1
|
Brasnett C, Squires AM, Smith AJ, Seddon AM. Lipid doping of the sponge (L 3) mesophase. SOFT MATTER 2023; 19:6569-6577. [PMID: 37603381 DOI: 10.1039/d3sm00578j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The polymorphism of lipid aggregates has long attracted detailed study due to the myriad factors that determine the final mesophase observed. This study is driven by the need to understand mesophase behaviour for a number of applications, such as drug delivery and membrane protein crystallography. In the case of the latter, the role of the so-called 'sponge' (L3) mesophase has been often noted, but not extensively studied by itself. The L3 mesophase can be formed in monoolein/water systems on the addition of butanediol to water, which partitions the headgroup region of the membrane, and decreases its elastic moduli. Like cubic mesophases, it is bicontinuous, but unlike them, has no long-range translational symmetry. In our present study, we show that the formation of the L3 phase can delicately depend on the addition of dopant lipids to the mesophase. While electrostatically neutral molecules similar in shape to monoolein (DOPE, cholesterol) have little effect on the general mesophase behaviour, others (DOPC, DDM) significantly reduce the composition at which it can form. Additionally, we show that by combining cholesterol with the anionic lipid DOPG, it is possible to form the largest stable L3 mesophases observed to date, with characteristic lengths over 220 Å.
Collapse
Affiliation(s)
| | - Adam M Squires
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
| | - Andrew J Smith
- Diamond House, Diamond Light Source Ltd, Harwell Science and Innovation Campus, Fermi Ave., Didcot, OX11 0DE, UK
| | - Annela M Seddon
- School of Physics, University of Bristol, Tyndall Avenue, Bristol, BS8 1FD, UK.
- Bristol Centre for Functional Nanomaterials, School of Physics, University of Bristol, Tyndall Avenue, Bristol, BS8 1FD, UK
| |
Collapse
|
2
|
Liu J, Cheng R, Heimann K, Wang Z, Wang J, Liu F. Temperature-sensitive lyotropic liquid crystals as systems for transdermal drug delivery. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
3
|
Kawai M, Ibaraki H, Takashima Y, Kanazawa T, Okada H. Development of a Liquid Crystal Formulation that Can Penetrate the Stratum Corneum for Intradermal Delivery of Small Interfering RNA. Mol Pharm 2021; 18:1038-1047. [PMID: 33395310 DOI: 10.1021/acs.molpharmaceut.0c00997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Topical delivery of small interfering RNA (siRNA) can be an attractive method for the treatment of skin diseases and improving the quality of life of patients. However, it is difficult for siRNA to pass through the two major barriers of the skin: the stratum corneum (SC) and tight junctions. We have previously reported that atopic dermatitis of skin without the SC can be efficiently treated by the intradermal administration of trans-activator of transcription (Tat) peptide and AT1002 (tight junction opening peptide). However, novel drug delivery systems are needed for effective SC penetration. Therefore, in the present study, we aimed to develop a lyotropic liquid crystalline (LC) system containing Tat and AT1002 for effective siRNA penetration through the SC. An LC formulation was prepared using selachyl alcohol and purified water, and its skin penetration ability was evaluated. No fluorescence was observed in mouse skin treated with a siRNA solution, as there was no intradermal localization of siRNA from naked siRNA. However, intradermal delivery of siRNA was remarkable and extensive with the LC formulation containing both Tat and AT1002. Semiquantitative analysis by brightness measurement revealed that the LC formulation containing both Tat and AT1002 had significantly enhanced intact skin permeability than other formulations. These results show that the functional peptides in the LC formulation increased SC penetration and intradermal delivery in the healthy skin. Therefore, this novel LC system may be useful in the treatment of various skin diseases.
Collapse
Affiliation(s)
- Misako Kawai
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hisako Ibaraki
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yuuki Takashima
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Takanori Kanazawa
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.,School of Pharmaceutical Sciences, University of Shizuoka 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiroaki Okada
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
4
|
van 't Hag L, Gras SL, Conn CE, Drummond CJ. Lyotropic liquid crystal engineering moving beyond binary compositional space - ordered nanostructured amphiphile self-assembly materials by design. Chem Soc Rev 2018; 46:2705-2731. [PMID: 28280815 DOI: 10.1039/c6cs00663a] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ordered amphiphile self-assembly materials with a tunable three-dimensional (3D) nanostructure are of fundamental interest, and crucial for progressing several biological and biomedical applications, including in meso membrane protein crystallization, as drug and medical contrast agent delivery vehicles, and as biosensors and biofuel cells. In binary systems consisting of an amphiphile and a solvent, the ability to tune the 3D cubic phase nanostructure, lipid bilayer properties and the lipid mesophase is limited. A move beyond the binary compositional space is therefore required for efficient engineering of the required material properties. In this critical review, the phase transitions upon encapsulation of more than 130 amphiphilic and soluble additives into the bicontinuous lipidic cubic phase under excess hydration are summarized. The data are interpreted using geometric considerations, interfacial curvature, electrostatic interactions, partition coefficients and miscibility of the alkyl chains. The obtained lyotropic liquid crystal engineering design rules can be used to enhance the formulation of self-assembly materials and provides a large library of these materials for use in biomedical applications (242 references).
