1
|
Fishler Y, Leick N, Teeter G, Holewinski A, Smith WA. Layered Sn-Au Thin Films for Increased Electrochemical ATR-SEIRAS Enhancement. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19780-19791. [PMID: 38584348 DOI: 10.1021/acsami.4c01525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Operando electrochemical attenuated total reflection surface-enhanced infrared absorption spectroscopy (EC ATR-SEIRAS) is a valuable method for a fundamental understanding of electrochemical interfaces under real operating conditions. The applicability of this method depends on the ability to tune the optical and catalytic properties of an electrode film, and it thus requires unique optimization for any given material. Motivated by the growing interest in Sn-based electrocatalysts for selective reduction of CO2 to formate species, we investigate several Sn thin-film synthesis routes for the resulting SEIRA signal response. We compare the SEIRA performance of thermally evaporated metallic Sn to a series of Sn-based films on top of a SEIRA-active Au substrate (metallic Sn, oxide-derived metallic Sn, and metal oxide SnOx). Using alkanethiol self-assembled monolayers as a probe, we find that electrodepositing metallic catalyst films on top of SEIRA-active Au substrates yield higher signal relative to thermal evaporation as well as higher signal than the independent SEIRA-active Au underlayer. These observations come despite the fact that thermally evaporated Sn has a significantly higher surface roughness (and thus higher adsorbate population), suggesting specific SEIRA-magnifying effects for the stacked films. Finally, we applied these films to observe the electrochemical conversion of CO2. Differences are observed in spectral features based on the composition of the electrode being either metallic or oxide-derived metallic Sn, implying differences in their respective reaction pathways.
Collapse
Affiliation(s)
- Yuval Fishler
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- Renewable and Sustainable Energy Institute University of Colorado, Boulder, Colorado 80303, United States
- Materials, Chemical, and Computational Science (MCCS) Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Noemi Leick
- Materials, Chemical, and Computational Science (MCCS) Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Glenn Teeter
- Materials, Chemical, and Computational Science (MCCS) Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Adam Holewinski
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- Renewable and Sustainable Energy Institute University of Colorado, Boulder, Colorado 80303, United States
| | - Wilson A Smith
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- Renewable and Sustainable Energy Institute University of Colorado, Boulder, Colorado 80303, United States
- Materials, Chemical, and Computational Science (MCCS) Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| |
Collapse
|
2
|
Nguyen HT, Jeon J, Ikeda T, Adachi K, Tsukahara Y. Polymeric molecular coating for oxidation resistance property of copper surface. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-018-2501-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
An electrochemical sensing approach for scouting microbial chemolithotrophic metabolisms. Bioelectrochemistry 2018; 123:125-136. [PMID: 29747131 DOI: 10.1016/j.bioelechem.2018.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/25/2018] [Accepted: 04/29/2018] [Indexed: 11/21/2022]
Abstract
The present study was aimed to test an electrochemical sensing approach for the detection of an active chemolithotrophic metabolism (and therefore the presence of chemolithotrophic microorganisms) by using the corrosion of pyrite by Acidithiobacillus ferrooxidans as a model. Different electrochemical techniques were combined with adhesion studies and scanning electron microscopy (SEM). The experiments were performed in presence or absence of A. ferrooxidans and without or with ferrous iron in the culture medium (0 and 0.5 g L-1, respectively). Electrochemical parameters were in agreement with voltammetric studies and SEM showing that it is possible to distinguish between an abiotically-induced corrosion process (AIC) and a microbiologically-induced corrosion process (MIC). The results show that our approach not only allows the detection of chemolithotrophic activity of A. ferrooxidans but also can characterize the corrosion process. This may have different kind of applications, from those related to biomining to life searching missions in other planetary bodies.
Collapse
|
4
|
Nazeer AA, Madkour M. Potential use of smart coatings for corrosion protection of metals and alloys: A review. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.01.027] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Yamakawa K, Takagi J, Nguyen HT, Adachi K, Tsukahara Y. Oxidation Resistance of Nickel Surface by Molecular Coating of Thiol-terminated Polymers. CHEM LETT 2018. [DOI: 10.1246/cl.170941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kosuke Yamakawa
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Juri Takagi
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hai Thanh Nguyen
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kaoru Adachi
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yasuhisa Tsukahara
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|