1
|
Wang L, Su X, Xie JH, Ming LJ. Specific recognitions of multivalent cyclotriphosphazene derivatives in sensing, imaging, theranostics, and biomimetic catalysis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
2
|
Gajare SP, Bansode PA, Patil PV, Aalhusaini TNA, Chavan SS, Pore DM, Chhowala TN, Khot VM, Rashinkar GS. Nano‐magnetic Copper Complexes as Double‐Edged Sword against MCF‐7 Breast Cancer Cells. ChemistrySelect 2022. [DOI: 10.1002/slct.202103818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | | | - Pradnya V. Patil
- Department of Chemistry Shivaji University Kolhapur 416004, M.S. India
| | | | - Sanjay S. Chavan
- Department of Chemistry Shivaji University Kolhapur 416004, M.S. India
| | | | - Tarulata N. Chhowala
- Department of Chemistry Veer Narmad South Gujarat University Surat 395007, M.S. India
| | - Vishwajeet M. Khot
- Center for Interdisciplinary Research D.Y. Patil Education Society Deemed University Kolhapur, M.S. India
| | | |
Collapse
|
3
|
Chen A, Wang Q, Li M, Peng Z, Lai J, Zhang J, Xu J, Huang H, Lei C. Combined Approach of Compression Molding and Magnetic Attraction to Micropatterning of Magnetic Polydimethylsiloxane Composite Surfaces with Excellent Anti-Icing/Deicing Performance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48153-48162. [PMID: 34585564 DOI: 10.1021/acsami.1c15428] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The accumulation of ice and contaminants on the surface of composite insulators will cause high energy consumption or even major hazards to power systems. In this work, the polydimethylsiloxane (PDMS) silicone rubber was modified by surface micropatterning and material compositing. Highly crosslinked poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol) (PZS) was used to directly coat ferroferric oxide (Fe3O4) nanoparticles. The obtained core-shell Fe3O4@PZS microspheres were loaded with carbon nanotubes (CNTs) to get CNTs/Fe3O4@PZS as the photothermal magnetic filler. The PDMS/CNTs/Fe3O4@PZS surfaces with micronscale truncated cones were prepared via a combined method of compression molding and magnetic attraction. The 1H,1H,2H,2H-perfluorodecyltrichlorosilane-coated template and magnetic field can increase the height of the microstructure to ∼76 μm and maintain the contact angle of microstructured PDMS/CNTs/Fe3O4@PZS surfaces at a high level (∼152°). Compared with the flat PDMS surface, the micronscale truncated cones extend the freezing time from 4.5 to 11.5 min and also undermine the ice adhesion strength from ∼25 to ∼17 kPa for the microstructured PDMS/CNTs/Fe3O4@PZS surface. The temperature of the PDMS/CNTs/Fe3O4@PZS surface molded with magnetic attraction increases linearly with time and the internal magnetic fillers and achieves 280 °C in 10 s. The efficiency of temperature rise is increased by ∼46%, and hence the entire frozen water droplet can melt within 20 s. The strategy combining active deicing with passive anti-icing undoubtedly promotes the development of high efficiency anti-icing materials and can be applied on insulators to prevent icing flashover.
Collapse
Affiliation(s)
- Anfu Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Polymer Processing Engineering of Ministry of Education, South China University of Technology, Guangzhou 510640, P. R. China
| | - Qiankun Wang
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Mingke Li
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Zhangyuan Peng
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Jindi Lai
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Jingjing Zhang
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Jinbao Xu
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Hanxiong Huang
- Key Laboratory of Polymer Processing Engineering of Ministry of Education, South China University of Technology, Guangzhou 510640, P. R. China
| | - Caihong Lei
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
4
|
An Y, Yang R, Wang X, Han Y, Jia G, Hu C, Zhang Z, Liu D, Tang Q. Facile Assembly of Thermosensitive Liposomes for Active Targeting Imaging and Synergetic Chemo-/Magnetic Hyperthermia Therapy. Front Bioeng Biotechnol 2021; 9:691091. [PMID: 34422777 PMCID: PMC8371754 DOI: 10.3389/fbioe.2021.691091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/01/2021] [Indexed: 12/26/2022] Open
Abstract
Cancer stem cells (CSCs) are thought to be responsible for the recurrence of liver cancer, highlighting the urgent need for the development of effective treatment regimens. In this study, 17-allylamino-17-demethoxygeldanamycin (17-AAG) and thermosensitive magnetoliposomes (TMs) conjugated to anti-CD90 (CD90@17-AAG/TMs) were developed for temperature-responsive CD90-targeted synergetic chemo-/magnetic hyperthermia therapy and simultaneous imaging in vivo. The targeting ability of CD90@DiR/TMs was studied with near-infrared (NIR) resonance imaging and magnetic resonance imaging (MRI), and the antitumor effect of CD90@17-AAG/TM-mediated magnetic thermotherapy was evaluated in vivo. After treatment, the tumors were analyzed with Western blotting, hematoxylin and eosin staining, and immunohistochemical (IHC) staining. The relative intensity of fluorescence was approximately twofold higher in the targeted group than in the non-targeted group, while the T2 relaxation time was significantly lower in the targeted group than in the non-targeted group. The combined treatment of chemotherapy, thermotherapy, and targeting therapy exhibited the most significant antitumor effect as compared to any of the treatments alone. The anti-CD90 monoclonal antibody (mAb)-targeted delivery system, CD90@17-AAG/TMs, exhibited powerful targeting and antitumor efficacies against CD90+ liver cancer stem cells in vivo.
