1
|
Gao L, Li L, Li Y, Li M, Li C, Cui J, Yang H, Zhou L, Fang S. Synthesis, Morphology, and Luminescence Properties of Poly(urethane-acrylate) Nanowires Bonding with the Eu(III) Complex. ACS OMEGA 2020; 5:24222-24229. [PMID: 33015438 PMCID: PMC7528176 DOI: 10.1021/acsomega.0c01896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Photoluminescent poly(urethane-acrylate) (PUA) nanowires are designed and synthesized through copolymerization of a presynthesized-europium (Eu) complex with active vinyl groups and a vinyl functionalized PUA macromonomer matrix, initiated by azobisisobutyronitrile. This procedure provides a method to prepare PUA-Eu nanowires through in situ polymerization. Based on this, a series of PUA-Eu nanowires with diameters of 80-300 nm are successfully obtained in templates of anodized aluminum oxide by in situ polymerization. The obtained PUA-Eu nanowires display different morphologies such as sharp, round, and flat head by controlling the casting conditions. Furthermore, the PUA-Eu nanowires exhibit unique luminescence properties provided through Eu(III) elements, and the luminescence intensity significantly enhances with the increase in Eu complex concentration. PUA-Eu nanowires have longer fluorescence lifetimes than that of Eu complexes and PUA-Eu plates.
Collapse
|
2
|
Poly(lactic acid)/gelatin foams by non-solvent induced phase separation for biomedical applications. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
3
|
Muanchan P, Kurose T, Ito H. Replication of Mesoscale Pore One-dimensional Nanostructures: Surface-induced Phase Separation of Polystyrene/Poly(vinyl alcohol) (PS/PVA) Blends. Polymers (Basel) 2019; 11:E1039. [PMID: 31212801 PMCID: PMC6630784 DOI: 10.3390/polym11061039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/03/2019] [Accepted: 06/07/2019] [Indexed: 01/18/2023] Open
Abstract
Mesoscale pore one-dimensional (1D) nanostructures, or vertically aligned porous nanostructures (VAPNs), have attracted attention with their excellent hydrophobic properties, ultra-high surface area, and high friction coefficient, compared to conventional vertically aligned nanostructures (VANs). In this study, we investigate the replication of VAPNs produced by the thermal nanoimprint process using anodic aluminum oxide (AAO2) templates (100 nm diameter). Polystyrene/poly(vinyl alcohol) (PS1/PVA) blends, prepared by the advanced melt-mixing process with an ultra-high shear rate, are used to investigate the formation of porosity at the nanometer scale. The results reveal that domain size and mass ratios of PVA precursors in the PS matrix play a dominant role in the interfacial interaction behavior between PS1-PVA-AAO2, on the obtained morphologies of the imprinted nanostructures. With a PVA nanodomain precursor (PS1/PVA 90/10 wt%), the integration of PVA nanodroplets on the AAO2 wall due to the hydrogen bonding that induces the phase separation between PS1-PVA results in the formation of VAPNs after removal of the PVA segment. However, in the case of PVA microdomain precursors (PS1/PVA 70/30 wt%), the structure transformation behavior of PS1 is induced by the Rayleigh instability between PVA encapsulated around the PS1 surfaces, resulting in the PS1 nanocolumns transforming into nanopeapods composed of nanorods and nanospheres.
Collapse
Affiliation(s)
- Paritat Muanchan
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan.
| | - Takashi Kurose
- Research Center for GREEN Materials and Advanced Processing (GMAP), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan.
| | - Hiroshi Ito
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan.
- Research Center for GREEN Materials and Advanced Processing (GMAP), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan.