Collapse
Affiliation(s)
- Leonie van 't Hag
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | |
Collapse
|
5
|
Liu Q, Graham B, Hawley A, Dong YD, Boyd BJ. Novel agrochemical conjugates with self-assembling behaviour. J Colloid Interface Sci 2018; 512:369-378. [PMID: 29096098 DOI: 10.1016/j.jcis.2017.10.070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/17/2017] [Accepted: 10/17/2017] [Indexed: 11/29/2022]
Abstract
HYPOTHESIS That conjugation of agrichemicals to pro-assembly hydrophobic moieties will enable enhanced compatibility and loading with host lyotropic liquid crystalline carrier matrix, and potentially self-assemble in their own right in aqueous environments. EXPERIMENTS A series of lipid-like agrochemical-conjugates were synthesized using specific amphiphilic entities conjugated onto the agrochemicals, picloram and 2,4-dichlorophenoxyacetic acid (2,4-D). The self-assembly behaviour and compatibility of the novel entities when incorporated into phytantriol and monoolein-based liquid crystalline systems were examined using small angle X-ray scattering, cryo-TEM and polarized optical microscopy. FINDINGS Compared to agrochemical-conjugates with simple alkyl ester groups, the esterification of the agrochemicals with amphiphilic groups such as phytantriol and monoolein led to greater structural compatibility and consequently a greater loading of the agrochemicals in the liquid crystalline systems without destabilizing phase structure. Picloram-monoolein and picloram-monoelaidin can self-assemble to form lamellar structures in water. However, certain agrochemical-conjugates such as picloram-monoelaidin and picloram-PEGn-oleate showed poor compatibility with liquid crystalline systems, resulting in phase separation.
Collapse
Affiliation(s)
- Qingtao Liu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Bim Graham
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Adrian Hawley
- SAXS/WAXS Beamline, Australian Synchrotron, Clayton, VIC, Australia
| | - Yao-Da Dong
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia.
| |
Collapse
|
6
|
Evenbratt H, Ström A. Phase behavior, rheology, and release from liquid crystalline phases containing combinations of glycerol monooleate, glyceryl monooleyl ether, propylene glycol, and water. RSC Adv 2017. [DOI: 10.1039/c7ra04249c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Quaternary phase diagram of the GMO/GME/PG and water system is determined, allowing for controlled phase transitions triggered by temperature or humidity.
Collapse
Affiliation(s)
- Hanne Evenbratt
- Department of Chemistry and Chemical Engineering
- Pharmaceutical Technology
- Chalmers University of Technology
- Gothenburg
- Sweden
| | - Anna Ström
- Department of Chemistry and Chemical Engineering
- Pharmaceutical Technology
- Chalmers University of Technology
- Gothenburg
- Sweden
| |
Collapse
|
7
|
Self-assembling gelling formulation based on a crystalline-phase liquid as a non-viral vector for siRNA delivery. Eur J Pharm Sci 2014; 58:72-82. [PMID: 24726985 DOI: 10.1016/j.ejps.2014.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 03/30/2014] [Accepted: 04/01/2014] [Indexed: 01/08/2023]
Abstract
Liquid crystalline systems (LCSs) form interesting drug delivery systems. These include in situ gelling delivery systems, which present several advantages for use as self-assembling systems for local drug delivery. The aim of this study was to develop and characterize in situ gelling delivery systems for local siRNA delivery. The influence of the components that form the systems was investigated, and the systems were characterized by polarized light microscopy, Small Angle X-ray Scattering (SAXS), swelling studies, assays of their ability to form a complex with genes and of the stability of the genes in the system, as well as assays of in situ gelling formation and local toxicity using an animal model. The system containing a mixture of monoglycerides (MO), oleylamine (OAM), propylene glycol (PG) and tris buffer (8.16:0.34:76.5:15, w/w/w/w) was considered the most appropriate for local siRNA delivery purposes. The molecular structure was characterized as hexagonal phase; the swelling studies followed a second order kinetic model and the water absorption was a fast process reaching equilibrium at 2 h. The system formed a complex with siRNA and remained in a stable form. The gel was formed in vivo after subcutaneous administration of a precursor fluid formulation in mice and was biodegradable in 30 days. The inflammatory process that took place was considered normal. Therefore, the developed liquid crystalline delivery system shows the appropriate characteristics for use as a local siRNA delivery method for gene therapy.
Collapse
|