Collapse
Affiliation(s)
- Yanli An
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Rui Yang
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Xihui Wang
- School of Medicine, Southeast University, Nanjing, China
| | - Yong Han
- School of Medicine, Southeast University, Nanjing, China
| | - Gang Jia
- School of Medicine, Southeast University, Nanjing, China
| | - Chunmei Hu
- Department of Tuberculosis, The Second Affiliated Hospital of Southeast University (The Second Hospital of Nanjing), Nanjing, China
| | - Zhiyuan Zhang
- Department of Neurosurgery, Nanjing Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Dongfang Liu
- School of Medicine, Southeast University, Nanjing, China
| | - Qiusha Tang
- School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
5
|
Chen Y, Xiao W, Zhang J, Bu M, Zhang X, Chen A, Xu J, Lei C. Development of recoverable and recyclable
Fe
3
O
4
‐supported
organocatalysts for
ring‐opening
polymerization. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yang Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter School of Materials and Energy, Guangdong University of Technology Guangzhou P. R. China
| | - Wenhao Xiao
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter School of Materials and Energy, Guangdong University of Technology Guangzhou P. R. China
| | - Jie Zhang
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter School of Materials and Energy, Guangdong University of Technology Guangzhou P. R. China
| | - Minglu Bu
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter School of Materials and Energy, Guangdong University of Technology Guangzhou P. R. China
| | - Xiaoqing Zhang
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter School of Materials and Energy, Guangdong University of Technology Guangzhou P. R. China
| | - Anfu Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter School of Materials and Energy, Guangdong University of Technology Guangzhou P. R. China
| | - Jinbao Xu
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter School of Materials and Energy, Guangdong University of Technology Guangzhou P. R. China
| | - Caihong Lei
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter School of Materials and Energy, Guangdong University of Technology Guangzhou P. R. China
| |
Collapse
|
6
|
Synthesis, spectroscopic, thermal properties, in vitro release, and stability studies of ibuprofen-loaded microspheres cross-linked with hexachlorocyclotriphosphazene/octachlorocyclotetraphosphazene. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03422-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
7
|
Mehmood S, Wang L, Yu H, Haq F, Amin BU, Uddin MA, Fahad S, Haroon M, Shen D, Ni Z. Preparation of poly(cyclotriphosphazene-co-piperazine) nanospheres and their drug release behavior. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1809407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sahid Mehmood
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P.R. China
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P.R. China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P.R. China
| | - Fazal Haq
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P.R. China
| | - Bilal-ul Amin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P.R. China
| | - Md Alim Uddin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P.R. China
| | - Shah Fahad
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P.R. China
| | - Muhammad Haroon
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P.R. China
| | - Di Shen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P.R. China
| | - Zhipeng Ni
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
8
|
Green Synthesized Montmorillonite/Carrageenan/Fe 3O 4 Nanocomposites for pH-Responsive Release of Protocatechuic Acid and Its Anticancer Activity. Int J Mol Sci 2020; 21:ijms21144851. [PMID: 32659939 PMCID: PMC7402292 DOI: 10.3390/ijms21144851] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/15/2022] Open
Abstract
Discovery of a novel anticancer drug delivery agent is important to replace conventional cancer therapies which are often accompanied by undesired side effects. This study demonstrated the synthesis of superparamagnetic magnetite nanocomposites (Fe3O4-NCs) using a green method. Montmorillonite (MMT) was used as matrix support, while Fe3O4 nanoparticles (NPs) and carrageenan (CR) were used as filler and stabilizer, respectively. The combination of these materials resulted in a novel nanocomposite (MMT/CR/Fe3O4-NCs). A series of characterization experiments was conducted. The purity of MMT/CR/Fe3O4-NCs was confirmed by X-ray diffraction (XRD) analysis. High resolution transmission electron microscopy (HRTEM) analysis revealed the uniform and spherical shape of Fe3O4 NPs with an average particle size of 9.3 ± 1.2 nm. Vibrating sample magnetometer (VSM) analysis showed an Ms value of 2.16 emu/g with negligible coercivity which confirmed the superparamagnetic properties. Protocatechuic acid (PCA) was loaded onto the MMT/CR/Fe3O4-NCs and a drug release study showed that 15% and 92% of PCA was released at pH 7.4 and 4.8, respectively. Cytotoxicity assays showed that both MMT/CR/Fe3O4-NCs and MMT/CR/Fe3O4-PCA effectively killed HCT116 which is a colorectal cancer cell line. Dose-dependent inhibition was seen and the killing was enhanced two-fold by the PCA-loaded NCs (IC50–0.734 mg/mL) compared to the unloaded NCs (IC50–1.5 mg/mL). This study highlights the potential use of MMT/CR/Fe3O4-NCs as a biologically active pH-responsive drug delivery agent. Further investigations are warranted to delineate the mechanism of cell entry and cancer cell killing as well as to improve the therapeutic potential of MMT/CR/Fe3O4-NCs.
Collapse
|
9
|
Zhou N, Zhi Z, Liu D, Wang D, Shao Y, Yan K, Meng L, Yu D. Acid-Responsive and Biologically Degradable Polyphosphazene Nanodrugs for Efficient Drug Delivery. ACS Biomater Sci Eng 2020; 6:4285-4293. [PMID: 33463351 DOI: 10.1021/acsbiomaterials.0c00378] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To enhance the therapeutic effects and reduce the damage to normal tissues in cancer chemotherapy, it is indispensable to develop drug delivery carriers with controllable release and good biocompatibility. In this work, acid-responsive and degradable polyphosphazene (PPZ) nanoparticles were synthesized by the reaction of hexachlorotripolyphosphonitrile (HCCP) with 4-hydroxy-benzoic acid (4-hydroxy-benzylidene)-hydrazide (HBHBH) and anticancer drug doxorubicin (DOX). The controlled release of DOX could be realized based on the acid responsiveness of acylhydrazone in HBHBH. Experimental results showed that polyphosphazene nanoparticles remained stable in the body's normal fluids (pH ∼ 7.4), while they were degraded and controllable release of DOX in an acidic environment such as tumors (pH ∼ 6.8) and lysosome and endosome (∼5.0) in cancer cells In particular, the doxorubicin (DOX)-loading ratio was fair high and could be tuned from 10.6 to 52.6% by changing the dosing ratio of DOX to HBHBH. Meanwhile, the polyphosphazene nanodrugs showed excellent toxicity to tumor cells and reduced the side effect to normal cells both in vitro and in vivo due to their enhanced permeability and retention (EPR) effect and pH-sensitive degradation properties. Therefore, the constructed pH-sensitive drug delivery system has great potential for cancer chemotherapy.
