 2016; 46:538-61. [DOI: 10.1080/10408347.2016.1169912] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
7
|
Vázquez J, Romero MA, Dsouza RN, Pischel U. Phototriggered release of amine from a cucurbituril macrocycle. Chem Commun (Camb) 2016; 52:6245-8. [DOI: 10.1039/c6cc02347a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Amines are released from a cucurbituril macrocycle by photoinduced pH jump and modulation of the competitiveness of a fluorescent guest.
Collapse
Affiliation(s)
- J. Vázquez
- CIQSO – Centre for Research in Sustainable Chemistry and Department of Chemistry
- Campus El Carmen
- University of Huelva
- E-21071 Huelva
- Spain
| | - M. A. Romero
- CIQSO – Centre for Research in Sustainable Chemistry and Department of Chemistry
- Campus El Carmen
- University of Huelva
- E-21071 Huelva
- Spain
| | - R. N. Dsouza
- Department of Life Sciences and Chemistry
- Jacobs University Bremen
- 28759 Bremen
- Germany
| | - U. Pischel
- CIQSO – Centre for Research in Sustainable Chemistry and Department of Chemistry
- Campus El Carmen
- University of Huelva
- E-21071 Huelva
- Spain
| |
Collapse
|
8
|
Okada T, Niiyama E, Uto K, Aoyagi T, Ebara M. Inactivated Sendai Virus (HVJ-E) Immobilized Electrospun Nanofiber for Cancer Therapy. MATERIALS (BASEL, SWITZERLAND) 2015; 9:E12. [PMID: 28787810 PMCID: PMC5456544 DOI: 10.3390/ma9010012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/17/2015] [Accepted: 12/17/2015] [Indexed: 01/29/2023]
Abstract
Inactivated Hemagglutinating Virus of Japan Envelope (HVJ-E) was immobilized on electrospun nanofibers of poly(ε-caprolactone) by layer-by-layer (LbL) assembly technique. The precursor LbL film was first constructed with poly-L-lysine and alginic acid via electrostatic interaction. Then the HVJ-E particles were immobilized on the cationic PLL outermost surface. The HVJ-E adsorption was confirmed by surface wettability test, scanning laser microscopy, scanning electron microscopy, and confocal laser microscopy. The immobilized HVJ-E particles were released from the nanofibers under physiological condition. In vitro cytotoxic assay demonstrated that the released HVJ-E from nanofibers induced cancer cell deaths. This surface immobilization technique is possible to perform on anti-cancer drug incorporated nanofibers that enables the fibers to show chemotherapy and immunotherapy simultaneously for an effective eradication of tumor cells in vivo.
Collapse
Affiliation(s)
- Takaharu Okada
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
- Biomaterials Unit, Nano-Life Field, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
- Japan Society for the Promotion of Science (JSPS), 8 Ichibancho, Chiyoda-ku, Tokyo 102-0083, Japan.
| | - Eri Niiyama
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
- Biomaterials Unit, Nano-Life Field, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Koichiro Uto
- Biomaterials Unit, Nano-Life Field, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Takao Aoyagi
- Biomaterials Unit, Nano-Life Field, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Mitsuhiro Ebara
- Biomaterials Unit, Nano-Life Field, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
- Graduate School of Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| |
Collapse
|
9
|
Passos ML, Pinto PC, Santos JL, Saraiva MLM, Araujo AR. Nanoparticle-based assays in automated flow systems: A review. Anal Chim Acta 2015; 889:22-34. [DOI: 10.1016/j.aca.2015.05.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 05/20/2015] [Accepted: 05/22/2015] [Indexed: 01/25/2023]
|
10
|
Lai JJ, Stayton PS. Improving lateral-flow immunoassay (LFIA) diagnostics via biomarker enrichment for mHealth. Methods Mol Biol 2015; 1256:71-84. [PMID: 25626532 DOI: 10.1007/978-1-4939-2172-0_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Optical detection technologies based on mobile devices can be utilized to enable many mHealth applications, including a reader for lateral-flow immunoassay (LFIA). However, an intrinsic challenge associated with LFIA for clinical diagnostics is the limitation in sensitivity. Therefore, rapid and simple specimen processing strategies can directly enable more sensitive LFIA by purifying and concentrating biomarkers. Here, a binary reagent system is presented for concentrating analytes from a larger volume specimen to improve the malaria LFIA's limit of detection (LOD). The biomarker enrichment process utilizes temperature-responsive gold-streptavidin conjugates, biotinylated antibodies, and temperature-responsive magnetic nanoparticles. The temperature-responsive gold colloids were synthesized by modifying the citrate-stabilized gold colloids with a diblock copolymer, containing a thermally responsive poly(N-isopropylacrylamide) (pNIPAAm) segment and a gold-binding block composed of NIPAAm-co-N,N-dimethylaminoethylacrylamide. The gold-streptavidin conjugates were synthesized by conjugating temperature-responsive gold colloids with streptavidin via covalent linkages using carbodiimide chemistry chemistry. The gold conjugates formed half-sandwiches, gold labeled biomarker, by complexing with biotinylated antibodies that were bound to Plasmodium falciparum histidine-rich protein 2 (PfHRP2), a malaria antigen. When a thermal stimulus was applied in conjunction with a magnetic field, the half-sandwiches and temperature-responsive magnetic nanoparticles that were both decorated with pNIPAAm formed large aggregates that were efficiently magnetically separated from human plasma. The binary reagent system was applied to a large volume (500 μL) specimen for concentrating biomarker 50-fold into a small volume and applied directly to an off-the-shelf malaria LFIA to improve the signal-to-noise ratio.
Collapse
Affiliation(s)
- James J Lai
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | | |
Collapse
|
11
|
Reversible Addition-Fragmentation Chain Transfer Polymerization from Surfaces. CONTROLLED RADICAL POLYMERIZATION AT AND FROM SOLID SURFACES 2015. [DOI: 10.1007/12_2015_316] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Hara Y, Mayama H, Fujimoto K. Influence of Belousov–Zhabotinsky Substrate Concentrations on Autonomous Oscillation of Polymer Chains with Fe(bpy)3 Catalyst. J Phys Chem B 2014; 118:6931-6. [DOI: 10.1021/jp500824e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yusuke Hara
- Nanosystem
Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), Central 5-2, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Hiroyuki Mayama
- Department of Chemistry, Asahikawa Medical University, 2-1-1-1,
Midorigaoka-Higashi, Asahikawa 078-8510, Japan
| | - Kenji Fujimoto
- Fuji Molecular Planning Co., Ltd., Techno-Core
4F-A, Yokohama-Kanazawa High Tech Center, 1-1-1, Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| |
Collapse
|
13
|
Hara Y, Fujimoto K, Mayama H. Self-Oscillation of Polymer Chains with an Fe(bpy)3 Catalyst Induced by the Belousov–Zhabotinsky Reaction. J Phys Chem B 2014; 118:608-12. [DOI: 10.1021/jp408435z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yusuke Hara
- Nanosystem
Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), Central 5-2, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Kenji Fujimoto
- Techno-Core 4F-A, Yokohama-Kanazawa High Tech Center, Fuji Molecular Planning Co., Ltd., 1-1-1, fuku-ura, kanazawa-ku, Yokohama 236-0004, Japan
| | - Hiroyuki Mayama
- Department
of Chemistry, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, 078-8510, Japan
| |
Collapse
|
14
|
Ebara M, Aoyagi T. Photo-induced Control of Smart Polymer Systems via pH Jump Reaction. J PHOTOPOLYM SCI TEC 2014. [DOI: 10.2494/photopolymer.27.467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|