| |
Collapse
|
4
|
Molecular self-assembly of one-dimensional polymer nanostructures in nanopores of anodic alumina oxide templates. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2017.10.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Wan X, Azhar U, Wang Y, Chen J, Xu A, Zhang S, Geng B. Highly porous and chemical resistive P(TFEMA–DVB) monolith with tunable morphology for rapid oil/water separation. RSC Adv 2018; 8:8355-8364. [PMID: 35542035 PMCID: PMC9078523 DOI: 10.1039/c8ra00501j] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 02/12/2018] [Indexed: 11/27/2022] Open
Abstract
A facile preparation for a series of porous poly(2,2,2-trifluoroethylmethacrylate–divinylbenzene) P(TFEMA–DVB) foams is discussed in this paper. The foams have adjustable morphology utilizing a suitable commercial surfactant, Hypermer B246, as stabilizer, and were compared with traditional organic surfactants or macromolecular block-polymers. Combining the porous properties and advantages of fluorine atoms, this type of fluoropolymer exhibited superb chemical stability and hydrophobicity performances with high porosity. These porous fluoro-monoliths preserved their regular porous structure without any degradation after immersion into strong acidic or basic solution for three days, hence demonstrating an excellent potential to deal with environmental pollution caused by oil spillages in severe environments. The tunable morphology (open and closed pores) and pore sizes were achieved by investigating various parameters like surfactant concentration, amount of external crosslinker, and aqueous phase volume. Droplet sizes of HIPEs were characterized using an optical microscope under different experimental conditions. The influence of pore structure and surface properties of polyHIPE on water contact angle and oil adsorption capacity was also explored. The results indicated that the porous material has an excellent oleophilicity and hydrophobicity, with water contact angles (WCA) up to 146.4°. Additionally, the results presented a noticeable adsorption with a very fast rate towards organic oils from either a water surface or bottom with adsorption saturation achieved in about 120 s. The prepared polyHIPEs showed a good recycling ability; even after 10 adsorption–centrifugation experiments, the adsorption capacity was still more than 85%. A facile preparation for a series of porous poly(2,2,2-trifluoroethylmethacrylate–divinylbenzene) P(TFEMA–DVB) foams is discussed in this paper.![]()
Collapse
Affiliation(s)
- Xiaozheng Wan
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Umair Azhar
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Yongkang Wang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Jian Chen
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Anhou Xu
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Shuxiang Zhang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Bing Geng
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| |
Collapse
|
6
|
Muanchan P, Suzuki S, Kyotani T, Ito H. One-dimensional polymer nanofiber arrays with high aspect ratio obtained by thermal nanoimprint method. POLYM ENG SCI 2016. [DOI: 10.1002/pen.24403] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Paritat Muanchan
- Research Center for GREEN Materials and Advanced Processing (GMAP), Graduate School of Science and Engineering; Yamagata University 4-3-16 Jonan; Yonezawa Yamagata 992-8510 Japan
| | - Shohei Suzuki
- Research Center for GREEN Materials and Advanced Processing (GMAP), Graduate School of Science and Engineering; Yamagata University 4-3-16 Jonan; Yonezawa Yamagata 992-8510 Japan
| | - Takashi Kyotani
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University 2-1-1, Katahira; Aoba-Ku Sendai 980-8577 Japan
| | - Hiroshi Ito
- Research Center for GREEN Materials and Advanced Processing (GMAP), Graduate School of Science and Engineering; Yamagata University 4-3-16 Jonan; Yonezawa Yamagata 992-8510 Japan
- Graduate School of Organic Materials Science; Yamagata University 4-3-16 Jonan; Yonezawa Yamagata 992-8510 Japan
| |
Collapse
|
7
|
Xue J, Xu Y, Jin Z. Interfacial Interaction in Anodic Aluminum Oxide Templates Modifies Morphology, Surface Area, and Crystallization of Polyamide-6 Nanofibers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:2259-2266. [PMID: 26886176 DOI: 10.1021/acs.langmuir.5b04569] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Here, we demonstrated that, when the precipitation process of polyamide-6 (PA6) solution happens in cylindrical channels of an anodized aluminum oxide membrane (AAO), interface interactions between a solid surface, solvent, non-solvent, and PA6 will influence the obtained polymer nanostructures, resulting in complex morphologies, increased surface area, and crystallization changes. With the enhancing interaction of PA6 and the AAO surface, the morphology of PA6 nanostructures changes from solid nanofibers, mesoporous, to bamboo-like, while at the same time, metastable γ-phase domains increase in these PA6 nanostructures. Brunauer-Emmett-Teller (BET) surface areas of solid, bamboo-like, and mesoporous PA6 nanofibers rise from 16, 20.9, to 25 m(2)/g. This study shows that interfacial interaction in AAO template fabrication can be used in manipulating the morphology and crystallization of one-dimensional polymer nanostructures. It also provides us a simple and novel method to create porous PA6 nanofibers with a large surface area.