Collapse
Affiliation(s)
- Na Zhou
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China.,Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Zhe Zhi
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Daomeng Liu
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Daquan Wang
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yongping Shao
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kai Yan
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lingjie Meng
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China.,Instrumental Analysis Center, Xi'an Jiaotong University, Xi'an 710049, China
| | - Demei Yu
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
10
|
Mehmood S, Wang L, Yu H, Haq F, Fahad S, Bilal‐ul‐Amin, Alim Uddin M, Haroon M. Recent Progress on the Preparation of Cyclomatrix‐Polyphosphazene Based Micro/Nanospheres and Their Application for Drug Release. ChemistrySelect 2020. [DOI: 10.1002/slct.201904844] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Sahid Mehmood
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P.R. China
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P.R. China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P.R. China
| | - Fazal Haq
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P.R. China
| | - Shah Fahad
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P.R. China
| | - Bilal‐ul‐Amin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P.R. China
| | - Md Alim Uddin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P.R. China
| | - Muhammad Haroon
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P.R. China
| |
Collapse
|
11
|
Zou Y, Li Y, Xu J, Huang X, Chen D. Heavily superparamagnetic magnetite-loaded polymeric worm-like micelles that have an ultrahigh T2 relaxivity. Polym Chem 2020. [DOI: 10.1039/d0py00930j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Composite worm-like micelles with an ultrahigh T2 relaxivity fabricated via two-stage self-assembly of SMNPs guided by PEG-b-P4VP and DNA.
Collapse
Affiliation(s)
- Yunlong Zou
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai
- China
| | - Yanran Li
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai
- China
| | - Jiayin Xu
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai
- China
| | - Xiayun Huang
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai
- China
| | - Daoyong Chen
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai
- China
| |
Collapse
|
12
|
Dai X, Yao J, Zhong Y, Li Y, Lu Q, Zhang Y, Tian X, Guo Z, Bai T. Preparation and Characterization of Fe 3O 4@MTX Magnetic Nanoparticles for Thermochemotherapy of Primary Central Nervous System Lymphoma in vitro and in vivo. Int J Nanomedicine 2019; 14:9647-9663. [PMID: 31824157 PMCID: PMC6901047 DOI: 10.2147/ijn.s205456] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 11/13/2019] [Indexed: 12/15/2022] Open
Abstract
Background Primary central nervous system lymphomas (PCNSL) are extranodal malignant non-Hodgkin lymphomas (NHL) that arise exclusively in central nervous system (CNS). Diffuse large B-cell lymphoma (DLBCL) is the most common histological subtype. Purpose To evaluate whether nano drug-loading system-mediated magnetic-targeted thermochemotherapy could produce a better therapeutic effect than single chemotherapy while reducing the use of chemotherapeutic drugs. Methods Six groups (control, Fe3O4, MTX, Fe3O4@MTX, Fe3O4 with hyperthermia and Fe3O4@MTX with hyperthermia) were set. Tumor cell apoptosis in each treatment group was detected by flow cytometry. Apoptosis-related gene expressions Caspase-3, Bax and Bcl-2 were detected by qPCR and Western blot; intracranial tumor model of PCNSL was established by intracranial injection of OCI-LY18 tumor cells into BALB/c-Nude mice. Magnetic resonance imaging (MRI) was used to monitor tumor progression and H&E staining was used to observe pathological changes of the tumor tissue. Results In vitro, compared with chemotherapy alone, apoptosis rate of Fe3O4@MTX mediated thermochemotherapy group was significantly increased, and expression of apoptosis-inducing gene Caspase-3 and Bax were significantly upregulated in OCI-LY18 cells, while expression of apoptosis-inhibiting Bcl-2 gene was significantly downregulated. In vivo, MRI showed successful generation of intracranial tumor, and tumor volume was significantly smaller in combined thermochemotherapy group than in single chemotherapy group. H&E staining result of tumor tissues in each group was consistent with MRI; tumor cells were significantly reduced in thermochemotherapy group. Expression of apoptosis-related gene Caspase-3 and Bax were significantly upregulated in tumor tissues, while expression of Bcl-2 gene was significantly downregulated. Conclusion These results demonstrated in vivo and in vitro that the combined thermochemotherapy of Fe3O4@MTX MNPs was superior to the single MTX chemotherapy with less dosage, which may promote apoptosis of DLBCL cells through the mitochondrial apoptotic pathway and provided a new way for the treatment of PCNSL.
Collapse
Affiliation(s)
- Xinyu Dai
- Department of Neurology, Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, People's Republic of China
| | - Jingqing Yao
- Department of Neurology, Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, People's Republic of China
| | - Yuejiao Zhong
- Department of Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210000, People's Republic of China
| | - Yuntao Li
- Department of General Practice, Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, People's Republic of China
| | - Qianling Lu
- Department of Neurology, Third Affiliated Hospital of Nanjing Medical University, Nanjing 210000, People's Republic of China
| | - Yan Zhang
- Department of Neurology, Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, People's Republic of China
| | - Xue Tian
- Department of Neurology, Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, People's Republic of China
| | - Zhirui Guo
- Department of Geratology, Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, People's Republic of China
| | - Tingting Bai
- Department of Geratology, Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, People's Republic of China
| |
Collapse
|
13
|
Abbas Y, Zuhra Z, Basharat M, Qiu M, Wu Z, Wu D, Ali S. Morphology Control of Novel Cross-Linked Ferrocenedimethanol Derivative Cyclophosphazenes: From Microspheres to Nanotubes and Their Enhanced Physicochemical Performances. J Phys Chem B 2019; 123:4148-4156. [DOI: 10.1021/acs.jpcb.9b03405] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yasir Abbas
- Key Laboratory of Carbon Fiber and Functional Polymers, Beijing University of Chemical Technology, Ministry of Education, Beijing, 100029, China
| | - Zareen Zuhra
- Key Laboratory of Carbon Fiber and Functional Polymers, Beijing University of Chemical Technology, Ministry of Education, Beijing, 100029, China
| | - Majid Basharat
- Key Laboratory of Carbon Fiber and Functional Polymers, Beijing University of Chemical Technology, Ministry of Education, Beijing, 100029, China
| | - Munan Qiu
- Key Laboratory of Carbon Fiber and Functional Polymers, Beijing University of Chemical Technology, Ministry of Education, Beijing, 100029, China
| | - Zhanpeng Wu
- Key Laboratory of Carbon Fiber and Functional Polymers, Beijing University of Chemical Technology, Ministry of Education, Beijing, 100029, China
| | - Dezhen Wu
- State Key Laboratory of Chemical Resource Engineering, Institute of Science, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shafqat Ali
- The Key Laboratory of Advanced Materials of Ministry of Education, School of Material Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Hou S, Chen S, Dong Y, Gao S, Zhu B, Lu Q. Biodegradable Cyclomatrix Polyphosphazene Nanoparticles: A Novel pH-Responsive Drug Self-Framed Delivery System. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25983-25993. [PMID: 30014692 DOI: 10.1021/acsami.8b06114] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Traditional drug delivery systems suffer from low drug-loading and relatively weak therapeutic efficacy, therefore, development of new drug delivery systems with high-efficiency has become more urgent. In this report, a novel-innovative drug delivery strategy, namely drug self-framed delivery system (DSFDS), is prepared via using anticancer drugs as polymer frame without using any carriers. The drug molecules (exemplified by doxorubicin) containing more than two nucleophilic functional groups (diols/diamines) directly reacted with hexachlorocyclotriphosphazene via mild precipitation polycondensation under ambient conditions, forming biocompatible drug self-framed delivery nanoparticles. Because of the covalent bonding of the drug molecules, DSFD nanoparticles (DSFDs) with super high drug-loading were stable in the circulation during delivery. However, sustained release of drug in the acidic environment within cells endowed DSFDs with long-term anticancer therapeutic efficacy. This strategy is applicable for diverse hydrophilic and hydrophobic drugs and may be a new platform for designing high drug-loading and release-controllable drug delivery systems.
Collapse
Affiliation(s)
- Shenglei Hou
- School of Chemical Science and Engineering, The State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Shuangshuang Chen
- School of Chemical Science and Engineering , Tongji University , Shanghai 200092 , China
| | - Yuan Dong
- School of Chemical Science and Engineering, The State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Su Gao
- School of Chemical Science and Engineering, The State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Bangshang Zhu
- School of Chemical Science and Engineering, The State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Qinghua Lu
- School of Chemical Science and Engineering, The State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , China
| |
Collapse
|
15
|
Crosslinked Polyphosphazene Nanospheres with Anticancer Quercetin: Synthesis, Spectroscopic, Thermal Properties, and Controlled Drug Release. Macromol Res 2018. [DOI: 10.1007/s13233-018-6092-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Qiu S, Ma C, Wang X, Zhou X, Feng X, Yuen RKK, Hu Y. Melamine-containing polyphosphazene wrapped ammonium polyphosphate: A novel multifunctional organic-inorganic hybrid flame retardant. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:839-848. [PMID: 29190581 DOI: 10.1016/j.jhazmat.2017.11.018] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/24/2017] [Accepted: 11/09/2017] [Indexed: 05/24/2023]
Abstract
To achieve superior fire safety epoxy resins (EP), a novel multifunctional organic-inorganic hybrid, melamine-containing polyphosphazene wrapped ammonium polyphosphate (PZMA@APP) with rich amino groups was prepared and used as an efficient flame retardant. Thanks to the cross-linked polyphosphazene part, PZMA@APP exhibited high flame retardant efficiency and smoke suppression to the EP composites. Thermogravimetric analysis indicated that PZMA@APP significantly enhanced the thermal stability of EP composites. The obtained sample passed UL-94 V-0 rating with 10.0wt% addition of PZMA@APP. Notably, inclusion of incorporating PZMA@APP leads to significantly decrease on fire hazards of EP, for instance, bring about a 75.6% maximum decrease in peak heat release rate and 65.9% maximum reduction in total heat release, accompanied with lower smoke production rate and higher graphitized char layer. With regards to mechanical property, the glass transition temperature of EP/PZMA@APP10.0 was as high as 184.5°C. In particular, the addition of PZMA@APP did not worsen the mechanical properties, compared to pure APP. It was confirmed that the participation of melamine-containing polyphosphazene could significantly enhance the quality of char layer and thereby resulting the higher flame retardant efficiency of PZMA@APP.
Collapse
Affiliation(s)
- Shuilai Qiu
- State Key Laboratory of Fire Science, University of Science and Technology of China,96 Jinzhai Road, Hefei, Anhui, 230026, PR China; Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Chao Ma
- State Key Laboratory of Fire Science, University of Science and Technology of China,96 Jinzhai Road, Hefei, Anhui, 230026, PR China
| | - Xin Wang
- State Key Laboratory of Fire Science, University of Science and Technology of China,96 Jinzhai Road, Hefei, Anhui, 230026, PR China.
| | - Xia Zhou
- State Key Laboratory of Fire Science, University of Science and Technology of China,96 Jinzhai Road, Hefei, Anhui, 230026, PR China
| | - Xiaming Feng
- State Key Laboratory of Fire Science, University of Science and Technology of China,96 Jinzhai Road, Hefei, Anhui, 230026, PR China; Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Richard K K Yuen
- Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Yuan Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China,96 Jinzhai Road, Hefei, Anhui, 230026, PR China.