Collapse
Affiliation(s)
- Junhui Xue
- Department of Chemistry, Renmin University of China , Beijing 100872, People's Republic of China
| | - Yizhuang Xu
- College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, People's Republic of China
| | - Zhaoxia Jin
- Department of Chemistry, Renmin University of China , Beijing 100872, People's Republic of China
| |
Collapse
|
8
|
Chi MH, Chang CW, Ko HW, Su CH, Lee CW, Peng CH, Chen JT. Solvent-Induced Dewetting on Curved Substrates: Fabrication of Porous Polymer Nanotubes by Anodic Aluminum Oxide Templates. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01207] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Mu-Huan Chi
- Department
of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30010
| | - Chun-Wei Chang
- Department
of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30010
| | - Hao-Wen Ko
- Department
of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30010
| | - Chun-Hsien Su
- Department
of Chemistry and Frontier Research Center on Fundamental and Applied
Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan 30013
| | - Chih-Wei Lee
- Department
of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30010
| | - Chi-How Peng
- Department
of Chemistry and Frontier Research Center on Fundamental and Applied
Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan 30013
| | - Jiun-Tai Chen
- Department
of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30010
| |
Collapse
|
9
|
Chu CW, Huang YC, Tsai CC, Chen JT. Wetting in nanopores of cylindrical anodic aluminum oxide templates: Production of gradient polymer nanorod arrays on large-area curved surfaces. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2014.12.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Bakar NA, Supangat A, Sulaiman K. Formation of PCDTBT:PC71BM p–n junction composite nanotubes via a templating method. RSC Adv 2015. [DOI: 10.1039/c5ra20549b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The use of a templating method to synthesize a p–n junction composite of PCDTBT:PC71BM is reported in this study.
Collapse
Affiliation(s)
- N. A. Bakar
- Department of Physics
- Faculty of Science
- University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| | - A. Supangat
- Low Dimensional Materials Research Centre
- Faculty of Science
- University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| | - K. Sulaiman
- Low Dimensional Materials Research Centre
- Faculty of Science
- University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| |
Collapse
|
11
|
Chen JT, Wei TH, Chang CW, Ko HW, Chu CW, Chi MH, Tsai CC. Fabrication of Polymer Nanopeapods in the Nanopores of Anodic Aluminum Oxide Templates Using a Double-Solution Wetting Method. Macromolecules 2014. [DOI: 10.1021/ma500568j] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jiun-Tai Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30050
| | - Tzu-Hui Wei
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30050
| | - Chun-Wei Chang
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30050
| | - Hao-Wen Ko
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30050
| | - Chien-Wei Chu
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30050
| | - Mu-Huan Chi
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30050
| | - Chia-Chan Tsai
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30050
| |
Collapse
|
12
|
Liu R. Atomic force microscopic study on lipid bilayer nanoscale phase separation. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2014. [DOI: 10.1680/bbn.13.00021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
13
|
Wu H, Yang J, Cao S, Huang L, Chen L. Ordered Organic Nanostructures Fabricated from Anodic Alumina Oxide Templates for Organic Bulk-Heterojunction Photovoltaics. MACROMOL CHEM PHYS 2014. [DOI: 10.1002/macp.201300766] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hui Wu
- College of Material Engineering; Fujian Agriculture and Forestry University; Fuzhou Fujian 350002 China
| | - Junliang Yang
- Institute of Super-microstructure and Ultrafast Process in Advanced Materials; School of Physics and Electronics; Central South University; Changsha Hunan 410083 China
- Hunan Key Laboratory for Super-microstructure and Ultrafast Process; School of Physics and Electronics; Central South University; Changsha Hunan 410083 China
| | - Shilin Cao
- College of Material Engineering; Fujian Agriculture and Forestry University; Fuzhou Fujian 350002 China
| | - Liulian Huang
- College of Material Engineering; Fujian Agriculture and Forestry University; Fuzhou Fujian 350002 China
| | - Lihui Chen
- College of Material Engineering; Fujian Agriculture and Forestry University; Fuzhou Fujian 350002 China
| |
Collapse
|