| |
Collapse
|
17
|
Ding S, Attia MF, Wallyn J, Taddei C, Serra CA, Anton N, Kassem M, Schmutz M, Er-Rafik M, Messaddeq N, Collard A, Yu W, Giordano M, Vandamme TF. Microfluidic-Assisted Production of Size-Controlled Superparamagnetic Iron Oxide Nanoparticles-Loaded Poly(methyl methacrylate) Nanohybrids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1981-1991. [PMID: 29334739 DOI: 10.1021/acs.langmuir.7b01928] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this paper, superparamagnetic iron oxide nanoparticles (SPIONs, around 6 nm) encapsulated in poly(methyl methacrylate) nanoparticles (PMMA NPs) with controlled sizes ranging from 100 to 200 nm have been successfully produced. The hybrid polymeric NPs were prepared following two different methods: (1) nanoprecipitation and (2) nanoemulsification-evaporation. These two methods were implemented in two different microprocesses based on the use of an impact jet micromixer and an elongational-flow microemulsifier. SPIONs-loaded PMMA NPs synthesized by the two methods presented completely different physicochemical properties. The polymeric NPs prepared with the micromixer-assisted nanoprecipitation method showed a heterogeneous dispersion of SPIONs inside the polymer matrix, an encapsulation efficiency close to 100 wt %, and an irregular shape. In contrast, the polymeric NPs prepared with the microfluidic-assisted nanoemulsification-evaporation method showed a homogeneous dispersion, an almost complete encapsulation, and a spherical shape. The properties of the polymeric NPs have been characterized by dynamic light scattering, thermogravimetric analysis, and transmission electron microscope. In vitro cytotoxicity assays were also performed on the nanohybrids and pure PMMA NPs.
Collapse
Affiliation(s)
- Shukai Ding
- Université de Strasbourg, CNRS, ICS UPR 22 , F-67000 Strasbourg, France
- Institute of Atomic and Molecular Science, Shaanxi University of Science & Technology , CN-710021 Xi'an, Shaanxi, China
| | - Mohamed F Attia
- Université de Strasbourg, CNRS, CAMB UMR 7199 , F-67000 Strasbourg, France
- National Research Centre , 12622 Cairo, Egypt
- Department of Bioengineering, Clemson University , Clemson, South Carolina 29634, United States
| | - Justine Wallyn
- Université de Strasbourg, CNRS, CAMB UMR 7199 , F-67000 Strasbourg, France
| | - Chiara Taddei
- Université de Strasbourg, CNRS, ICS UPR 22 , F-67000 Strasbourg, France
- Institute for Polymers, Composites and Biomaterials (IPCB), CNR , Portici 80055, Italy
| | | | - Nicolas Anton
- Université de Strasbourg, CNRS, CAMB UMR 7199 , F-67000 Strasbourg, France
| | - Mohamad Kassem
- Vascular and Tissue Stress in Transplantation: Microparticles and Environment EA7293, Université de Strasbourg , F-67000 Strasbourg, France
| | - Marc Schmutz
- Université de Strasbourg, CNRS, ICS UPR 22 , F-67000 Strasbourg, France
| | - Meriem Er-Rafik
- Université de Strasbourg, CNRS, ICS UPR 22 , F-67000 Strasbourg, France
| | - Nadia Messaddeq
- Université de Strasbourg CNRS, INSERM, Collège de France, IGBMC UMR 7104/UMR_S 964 , F-67000 Strasbourg, France
| | - Alexandre Collard
- Université de Strasbourg, CNRS, ICS UPR 22 , F-67000 Strasbourg, France
| | - Wei Yu
- Université de Strasbourg, CNRS, ICS UPR 22 , F-67000 Strasbourg, France
| | - Michele Giordano
- Institute for Polymers, Composites and Biomaterials (IPCB), CNR , Portici 80055, Italy
| | - Thierry F Vandamme
- Université de Strasbourg, CNRS, CAMB UMR 7199 , F-67000 Strasbourg, France
| |
Collapse
|
18
|
Wang L, Yang YX, Shi X, Mignani S, Caminade AM, Majoral JP. Cyclotriphosphazene core-based dendrimers for biomedical applications: an update on recent advances. J Mater Chem B 2018; 6:884-895. [PMID: 32254368 DOI: 10.1039/c7tb03081a] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This review is focused on the recent use of cyclotriphosphazene-based dendrimers in biomedicine. Since its synthesis for the first time in 1834, cyclotriphosphazene has been an important compound of phosphorus chemistry as a scaffold, and a large number of cyclotriphosphazene derivatives have been synthesized and applied in various fields such as biology, catalysis, fluorescence, nanomaterials, etc. Today, one of the most important uses concerns its biomedical applications. In this review, the recent developments (since 2012) of cyclotriphosphazene for major pharmaceutical applications are highlighted and analyzed.
Collapse
Affiliation(s)
- Le Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China.
| | | | | | | | | | | |
Collapse
|
19
|
An Z, Wang L, Gao C, He N, Zhu B, Liu Y, Cai Q. Fe3+-Enhanced NIR-to-NIR upconversion nanocrystals for tumor-targeted trimodal bioimaging. NEW J CHEM 2018. [DOI: 10.1039/c8nj04248a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fe3+-Enhanced NIR-to-NIR multifunctional upconversion luminescence nanocrystals were synthesized for excellent tumor-targeted UCL/MRI/X-ray trimodal bioimaging.
Collapse
Affiliation(s)
- Zhengbin An
- State Key Lab of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| | - Lijia Wang
- State Key Lab of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| | - Chan Gao
- State Key Lab of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| | - Ni He
- State Key Lab of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| | - Baode Zhu
- State Key Laboratory of Developmental Biology of Freshwater Fish
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development
- College of Life Sciences
- Hunan Normal University
- Changsha
| | - Yingju Liu
- College of Materials & Energy, South China Agricultural University
- Guangzhou 510642
- China
| | - Qingyun Cai
- State Key Lab of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| |
Collapse
|
20
|
Davodi B, Ghorbani M, Jahangiri M. Adsorption of mercury from aqueous solution on synthetic polydopamine nanocomposite based on magnetic nanoparticles using Box–Behnken design. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.07.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Wang MS, Chen L, Xiong YQ, Xu J, Wang JP, Meng ZL. Iron oxide magnetic nanoparticles combined with actein suppress non-small-cell lung cancer growth in a p53-dependent manner. Int J Nanomedicine 2017; 12:7627-7651. [PMID: 29089760 PMCID: PMC5655152 DOI: 10.2147/ijn.s127549] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Actein (AT) is a triterpene glycoside isolated from the rhizomes of Cimicifuga foetida that has been investigated for its antitumor effects. AT treatment leads to apoptosis in various cell types, including breast cancer cells, by regulating different signaling pathways. Iron oxide (Fe3O4) magnetic nanoparticles (MNPs) are nanomaterials with biocompatible activity and low toxicity. In the present study, the possible benefits of AT in combination with MNPs on non-small-cell lung cancer (NSCLC) were explored in in vitro and in vivo studies. AT-MNP treatment contributed to apoptosis in NSCLC cells, as evidenced by activation of the caspase 3-signaling pathway, which was accompanied by downregulation of the antiapoptotic proteins Bcl2 and BclXL, and upregulation of the proapoptotic signals Bax and Bad. The death receptors of TRAIL were also elevated following AT-MNP treatment in a p53-dependent manner. Furthermore, a mouse xenograft model in vivo revealed that AT-MNP treatment exhibited no toxicity and suppressed NSCLC growth compared to either AT or MNP monotherapies. In conclusion, this study suggests a novel therapy to induce apoptosis in suppressing NSCLC growth in a p53-dependent manner by combining AT with Fe3O4 MNPs.
Collapse
Affiliation(s)
- Ming-Shan Wang
- Department of Oncology, Huaiyin Hospital of Huai'an City, Huai'an, China
| | - Liang Chen
- Department of Respiration, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Ya-Qiong Xiong
- Department of Respiration, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Jing Xu
- Department of Respiration, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Ji-Peng Wang
- Department of Respiration, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Zi-Li Meng
- Department of Respiration, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| |
Collapse
|
22
|
Yang B, Luo L, Ma Y, Chen C, Chen X, Cai C. Hydrophilic Magnetite Nanoparticles Enhance Anticancer Activity of Anthracyclines In Vitro. Aust J Chem 2016. [DOI: 10.1071/ch16074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A novel method for enhancing the anticancer activity of anthracyclines in vitro was proposed by using hydrophilic magnetic nanoparticles. Citric acid-coated magnetite nanoparticles Fe3O4 (nano-Fe3O4-CA) interacted with anthracyclines by electrostatic and hydrophobic forces, resulting in the formation of aggregates (nano-Fe3O4-CA-drug). The aggregate was studied by resonance light scattering and fluorescence spectroscopy. The results indicated that in comparison with anthracyclines, the nano-Fe3O4-CA-drug showed high activity towards incorporation in the DNA chain. Furthermore, the cytotoxicity of nano-Fe3O4-CA-drug was investigated by cytotoxicity experiment and cell morphology study. The results confirmed that the nano-Fe3O4-CA-drug could inhibit the growth of cells more effectively than the drug alone. In conclusion, usage of nano-Fe3O4-CA affords reduction of the dosage of anthracyclines in vitro.
Collapse
|
23
|
Xu L, Lei C, Xu R, Zhang X, Zhang F. Functionalization of α-zirconium phosphate by polyphosphazene and its effect on the flame retardance of an intumescent flame retardant polypropylene system. RSC Adv 2016. [DOI: 10.1039/c6ra15382h] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
α-ZrP was combined with polyphosphazene and formed a core–shell structure, which has a significant synergistic flame retardant performance in polypropylene.
Collapse
Affiliation(s)
- Lingfeng Xu
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter
- School of Materials and Energy
- Guangdong University of Technology
- Guangzhou 510006
- PR China
| | - Caihong Lei
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter
- School of Materials and Energy
- Guangdong University of Technology
- Guangzhou 510006
- PR China
| | - Ruijie Xu
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter
- School of Materials and Energy
- Guangdong University of Technology
- Guangzhou 510006
- PR China
| | - Xiaoqing Zhang
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter
- School of Materials and Energy
- Guangdong University of Technology
- Guangzhou 510006
- PR China
| | - Feng Zhang
- Kingfa Science and Technology Company, Limited
- Guangzhou 510520
- PR China
| |
Collapse
|
24
|
Huang Z, Zheng F, Chen S, Lu X, Catharina Elizabeth van Sittert CG, Lu Q. A strategy for the synthesis of cyclomatrix-polyphosphazene nanoparticles from non-aromatic monomers. RSC Adv 2016. [DOI: 10.1039/c6ra13486f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cyclomatrix-polyphosphazenes (C-PPZs) are a new class of nanomaterials that have attracted significant interest owing to their unique inorganic–organic hybrid structure and tunable properties.
Collapse
Affiliation(s)
- Zhangjun Huang
- School of Chemistry and Chemical Engineering
- The State Key Laboratory of Metal Matrix Composites
- Shanghai Jiaotong University
- Shanghai
- P. R. China
| | - Feng Zheng
- School of Chemistry and Chemical Engineering
- The State Key Laboratory of Metal Matrix Composites
- Shanghai Jiaotong University
- Shanghai
- P. R. China
| | - Shuangshuang Chen
- School of Chemistry and Chemical Engineering
- The State Key Laboratory of Metal Matrix Composites
- Shanghai Jiaotong University
- Shanghai
- P. R. China
| | - Xuemin Lu
- School of Chemistry and Chemical Engineering
- The State Key Laboratory of Metal Matrix Composites
- Shanghai Jiaotong University
- Shanghai
- P. R. China
| | | | - Qinghua Lu
- School of Chemistry and Chemical Engineering
- The State Key Laboratory of Metal Matrix Composites
- Shanghai Jiaotong University
- Shanghai
- P. R. China
| |
Collapse
|
25
|
Zhang L, Wang X, Zou J, Liu Y, Wang J. DMSA-Coated Iron Oxide Nanoparticles Greatly Affect the Expression of Genes Coding Cysteine-Rich Proteins by Their DMSA Coating. Chem Res Toxicol 2015; 28:1961-74. [DOI: 10.1021/acs.chemrestox.5b00161] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ling Zhang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
- School
of Biomedical Engineering, Hubei University of Science and Technology, Xianning 437000, China
| | - Xin Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Jinglu Zou
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Yingxun Liu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Jinke Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| |
Collapse
|
26
|
Chang Q, Jiang G, Tang H, Li N, Huang J, Wu L. Enzymatic removal of chlorophenols using horseradish peroxidase immobilized on superparamagnetic Fe3O4/graphene oxide nanocomposite. CHINESE JOURNAL OF CATALYSIS 2015. [DOI: 10.1016/s1872-2067(15)60856-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Lin Y, Wang S, Zhang Y, Gao J, Hong L, Wang X, Wu W, Jiang X. Ultra-high relaxivity iron oxide nanoparticles confined in polymer nanospheres for tumor MR imaging. J Mater Chem B 2015; 3:5702-5710. [PMID: 32262566 DOI: 10.1039/c5tb00593k] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Superparamagnetic iron oxide nanoparticles encapsulated in hydrophilic chitosan nanospheres were prepared by nonsolvent-aided counterion complexation completely in an aqueous solution. The T2 relaxation of these hybrid nanospheres in vitro and in vivo was investigated. It was found that the molar transverse relaxivity rate r2 of hybrid nanospheres highly depends upon the payload of iron oxide nanoparticles within hybrid nanospheres. Compared to free iron oxide nanoparticles, the molar transverse relaxivity rate, r2 of hybrid nanospheres shows an approximately 8-fold increase and reaches the maximum of 533 Fe mM-1 s-1. Such a high r2 value is probably associated with the clustering effect of iron oxide nanoparticles, which are confined in the chitosan nanospheres. The in vivo magnetic resonance imaging (MRI) demonstrates that the hybrid nanospheres shorten transverse relaxation time, T2 and significantly decrease the signal intensity of the tumor area, giving rise to high contrast tumor MR imaging at a relatively low dose.
Collapse
Affiliation(s)
- Ying Lin
- School of Biology and Chemical Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Sun L, Liu T, Li H, Yang L, Meng L, Lu Q, Long J. Fluorescent and cross-linked organic-inorganic hybrid nanoshells for monitoring drug delivery. ACS APPLIED MATERIALS & INTERFACES 2015; 7:4990-4997. [PMID: 25651861 DOI: 10.1021/acsami.5b00175] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Functionalized and monodisperse nanoshells have attracted significant attention owing to their well-defined structure, unique properties, and wide range of potential applications. Here, the synthesis of cross-linked organic-inorganic hybrid nanoshells with strong fluorescence properties was reported via a facile precipitation polymerization of hexachlorocyclotriphosphazene (HCCP) and fluorescein on silica particles used as templates. The resulting poly(cyclotriphosphazene-co-fluorescein) (PCTPF) nanoshells were firm cross-linked shells with ∼2.2 nm mesopores that facilitated the transport of drug molecules. The fluorescent nanoshells also exhibited excellent water dispersibility and biocompatibility; thus, they can be considered as ideal drug vehicles with high doxorubicin storage capacity (26.2 wt %) and excellent sustained release (up to 14 days). Compared to doxorubicin (DOX) alone, the PCTPF nanoshells more efficiently delivered DOX into and killed cancer cells. Moreover, the PCTPF nanoshells also exhibited remarkable fluorescent emission properties and improved photobleaching stability in both suspension and solid state owing to the covalent immobilization of fluorescein in the highly cross-linked organic-inorganic hybrids. The exceptional fluorescent properties enabled the release of DOX as well as the distribution of nanoshells and DOX to be monitored.
Collapse
Affiliation(s)
- Lijuan Sun
- School of Chemistry and Chemical Technology, State Key Laboratory of Metal Matrix Composites, Shanghai Jiaotong University , Shanghai 200240, P. R. China
| | | | | | | | | | | | | |
Collapse
|
29
|
Synthesis of Polyphosphazene Derivatives via Thiol-ene Click Reactions in an Aqueous Medium. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201400545] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
30
|
Menelaou M, Iatridi Z, Tsougos I, Vasiou K, Dendrinou-Samara C, Bokias G. Magnetic colloidal superparticles of Co, Mn and Ni ferrite featured with comb-type and/or linear amphiphilic polyelectrolytes; NMR and MRI relaxometry. Dalton Trans 2015; 44:10980-90. [DOI: 10.1039/c5dt00372e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Hydrophobically-modified magnetic superparticles (MSPs) of MFe2O4 NPs were synthesized in the presence of amphiphilic polymers with different architectures and evaluated through NMR and MRI relaxivity measurements.
Collapse
Affiliation(s)
- Melita Menelaou
- Department of Chemistry
- Aristotle University of Thessaloniki
- GR-54124 Thessaloniki
- Greece
| | | | - Ioannis Tsougos
- Department of Medical Physics
- University Hospital of Larissa
- University of Thessaly
- GR-41110 Larisa
- Greece
| | - Katerina Vasiou
- Department of Radiology
- University Hospital of Larissa
- University of Thessaly
- GR-41110 Larisa
- Greece
| | | | - Georgios Bokias
- Department of Chemistry
- University of Patras
- GR-26504 Patras
- Greece
| |
Collapse
|
31
|
Wang D, Hu Y, Meng L, Wang X, Lu Q. One-pot synthesis of fluorescent and cross-linked polyphosphazene nanoparticles for highly sensitive and selective detection of dopamine in body fluids. RSC Adv 2015. [DOI: 10.1039/c5ra20462c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Highly cross-linked and monodisperse polyphosphazene (PZS) nanoparticles exhibiting strong fluorescence were prepared by the facile one-pot polycondensation of hexachlorocyclotriphosphazene and 4′,5′-dibromofluorescein (DBF).
Collapse
Affiliation(s)
- Daquan Wang
- School of Science
- State Key Laboratory for Mechanical Behaviour of Materials
- Xi'an Jiaotong University
- Xi'an 710049
- P. R. China
| | - Ying Hu
- School of Chemistry and Chemical Engineering
- Shanghai Jiaotong University
- Shanghai 200240
- P. R. China
| | - Lingjie Meng
- School of Science
- State Key Laboratory for Mechanical Behaviour of Materials
- Xi'an Jiaotong University
- Xi'an 710049
- P. R. China
| | - Xiaochi Wang
- School of Science
- State Key Laboratory for Mechanical Behaviour of Materials
- Xi'an Jiaotong University
- Xi'an 710049
- P. R. China
| | - Qinghua Lu
- School of Chemistry and Chemical Engineering
- Shanghai Jiaotong University
- Shanghai 200240
- P. R. China
| |
Collapse
|
32
|
Chen C, Xu H, Qian YC, Huang XJ. Glycosylation of polyphosphazenes by thiol-yne click chemistry for lectin recognition. RSC Adv 2015. [DOI: 10.1039/c4ra14012e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Strong carbohydrate–lectin binding interactions in biological systems can be mimicked through the synthesis of glucose containing macromolecules, particularly glycosylated polymers.
Collapse
Affiliation(s)
- Chen Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Huang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Yue-Cheng Qian
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Xiao-Jun Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
33
|
Moradi S, Akhavan O, Tayyebi A, Rahighi R, Mohammadzadeh M, Saligheh Rad HR. Magnetite/dextran-functionalized graphene oxide nanosheets for in vivo positive contrast magnetic resonance imaging. RSC Adv 2015. [DOI: 10.1039/c5ra03331d] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In vivo positive contrast MRI by magnetite/dextran-functionalized graphene oxide (SPIO-Dex-FGO) as compared to Magnevist® (the right rat).
Collapse
Affiliation(s)
- S. Moradi
- Department of Energy Engineering
- Sharif University of Technology
- Tehran
- Iran
| | - O. Akhavan
- Department of Physics
- Sharif University of Technology
- Tehran
- Iran
- Institute for Nanoscience and Nanotechnology
| | - A. Tayyebi
- Department of Energy Engineering
- Sharif University of Technology
- Tehran
- Iran
| | - R. Rahighi
- Department of Physics
- Sharif University of Technology
- Tehran
- Iran
| | - M. Mohammadzadeh
- Department of Energy Engineering
- Sharif University of Technology
- Tehran
- Iran
- Information Communication Technology (ICT) Faculty
| | - H. R. Saligheh Rad
- Department of Medical Physics and Biomedical Engineering
- Tehran University of Medical Sciences
- Tehran
- Iran
| |
Collapse
|
34
|
Meng L, Xu C, Liu T, Li H, Lu Q, Long J. One-pot synthesis of highly cross-linked fluorescent polyphosphazene nanoparticles for cell imaging. Polym Chem 2015. [DOI: 10.1039/c5py00196j] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly cross-linked and fluorescent polyphosphazene nanoparticles with excellent biocompatibility and improved resistance to photobleaching and protein interference were prepared for cell imaging.
Collapse
Affiliation(s)
- Lingjie Meng
- School of Science; State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an
- P. R. China
| | - Chengqiang Xu
- School of Chemistry and Chemical Technology; State Key Laboratory of Metal Matrix Composites
- Shanghai Jiaotong University
- Shanghai
- P. R. China
| | - Tianhui Liu
- School of Science; State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an
- P. R. China
| | - Hua Li
- School of Life Science and Technology
- Xi'an Jiaotong University
- Xi'an
- P. R. China
| | - Qinghua Lu
- School of Chemistry and Chemical Technology; State Key Laboratory of Metal Matrix Composites
- Shanghai Jiaotong University
- Shanghai
- P. R. China
| | - Jiangang Long
- School of Life Science and Technology
- Xi'an Jiaotong University
- Xi'an
- P. R. China
| |
Collapse
|
35
|
Facile fabrication of core shell Fe3O4@polydopamine microspheres with unique features of magnetic control behavior and special wettability. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2014.09.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
36
|
Hervault A, Thanh NTK. Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. NANOSCALE 2014; 6:11553-73. [PMID: 25212238 DOI: 10.1039/c4nr03482a] [Citation(s) in RCA: 303] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Magnetic nanoparticles have been widely investigated for their great potential as mediators of heat for localised hyperthermia therapy. Nanocarriers have also attracted increasing attention due to the possibility of delivering drugs at specific locations, therefore limiting systematic effects. The enhancement of the anti-cancer effect of chemotherapy with application of concurrent hyperthermia was noticed more than thirty years ago. However, combining magnetic nanoparticles with molecules of drugs in the same nanoformulation has only recently emerged as a promising tool for the application of hyperthermia with combined chemotherapy in the treatment of cancer. The main feature of this review is to present the recent advances in the development of multifunctional therapeutic nanosystems incorporating both magnetic nanoparticles and drugs, and their superior efficacy in treating cancer compared to either hyperthermia or chemotherapy as standalone therapies. The principle of magnetic fluid hyperthermia is also presented.
Collapse
Affiliation(s)
- Aziliz Hervault
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, 21 Albermarle Street, London W1S 4BS, UK.
| | | |
Collapse
|
37
|
Mahmoud WE, Bronstein LM, Al-Hazmi F, Al-Noaiser F, Al-Ghamdi AA. Development of Fe/Fe3O4 core-shell nanocubes as a promising magnetic resonance imaging contrast agent. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:13095-13101. [PMID: 24079275 DOI: 10.1021/la403158d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Here, we report the synthesis, characterization, and properties of Fe/Fe3O4 core-shell nanocubes prepared via a simple route. It includes NaBH4 reduction of FeCl3 in an ethylene glycol solution in the presence of 2-mercaptopropionic acid (surfactant) and trisodium citrate (cosurfactant) followed by surface oxidation with trimethylamine N-oxide. The morphology and structure of Fe/Fe3O4 core-shell nanocubes were characterized using transmission electron microscopy (TEM), high-resolution TEM, selected area electron diffraction, X-ray powder diffraction, and X-ray photoelectron spectroscopy. All of the methods confirm a Fe/Fe3O4 core-shell structure of nanocubes. Magnetic measurements revealed that the Fe/Fe3O4 core/shell nanocubes are superparamagnetic at 300 K with a saturation magnetization of 129 emu/g. The T2 weighted imaging and the T2 relaxation time showed high MRI contrast and sensitivity, making these nanocubes viable candidates as enhanced MRI contrast agents.
Collapse
Affiliation(s)
- Waleed E Mahmoud
- Faculty of Science, Physics Department, King Abdulaziz University , Jeddah, Saudi Arabia
| | | | | | | | | |
Collapse
|